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PEMPROFILAN FORENSIK PREKURSOR PSEUDOEFEDRINA 

PROPRIETARI DAN HASILAN OKSIDATIF SEIRING DENGAN ANALISIS 

KEMOMETRIK  

ABSTRAK 

Prekursor pseudoefedrina (PSE) telah disalahgunakan secara berleluasa untuk 

penghasilan dadah sintetik. Ahli kimia tidak bertauliah boleh mengakses bahan ini 

samada daripada sumber haram atau diekstrak secara haram daripada formulasi 

proprietari meskipun pengeluar berusaha menghadkan pengekstrakan semula PSE 

tersebut. Jika tindak balas penurunan PSE menghasilkan metamfetamina (MA), tindak 

balas pengoksidaan pula mampu menghasilkan metkatinon (MET), sejenis bahan 

psikoaktif baharu (NPS). MET kini mendapat perhatian sebagai pengganti dadah MA; 

walau bagaimanapun, terdapat laporan yang sangat terhad dalam kesusasteraan 

saintifik mengenai analisis bahan ini terutamanya berkenaan profil organik dan 

isotopnya yang mungkin mengehadkan keupayaan komuniti forensik untuk mengesan 

dan mengawal bahan ini. Kajian awal melibatkan pengoptimunan pengekstrakan PSE 

daripada pelbagai sumber proprietari, diikuti pencirian dan pemprofilan forensik hasil 

PSE tersebut.  Pengekstrakan asid-bes terbukti merupakan kaedah yang berupaya 

menghasilkan PSE yang agak tulen. Seterusnya, lima jenis sumber prekursor PSE 

simulasi yang berbeza telah dioksidakan menggunakan dua laluan sintetik haram iaitu 

laluan kromat dan manganat. Produk oksidatif yang disintesis kemudiannya dicirikan 

secara forensik diikuti dengan pemeriksaan profil organik dan isotopik mereka. 

Spektroskopi inframerah transformasi fourier-jumlah pemantulan terlemah (ATR-

FTIR) dan gas kromatografi-spektrometri jisim (GC-MS) digunakan untuk 

pemprofilan bendasing organik manakala spektrometri jisim nisbah isotop (IRMS) 
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memprofil isotop stabil 13C:12C dan 15N:14N. Laluan kromat dan manganat, masing-

masing menghasilkan sebatian khusus U1 (RT 5.701, m / z 51, 77, 105, 91 dan 207) 

dan U3 (RT 9.013, m/z 70, 85, 117). Selain itu, PSE yang tidak habis bertindak balas 

turut ditemui dalam semua sampel dari laluan manganat. Analisis nisbah isotop 

13C:12C dan 15N:14N dapat membezakan sampel mengikut laluan sintetik dan sumber 

prekursor dengan isotop nitrogen memberikan hasil yang terbaik. Data daripada 

spektrum ATR-FTIR dan kromatogram GC-MS digunakan bersama-sama dengan 

analisis kemometrik iaitu analisis kluster hierarki (HCA), analisis komponen utama 

(PCA), dan analisis diskriminasi linear (LDA), untuk menyiasat sumber prekursor dan 

laluan sintetik yang digunakan. Hasil perkumpulan terbaik diperolehi daripada LDA, 

di mana semua sampel PSE yang diekstrak daripada sumber yang berbeza dikesan 

kembali kepada sumbernya, dan MET berjaya dibezakan berdasarkan laluan sintetik 

dan sumber prekursor PSE yang digunakan. Berdasarkan set data FTIR, LDA 

mencatatkan kadar pengkelasan yang betul untuk sampel PSE dan MET, masing-

masing ialah 90.0% dan 78.6% manakala bagi set data GC-MS, LDA mencatatkan 

kadar pengkelasan yang betul iaitu 100% untuk sampel PSE dan 95.2% untuk sampel 

MET. Pemprofilan kimia dadah seiringan dengan analisis kemometrik adalah berguna 

dalam menentukan jenis prekursor dan kaedah sintetik yang digunakan dalam 

penghasilan dadah dalam makmal haram. 
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FORENSIC PROFILING OF PROPRIETARY PSEUDOEPHEDRINE 

PRECURSORS AND OXIDATIVE PRODUCTS IN TANDEM WITH 

CHEMOMETRIC ANALYSIS 

ABSTRACT 

Pseudoephedrine (PSE) precursors are rampantly abused for the illicit 

production of synthetic drugs. Clandestine chemists can access this substance either 

from illegal sources or clandestinely extracted from proprietary formulations despite 

efforts from manufacturers to limit the PSE’s re-extraction. While the reduction 

reaction of PSE will produce methamphetamine (MA), the oxidation reaction will 

afford methcathinone (MET), a new psychoactive stimulant (NPS). MET is currently 

gaining attention as a possible replacement for MA drugs; however, there is a minimal 

report in the scientific literature regarding the analysis of this substance, particularly 

regarding its organic and isotopic profiles, which may limit the forensic community's 

ability to detect and regulate this substance. Initial studies involved optimisation of 

PSE extraction from various proprietary sources, followed by characterisation and 

forensic profiling of the extracted PSE products. Acid-base extraction proved to be the 

most viable method to obtain considerably pure PSE. Subsequently, five different 

sources of simulated PSE precursors were oxidised following two clandestine 

synthetic routes, namely chromate and manganate routes. The synthesised oxidative 

products were then forensically characterised, followed by an examination of their 

organic and isotopic profiles. Attenuated Total Reflectance Fourier Transform Infrared 

(ATR-FTIR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) 

were used for organic impurity profiling, while isotope ratio mass spectrometry 

(IRMS) profiles 13C:12C and 15N:14N stable isotopes. The chromate and manganate 
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routes produce compounds specific to U1 (RT 5.701, m / z 51, 77, 105, 91, and 207) 

and U3 (RT 9.013, m/z 70, 85, 117). Additionally, unreacted PSE was found in all the 

samples from the manganate route. Isotope analysis of 13C:12C and 15N:14N ratios 

differentiated the samples by the synthetic route and precursor sources with a nitrogen 

isotope, providing the best results. Data from ATR-FTIR spectra and GC-MS 

chromatograms were used in conjunction with chemometric analysis, namely 

hierarchical cluster analysis (HCA), principal component analysis (PCA), and linear 

discriminant analysis (LDA), to investigate the sources of precursors and the synthetic 

routes used. The best grouping results are obtained from LDA, where all PSE samples 

extracted from different sources are traced back to the source, and MET are 

successfully differentiated based on their synthetic routes and sources of PSE 

precursor used. Based on the FTIR data set, LDA recorded the correct classification 

rate for PSE and MET samples of 90.0% and 78.6%, respectively, while for GC-MS 

datasets, LDA recorded a correct classification rate of 100% for PSE and 95.2% for 

the MET samples. Forensic chemical profiling in tandem with chemometric analysis 

is beneficial in advocating the type of precursor and synthetic route used for drug 

manufacturing in illicit laboratories. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Background of Study  

The widespread abuse of illegal drugs has become a serious problem plaguing 

most nations, including Malaysia. Particularly over the last 10 to 15 years, abuse of 

plant base illegal drugs such as opiates and cocaine has gradually shifted to synthetic 

or designer drugs. Synthetic drugs are human-made designer drugs; as such, they are 

produced using specific chemical compounds known as precursors and reagents that 

undergo chemical reactions to produce the drugs. A synthetic drug is defined as a drug 

with properties and effects that are comparable to those of well-known stimulants, 

depressants, hallucinogens, or narcotic drugs but has a slightly altered chemical 

structure, especially one that was created to avoid current drug control measures 

(Christophersen, 2000). Due to its synthetic nature, it is relatively easy to produce or 

manufacture, a vital factor that explains the constant supply and is possibly less 

expensive, thus contributing to increased availability and uptake among drug users 

(Singh et al., 2013; Shaffi et al., 2020; Linh, 2022). 

The rapid emergence of designer drugs of new or Novel Psychoactive 

Substances (NPS) has gained the attention of drug users as a viable alternative to other 

stimulant illicit drugs that are heavily regulated by the drug acts. Methcathinone 

(MET) is one of the NPS from the cathinone family with stimulant effects similar to 

methamphetamine (MA) and is twice as potent as cathinone (De Ruiter et al., 1994; 

Zhingel et al., 1991). Recently, its popularity and abuse have increased globally, and 

a growing number of cases involving disability or even death have been reported in 

several countries, raising public concern. One example of a case study of MET 

intoxication that has been documented involves a 29-year-old woman who was 
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brought into the emergency room due to a coma caused by an overdose of MET 

dissolved in alcohol taken with bromazepam (Belhadj-Tahar & Sadeg, 2005). 

According to a case study in China, MET accounted for 95.8% of the synthetic drug 

cases in a local area in 2017 (Zhao, 2020). This substance was also identified as among 

most of the 31 NPS reported within the country between 2019 and 2020 (UNODC, 

2021).  

Synthetic drugs rely on starting materials or precursors to initiate chemical 

reactions to obtain the product. Methods for the clandestine manufacture of MET 

involve the extraction and subsequent reaction of precursors such as ephedrine (EPH) 

or pseudoephedrine (PSE) salts with other essential chemicals. Theoretically, chemical 

reactions modify the structure of the precursor, thus producing a new compound that 

retains some parts of the molecular structure of the precursor. Along with the target 

product, the unreacted precursor, impurities, and by-products are also formed in the 

illicit drug end product, which can be considered a fingerprint specific to that type of 

drug. In turn, this benefits forensic drug investigation. 

Apart from drug seizures and enforcement to combat the proliferation of illegal 

drugs and NPS on the black market, law enforcement agencies and forensic experts 

also perform intelligence- gathering initiatives such as chemical profiling via Gas 

Chromatography-Mass Spectrometry (GC-MS) and Liquid Chromatography-Mass 

Spectrometry (LC-MS) to obtain information that may useful in illicit drug-related 

cases. More recently, Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and 

Isotope Ratio Mass Spectrometry (IRMS) is also receiving attention as other potential 

additional techniques for drug profiling purpose (Nicdaeid et al., 2012, 2013; ). 
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Chemical drug profiling focuses on the analysis of impurities and by-products 

to obtain valuable information for the operational work of law enforcement agencies. 

It has been applied extensively, mainly in countries with serious drug threats like 

Thailand, Japan, Australia, the United States (US), and the Philippines (Abdullah et 

al., 2014; Valente et al., 2014). United Nations Office on Drugs and Crime (UNODC) 

has defined drug profiling as the method of investigation of the chemical and/or 

physical properties of a drug seizure for comparing seizures for intelligence and 

evidential purposes (UNODC, 2001). Various valuable information can be obtained 

from drug profiling studies, including chemical links between samples, sample origin, 

output from illicit laboratories, the common method of synthesis, precursor trends, as 

well as drug trafficking patterns and distribution networks (Meola et al., 2021).  

Chemical data obtained from the characterisation and profiling of precursors 

and illegal drugs are helpful for classification (grouping) or discrimination (batch 

comparison) purposes. Chemometrics is the technique employed in forensic 

investigation and its use has increased dynamically in the last two decades (Popovic et 

al., 2019). Despite the potential, the application of chemometric methods for the 

classification and discrimination of synthetic NPS, i.e., MET, has never been reported, 

although a similar technique is widely applied for other samples of forensic interest 

(Ismail et al., 2014; Jais et al., 2020; Sandran et al., 2020; Shadan et al., 2018). One 

related work used Fourier Transform Infrared Spectroscopy (FTIR) in combination 

with the partial least-square regression (PLSR) technique to perform an analysis of 

real seized cocaine samples (Groberio et al., 2015), while another work determined 

heroin by using diffuse reflectance Near-Infrared Spectroscopy (NIR) with PLSR 

(Moros et al., 2008). 
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1.2 Problem Statements 

Misuse of synthetic drug precursors are possible especially in small scale 

clandestine operations. EPH, and its isomer, PSE is one of the most commonly abused 

precursor chemicals in the illicit production of MA and more recently, MET (Huang 

et al., 2022; Simpson et al., 2022). These precursors were conveniently isolated from 

the pharmaceutical preparations, i.e., cold medication products, through chemical 

process by the clandestine laboratories. However, the extraction process of these 

precursors from pharmaceutical products is poorly understood by forensic scientists. 

Understanding the precursor extraction process is critical for forensic scientists to 

effectively investigate and combat various types of illegal drug activities related to 

precursors extraction.  

MET is a prevalent NPS used illicitly in some countries (Simpson et al. 2022). 

Although MET has not yet become a serious problem in Malaysia, a detailed 

investigation into the method for producing MET covertly from EPH/PSE precursor 

is required because there is the possibility of future epidemic abuse considering that 

this substance has been detected in greater frequency lately (UNODC, 2021). 

Additionally, since MET has stimulant properties that are nearly identical to those of 

MA, which is currently subject to strict regulation by law enforcement agencies, this 

drug may end up replacing MA in the near future by clandestine drug manufacturers 

and users. 

As earlier countermeasures, forensic scientists need to have knowledge of the 

type of chemicals and precursors commonly used to synthesise clandestine as well as 

the synthetic reaction mechanisms of MET. Forensic scientists also need to develop, 

optimise, and validate tests and analytical methods for reliable and robust 
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characterisation and identification of these substances since there is a lack of scientific 

literature regarding the analysis of these substances using robust laboratory methods. 

Regulatory and enforcement agencies are also faced with challenges in getting 

the necessary information to understand and possibly disrupt illegal drug network 

operations, such as the sources of supply, chemical links between each seized drug, 

and the variations between drug production batches. Chemical profiling using 

traditional GC-MS techniques of the impurities and by-products stemming from the 

synthetic drug processes, as well as more recent isotopic profiling by IRMS, is 

valuable for identifying trafficking patterns and distribution network, chemical links 

between samples, origin of samples, output from clandestine laboratories, and trends 

in a covert operation. Various illicit drugs ranging from natural and amphetamine type-

stimulant (ATS) groups such as amphetamine, MA, ecstasy, and many others were 

successfully characterised and profiled using the techniques mentioned above. 

However, there are significant gaps in the present literature reporting investigations 

into the potential for source identification, linking between seizures and discrimination 

of drug batches via organic and isotopic profiling of clandestine synthesised NPS for 

forensic purposes. The insufficient scientific knowledge of specific NPS (particularly 

cathinone analogues) by chemical profiling analysis hinders the forensic community's 

ability to detect and regulate these substances. In addition, the lack of present scientific 

scrutiny of NPS may indirectly contribute to their potential escalation into a perilous 

epidemic comparable to ATS use.  

The capability to link back the PSE precursors and their synthesised products 

back to their source will enable the investigators to monitor and regulate certain brands 

of pharmaceutical products that have been misused, hence enabling the control of the 



  

6 

production or applied more stringent policy towards possession the products. To the 

best of our knowledge, there is no report yet in the scientific literature emphasising the 

organic and isotopic profiling of NPS, for example, MET, compared to other ATS 

drugs. 

1.3 Research Questions 

This study was conducted to answer the following questions: 

1) Can the precursors from the proprietary tablets be used to synthesise 

substances using clandestine methods? 

2) What are the chemical characteristics of the products synthesised through 

oxidation reaction of the precursors? 

3) What are the organic impurities and the isotopic profiles of the oxidative 

products? 

4) Can the precursors and their oxidative products be linked back to its 

original sources use these chemical data? 

1.4 Research Objectives 

The overall aim of this study was to establish links between batches of PSE 

precursors and their oxidative products derived from different sources and further 

discriminate and classify these samples back to their original sources. In order to 

achieve this goal, a few other specific objectives are also addressed, as outlined below: 

I. To extract and physicochemically characterise the extracted PSE 

precursors from various sources of proprietary cold medication tablets. 
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The identification of the extracted PSE samples was firstly done by preliminary 

screening tests, including colour test, melting point test, and TLC, followed by 

conformational analysis by ATR-FTIR and GC-MS. 

II. To synthesise and physicochemically characterise the PSE oxidative 

products from various sources of PSE precursors.  

The identification of the PSE oxidative products was done by preliminary 

colour and melting point tests before confirmational analysis using ATR-FTIR, NMR, 

and GC-MS to confirm the identity of MET in the synthesised products. 

III. To determine the organic impurities and isotopic profiles based on 

13C:12C and 15N:14N isotope ratios of the PSE oxidative product.   

The organic impurities profiles of the oxidative products were determined by 

GC-MS, while IRMS was used to determine the isotopic profiles of the samples. 

IV. To determine the feasibility of discriminating and classifying the PSE 

precursors and their oxidative products using the HCA, PCA, and LDA 

analysis techniques in combination with FTIR and GC-MS datasets. 

Unsupervised and supervised chemometric techniques namely HCA, PCA, and 

LDA were applied to the spectroscopic and chromatographic data obtained from FTIR 

and GC-MS analysis of the samples to assess which technique and which analytical 

data will provide most meaningful discrimination and classification of the PSE 

precursors and its oxidative products according to their sources of origin and synthetic 

routes. 
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1.5 Significance of the Study 

Chemical forensic drug characterisation and profiling studies can be one of the 

many initiatives for Malaysian law enforcement authorities. In general, drug profiling 

can provide scientific information vital for the identification of a specific type of drug. 

Understanding the chemical profiles of synthetic drugs may shed light on various 

issues, including dealer-user relationships, drug sources, distribution networks, 

trafficking routes, manufacturing processes, and precursors used (UNODC, 2001). 

This work involved the characterisation of samples suspected to contain MET 

(synthesised from the various sources of PSE precursor). Understanding the 

clandestine process and further characterisation of synthesised MET will provide 

valuable chemical information concerning the products of PSE precursor and its 

chemical reactions, impurities, and by-products involved in illicitly manufacturing 

drugs from a similar precursor. Additionally, this chemical information will hopefully 

demonstrate an association of drugs from various sources of precursors. Knowledge 

about the type of chemicals and precursors used for MET synthesis may also help the 

investigators determine the drug the clandestine operators will produce.  

This research emphasises the science behind chemical profiling from organic 

and isotopic perspectives for evaluating synthetic procedure elucidation, establishing 

source identification, and linking and/or discriminating drug batches. Concurrently, it 

aims to address gaps in knowledge about using selected stable isotopes (e.g., 15N:14N 

and 13C:12C) for forensic drug investigations and ultimately provide an additional 

means to enhance control of NPS under the current legislation.  

The research findings are useful to the operational work of forensic laboratories 

and law enforcement agencies in providing relevant, consolidated up-to-date, and 
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supportive information about illicit synthetic MET drugs from EPH or PSE precursors. 

Additionally, it is hoped that the knowledge gleaned from this study will be useful in 

addressing the serious threat posed by illegal manufacture, trafficking, and 

distribution, thus facilitating policing and helping policymakers assess the local NPS 

situation and decide on appropriate intervention and prevention measures. 

1.6 Scope of the Study  

The core activities of this work employed forensic drug analysis to 

qualitatively identify precursors and their reaction products using combinations of 

analytical methods. ATR-FTIR, GC-MS, and IRMS were employed to acquire 

information about the precursor, their oxidative products, and synthetic route details. 

Ultimately, using chemometric analysis (e.g., PCA, HCA, and LDA) in combination 

with the chemical data obtained, linkages among the precursors, products, and 

synthetic routes of the synthesised products can be discovered using robust chemical 

methods. Specifically, this work presents the benefits of combined techniques for 

forensic source determination of clandestine substances.  

1.7 Thesis Outline 

This study is outlined in six main chapters. The first chapter, i.e., the 

introduction to the study, presents an overall view of the synthetic drug scenario and 

drug profiling approach to combat the aforementioned problems. The problem 

statements, research questions, objectives, and significance of the study are elaborated 

in this chapter.  

Chapter 2 is the literature review which discusses the general overview of 

synthetic cathinone drugs including the PSE precursors. Several analytical techniques 



  

10 

commonly applied for the detection and profiling of illicit synthetic drugs such as 

FTIR, NMR, GC-MS and IRMS are also addressed in this chapter. Chemometric 

techniques utilised in the study including HCA, PCA, and LDA are also addressed 

briefly.  

Chapter 3 outlines the extraction of PSE precursors from various sources of 

proprietary cold medication tablets using simple and acid-base extraction methods. 

The chapter includes optimisation of simple and acid-base extraction followed by 

characterisation of the extracted product. Presumptive screening tests, including colour 

test, melting point test, and TLC followed by confirmatory test procedures used for the 

characterisation and identification of the extracted products by ATR-FTIR and GC-

MS are elaborated. The validation of FTIR and GC-MS instruments used for the 

characterisation of PSE was also described.  

In Chapter 4, the synthesis of MET from five different PSE precursor sources, 

following the clandestine methods adapted from the internet, i.e., chromate and 

manganate routes is described. Identification and confirmation of the identity of the 

synthesised products by preliminary screening tests, including colour test and melting 

point test followed by confirmatory test procedures by ATR-FTIR, NMR and GC-MS 

are elaborated. Later in the chapter, the results are provided and further discussions are 

deliberated according to the methods involved. 

Chapter 5 outlines the organic impurities and isotopic profiling by GC-MS and 

IRMS, respectively. In this chapter, the applicability of GC-MS and IRMS in 

providing information relating to the precursor sources, synthetic routes and 

production batches is investigated.  
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In Chapter 6, the spectroscopic and chromatographic data obtained from FTIR 

and GC-MS analysis were subjected to HCA, PCA and LDA to assess which data 

analysis techniques provide meaningful discrimination of the PSE precursors and the 

MET products. The discrimination of the MET samples on the basis of IRMS data is 

compared to that afforded by the GC-MS impurity profiling method. 

The overall conclusion from this work is summarised in Chapter 7, and 

suggestions for future works that can be extended to advance the field of MET 

profiling are also included. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 New Psychoactive Substances  

NPS refers to a complex and diversified category of substances that have 

witnessed an explosive surge in non-medical abuse and prominence in the recreational 

drug market at the beginning of the 21st century. UNODC defined NPS as a 

"substances of abuse, either in pure form or preparation, which are not controlled by 

the 1961 Single Convention on Narcotic Drugs or the 1971 Convention on 

Psychotropic Substances but still may pose a significant danger to the health and safety 

of the public" (Pieprzyca et al., 2020). However, definitions of NPS can differ from 

country to country due to differences in national legislation rather than in 

pharmacological or structural classification. The term "new" does not necessarily 

indicate new inventions; in fact, numerous NPS were initially synthesised more than 

four decades ago; rather, it refers to substances that have only very recently been 

commercially available (UNODC, 2021). These substances are structurally chemically 

altered as they are derivatives of currently controlled drugs and pharmaceutical 

products or synthesised as new chemicals created to replicate the actions and 

psychoactive effects similar to that of licensed medications and other regulated 

substances (Kuropka et al., 2022). Thus, they have a similar effect on the human 

central nervous system (CNS) as well-known drugs like amphetamine, cannabis, 

heroin, or lysergic acid diethylamide (LSD) (Pieprzyca et al., 2020). 

The molecular structures of NPS are continually being tweaked in an endless 

variety of analogues of designer drugs and consequently contribute to the fuelling of 

the drug market. In an effort to slip under the radar and avoid legal impediments, they 
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are inherently advertised and sold under ambiguous labels that provide little 

information about their actual contents using more common but deceptive colloquial 

terms like "bath salts," "herbal high," and "legal highs" (Smith et al., 2015). One of 

the biggest misunderstandings about NPSs, even though they are occasionally 

promoted as lawful, this does not indicate that they are safe for consumption. Given 

that NPS are relatively new and are still understudied, most users are frequently 

unaware of what they are taking. As a result, they do not clearly understand and are 

conscious of the risks associated with the use of NPSs, particularly to health effects 

concerning their short-term and long-term uses. As with controlled substances, the 

potential short-term side effects of NPSs may include paranoia, psychosis, and 

seizures, but their long-term health implications are still poorly understood and 

infrequently reported (Shafi et al., 2020). 

According to UNODC records, over 1100 individual NPS have been reported 

to the UNODC Early Warning Advisory (EWA) by 133 countries and territories. 

Focusing on East and Southeast Asia regions, a total of 485 different NPS have been 

identified by December 2020, or approximately 46 percent of the individual NPS 

reported at the global level thus far (Figure 2.1). The annual number of newly detected 

NPS in the region has continued to fall since 2015. This decline may be partially 

related to the inadequate forensic capabilities of some countries in the region to 

identify them (UNODC, 2021).  

The majority of the reported NPS are synthetic cannabinoids (147), followed 

by synthetic cathinones (106). In terms of pharmacological effects, stimulants (182) 

continue to be the largest group in terms of the number of different substances, 

followed by synthetic cannabinoid receptor agonists (147), hallucinogens (133), and 
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other NPS as reported by December 2020 (UNODC, 2021) (Figure 2.2). The rate at 

which new NPS have surfaced on the global drugs market is unprecedented, and it was 

predicted that at its peak in 2015, at least one new substance would appear per week. 

In recent years, the frequency of new NPS detections has reduced, and the market has 

shifted, with a relative decline in the number of new stimulants and synthetic 

cannabinoids detected and an increase in the number of new opioids and 

benzodiazepines available (UNODC, 2021). 

 

Figure 2.1 Emergence of NPS in East and Southeast Asia in 2015-2020 

(UNODC, 2021) 

 

 

Figure 2.2 Proportion of NPS (by pharmacological effects) in East and Southeast 

Asia up to December 2020 (UNODC, 2021) 
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In terms of forensic drug characterisation, generally, NPS can be classified into 

six groups based on their mode of action: synthetic cannabinoids, synthetic cathinones, 

ketamine, phenethylamines, piperazines, plant-based substances: Khat, Kratom, Salvia 

divinorum and miscellaneous: Aminoindanes, phencyclidine, tryptamines (UNODC, 

2021; Smith et al., 2015). Among these NPS, synthetic cathinones and cannabinoids 

are considered the popular ones. European Monitoring Centre for Drugs and Drug 

Addiction [EMCDDA] (2022) reported that synthetic cathinones and cannabinoids 

accounted for almost 60% of the number of seizures reported in 2019 by European 

Union (EU) Member States.  

2.2 Natural Cathinones 

Cathinone is a major naturally occurring psychoactive monoamine alkaloid in 

the leaves of the Catha Edulis plant, often known as Khat (Kuropka et al., 2022). It is 

an evergreen shrub cultivated as a bush or small tree which flourishes and grows at 

high altitudes native to Ethiopia, East Africa, and the Southern Arabian Peninsula  

(Smith et al., 2015; Valente et al., 2014). This shrub was typically a slow-growing 2-

25 m tall tree with reddish stems, sparkling green leaves, and white flowers (Figure 

2.3).  

The fresh leaves of the Khat tree have an aromatic scent and a mildly sweet 

and stringent taste which is enjoyable to chew or, less frequently, dried and consumed 

as a tea to achieve a state of euphoria and stimulation. It also has anorectic (appetite-

reducing) side effects. Over the years, the chew of the fresh khat leaves and stalks has 

been a custom by the population in these regions, particularly at cultural and religious 

ceremonies, including funerals and weddings. In fact, this custom is now practised on 

a daily basis (Pieprzyca et al., 2020; Soares et al., 2021). It is also a common habit 

https://en.wikipedia.org/wiki/Anorectic
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among farmers and labourers to chew the Khat leaves to relieve physical fatigue or 

hunger, as well as among drivers and students to improve attention.  
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Figure 2.3 Catha edulis shrub (a), which contains natural cathinone compound 

(b) 

 

The fresh leaves of the Khat tree have an aromatic scent and a mildly sweet 

and stringent taste which is enjoyable to chew or, less frequently, dried and consumed 

as a tea to achieve a state of euphoria and stimulation. It also has anorectic (appetite-

reducing) side effects. Over the years, the chew of the fresh khat leaves and stalks has 

been a custom by the population in these regions, particularly at cultural and religious 

ceremonies, including funerals and weddings. In fact, this custom is now practised on 

a daily basis (Pieprzyca et al., 2020; Soares et al., 2021). It is also a common habit 

among farmers and labourers to chew the Khat leaves to relieve physical fatigue or 

hunger, as well as among drivers and students to improve attention.  

2.3 Synthetic Cathinones 

In present days, cathinone can be synthetically produced. The first synthetic 

cathinones were created in the 1920s as potential medicinal products. To date, 

synthetic cathinones and their derivatives are one of NPS's largest and most prevalent 

classes. The cathinone analogues were primarily designed to deliver similar 

https://en.wikipedia.org/wiki/Anorectic
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pharmacological and psychoactive effects to those produced by cathinone during khat 

chewing. However, because of their structural similarity to amphetamine, the potency 

of some of these analogues resembles amphetamines. The amphetamine-like 

psychostimulatory effects such as euphoria, excitement, enhanced alertness, and 

psychomotor hyperactivity were produced by consuming these drugs but with lower 

potency than that of amphetamine (Thornton et al.,  2012; Kraemer et al., 2019). Some 

users report that the effects of mephedrone, a cathinone analogue, are comparable to 

those experienced when using 3,4-methylenedioxymethamphetamine (MDMA) (an 

ATS drug) (Brunt et al., 2011), while others assert that it provides a higher level of 

satisfaction than cocaine. 

Synthetic cathinones and their analogues have been street labelled as "plant 

foods," "bath salts," or "research chemicals," but nowadays, various names such as 

"conquerors of leeches," "driver's charms, "additives to sand," and "bidet refreshers" 

are frequently used to label those substances by distributors to circumvent legal 

regulations (Majchrzak et al., 2018). In European countries, these substances can be 

legally purchased locally at convenience stores and head- or smart shops or 

conveniently purchased from internet suppliers in the form of odourless, white, or 

coloured crystalline powders and less frequently as tablets or capsules (Zawilska & 

Wojcieszak, 2013). In most cases, powders are shipped to distributors, who then tablet 

or adulterate the substance before selling it. The finished product is typically packaged 

in quantities ranging from 200 mg to 10 g and sold (Valente et al., 2014). Most 

commonly, these drugs are supplied as hydrochloride salt and administered via nasal 

insufflation, swallow, intramuscular/intravenous injection, or rectal insertion 

(Vardakou et al., 2011). The purity stated on some packages claims over 99% synthetic 

cathinone. However, analysis of these packets has shown purities of only 95%, with a 
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range of adulterants (such as caffeine, lidocaine, and piperazines) making up the rest 

of the product (German et al., 2014).  

Cathinones are also sold under mercurial, non-descript brand names, including 

Meow Meow, White Magic, Blizzard, Ivory Snow, and many others. Packets generally 

display warning labels such as 'not for human use', 'not tested for hazards or toxicity', 

‘keep out of reach of children’, etc to avoid penalties under specific acts, for example, 

Analogue Enforcement Acts (Pieprzyca et al., 2020) in the US. However, the 

composition and even the active component in a 'legal high', i.e., NPS products, can 

vary wildly from one another, although they are within the same brand name (Karila 

et al., 2015). They may even contain substances other than those listed on their labels. 

Therefore, there are no guarantees that the customer of these NPS products may get 

the exact content of the psychoactive substance as advertised.  

Synthetic cathinones are occasionally used in so-called "mephedrone 

sessions," which involve ingesting drugs repeatedly for a few hours and typically in 

specific social situations (such as at friend's houses, home parties, or nightclubs) 

(German et al., 2014). Synthetic cathinone users cite a variety of factors as 

justifications for using these drugs, such as their legality, accessibility (mostly through 

the Internet), acceptable cost (less expensive than standard drugs), lack of quick 

screening tests to confirm use, or user preferences for particular pharmacological 

properties, such as the enhancement of social and sexual experiences (La Maida et al., 

2021). According to reports analysing the demographic information on users of 

synthetic cathinone, the respondents are primarily young males. In a review of data 

from six EU nations (Germany, Hungary, Ireland, the Netherlands, Poland, and 

Portugal), it was discovered that people between the ages of 18 and 25 made up the 



  

19 

majority of the online community interested in synthetic cathinone; however, the age 

profile of users of synthetic cathinone was most likely in the range of 18 to 35 years 

(Pieprzyca et al., 2020). 

Taking synthetic cathinone may cause strong withdrawal symptoms, including 

depression, anxiety, tremors, problems sleeping, and paranoia. Other adverse side 

effects include increased heart rate and blood pressure, breathing difficulties, loss of 

appetite, deterioration of memory, and hallucinations also occur when abused 

(Coppola & Mondola, 2012; Valente et al., 2014). Abuse of synthetic cathinones may 

also lead to other negative effects such as nosebleeds, sweating, and nausea. The worst 

outcome of synthetic cathinone misuse may result in intoxication and further death 

(Lewin et al., 2013).  

2.3.1 Chemistry of Synthetic Cathinones 

Cathinone and its analogues were structurally related to the phenylalkylamine 

family. The difference is only with the ketone group introduced at the β-position of the 

aminoalkyl chain attached to the phenyl ring (Valente et al., 2014), the reason why 

synthetic cathinones are frequently referred to as βk-amphetamines (Zaitsu et al., 

2011).  

Cathinone derivatives are analogues of the natural cathinone, which are 

synthesised through modification of the parent cathinone structures by adding diverse 

substituents at different locations of the cathinone molecule (Beckett, 2015). In recent 

years surges of new derivatives of cathinones, some with very potent psychostimulant 

effects, have been mass-produced stemming from the synthetic manipulation of the 

cathinone.  
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Table 2.1 lists the most spread synthetic cathinones analogues to appear 

throughout the recreational drug market, according to UNODC. Depending on the 

substituents made on the cathinone structure, this group of 'legal high' can be divided 

into four prominent sub-families (Pieprzyca et al., 2020 ): 

• Group 1 represents N-alkylated cathinones or those with alkyl or 

halogen substituents at any possible aromatic ring position. Most of the 

first known synthetic cathinones, such as MET, mephedrone, 

ethcathinone, flephedrone, buphedrone, and pentedrone, were 

categorised into this group.  

• Group 2 belongs to the cathinone analogues with methylenedioxy-

substitutes compounds in which the substituents occur at any given 

aromatic ring position. Methylone, pentylone, and butylone are among 

the compounds within Group 2.  

• Cathinone analogues from group 3 are distinguished by N-pyrrolidinyl 

substituents at the nitrogen (N) atom and are currently the most 

common substances in the recreational drug market.  

• Group 4 of cathinone analogues contains both the 3,4-methylenedioxy 

ring substituent and N-pyrrolidinyl moiety (Pieprzyca et al., 2020; 

Soares et al., 2021).  
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Table 2.1 Structures of the most spread cathinone analogues (Valente et al., 

2014). Note: *Newly identified synthetic cathinones.  

Group Common name IUPAC name Molecular structure 

1 Cathinone 
2-Amino-1-phenyl-1-

propanone 

O

CH3

NH2

 

1 
MET 

ephedrone 

2-(Methylamino)-1-

(4-ethylphenyl)-1-

propanone 

O

CH3

NHCH3

 

1 

4-Methylmethcathinone 

Mephedrone 

4-MMC 

2-(Methylamino)-1-

(4-methylphenyl)-1-

propanone 

O

CH3

NHCH3

H3C  

1 Methedrone 

1-(4-

Methoxyphenyl)-2-

(methylamino)-1-

propanone 

O

CH3

NHCH3

H3CO  

1 
Flephedrone 

4-FMC 

1-(4-Fluorophenyl)-

2-(methylamino)-1-

propanone 

O

CH3

NHCH3

F  

1 
4-Chloromethcathinone 

4-CMC 

1-(4-Chlorophenyl)-

2-(methylamino)-1-

propanone 

O

CH3

NHCH3

Cl  

1 3,4-DMMC 

1-(3,4-

Dimethylphenyl)-2-

(methylamino)-1-

propanone 

O

CH3

NHCH3

H3C

H3C

 

1 
Ethcathinone 

Ethyl propion 

2-(Ethylamino)-1-

phenyl-1-propanone 

O

CH3

NHC2H5

 

1 Buphedrone 
2-(Methylamino)-1-

phenyl-1-butanone 

O

CH2CH3

NHCH3

 

1 4-MEC 

2-(Ethylamino)-1-(4-

methylphenyl)-1-

propanone 

O

CH3

NHC2H5

H3C  
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Table 2.1 Continued 

1 DMMC 2-Dimethylamino-1-

phenyl-1-propanone 

O

CH3

NHC2H6

 

1 Pentedrone  2-(Methylamino)-1-

phenyl-1-pentanone 

O

C3H7

NHCH3

 

1 
Diethylpropion 

amfepramone 
2-Diethylamino-1-

phenyl-1-propanone 

O

CH3

N(C2H5)2

 

1 Bupropion 

amfebutamone 

1-(3-Chlorophenyl)-

2-(tert-butylamino)-

1-propanone 

O

CH3

NH(CH3)3Cl

 

2 Ethylone 

βk-MDEA 

2-(Ethylamino)-1-

(3,4-

methylenedioxyphen

yl)-1-propanone 

O

CH3

NHC2H5O

O  

2 Butylone 

βk-MBDB 

2-(Methylamino)-1-

(3,4-

methylenedioxyphen

yl)-1-butanone 

O

C2H5

NHCH3O

O  

2 Methylone 

βk-MDMA 

2-Methylamino-1-

[3,4-

methylenedioxyphen

yl]-1-propanone 

O

CH3

NHCH3O

O  

2 Pentylone  

βk-MBDP 

2-(Methylamino)-1-

(3,4-

methylenedioxyphen

yl)-1-pentanone 

O

C3H7

NHCH3O

O  

2 
N-ethylnorpentylone* 

Ephylone 

βk-EBDP 

1-

(Benzo[d][1,3]dioxol-

5-yl)-2-

(ethylamino)pentan-

1-one 

O

O

O

N
H

 

 



  

23 

Table 2.1 Continued 

2 

β-keto-N,N-

Dimethylbenzodioxolyl 

butanamine* 

Dibutylone 

βk-DMBDB 

1-(Benzo[d][1,3]dioxol-

5-yl)-2-

(dimethylamino)butan-

1-one 

O

O

O

N

 

2 

β-keto-N-

Methylbenzodioxolyl 

pentanamine* 

Pentylone 

βk-MBDP 

1-(Benzo[d][1,3]dioxol-

5-yl)-2-

(methylamino)butan-1-

one 

O

O

O

NH  

3 
α-PPP 

Pyrovalerone 

1-Phenyl-2-(1-

pyrrolidinyl)-1-

propanone 

O

CH3

N

 

3 
MPPP 

α-PVP 

4’-Methyl-α-

pyrrolidinovalerophenon

e 

O

CH3

N

H3C  

3 
MoPPP 

 

4’-Methoxy-α-

pyrrolidinovalerophenon

e 

O

CH3

N

H3CO  

3 MPBP 

1-(4-Methylphenyl)-2-

(1-pyrrolidinyl)-1-

butanone 

O

C2H5

N

H3C  

3 PVP 

1-Phenyl-2-(1-

pyrrolidinyl)-1-

pentanone 

 

O

C3H7

N

 

4 MDPPP 

1-(3,4-

Methylenedioxyphenyl)-

2-(1-pyrrolidinyl)-1-

propanone 

O

C3H7

NO

O  

4 MDPBP 

1-(3,4-

Methylenedioxyphenyl)-

2-(1-pyrrolidinyl)-1-

butanone 

O

C2H5

NO

O  

4 MDPV 

1-(3,4-

Methylenedioxyphenol)-

2-pyrrolidinyl-1-

pentanone 

O

C3H7

NO

O  

4 
α-Naphyrone 

 

1-Naphthalen-1-yl-2-

pyrrolidin-1-ylpentan-1-

one 

O

C3H7

N
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It should be noted that synthetic cathinones, like other phenethylamines, have 

a chiral centre, allowing them to exist in two stereoisomeric forms with varying 

potencies and affinity for their pharmacological targets (Soares et al., 2021). 

Nevertheless, as with cathinone in nature, the majority of synthetic cathinones appear 

as racemic mixtures. Racemisation of the enantiomeric forms of these psychoactive 

substances may occur via keto-enol tautomerism (Coppola & Mondola, 2012). The 

chemical variations on the cathinone backbone structure will be responsible for each 

derivative's different pharmacokinetic and pharmacodynamic properties. 

2.4 Prevalence and Global Seizures of Synthetic Cathinones 

There is uncertainty regarding the global prevalence of synthetic cathinones as 

most information is based on self-reporting abuse surveys. These surveys apply to 

specific groups and do not accurately reflect the overall population. Furthermore, most 

NPS users are unaware of the drugs consumed due to inadequate product labelling 

(Vicknasingam et al., 2020). The data from these surveys indicate the prevalence of 

particular synthetic cathinones in specific locations worldwide. Observations reveal 

that the number of cathinone derivatives, particularly MMC, has increased 

dramatically since 2008 and has become a popular abuse drug amongst users of "legal 

high" products (Vardakou et al., 2011). The widespread and rapid prevalence of these 

cathinone analogues is mainly attributed to the wide availability and ease of purchase 

over the internet, providing uncontrolled access to users of all ages.  

Synthetic cathinones are now the second-largest group of NPS tracked by EU 

EWA, behind the synthetic cannabinoids, according to the EMCDDA's most recent 

report (EMCDDA, 2022), which listed 162 synthetic cathinones under their 

surveillance. It was reported that between 2019 to 2022, a total of 29 new synthetic 




