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BEBERAPA PERLUASAN LENGKUNG LOG ESTETIK DAN 

KEPANTASANNYA DENGAN PENGGUNAAN UNIT PEMPROSESAN AM  

ABSTRAK 

 

Bahagian pertama adalah menyiasat ciri-ciri Lengkung Log Estetik (LLE) secara 

terperinci. Bahagian kedua mencadangkan teknik baru untuk mempercepatkan pengiraan 

Garisan Kelengkungan (GK) dengan menggunakan GPU dan bahagian terakhir adalah 

untuk melaksanakan persamaan LLE ke persamaan permukaan. Pertama, kami 

menggunakan Teorem Vogt dan Teorem Kneser untuk mengkaji ciri-ciri LLE dari segi 

monotonik. Keputusan menunjukkan bahawa LLE mempunyai ciri-ciri kelengkungan 

monotonik, yang memenuhi Theorem Vogt dan Theorem Kneser. Selain itu, kami 

menyiasat GK pada dua jenis permukaan Log Estetik (LE); Iaitu permukaan revolusi LE 

dan permukaan sapuan LE. Permukaan ini dijana dengan LLE yang terdiri daripada 

pelbagai jenis lengkung yang ditadbir oleh 𝛼 . Oleh sebab GK tidak dapat diperolehi 

secara analitikal, kami telah melaksanakan pengiraan GK secara berangka pada CPU dan 

GPU yang menunjukkan kepantasan yang ketara. Di samping itu, kami menyiasat taburan 

kelengkungan GK dengan menggunakan Graf Kelengkungan Logarithmic. Seperti yang 

dijangkakan, GK pada permukaan revolusi LE sememangnya pendua lengkung profil 

asalnya. Walau bagaimanapun, GK pada permukaan sapuan LE adalah LLE yang berbeza 

bentuk kecuali kes bulatan involute, di mana jenis permukaan ini mempunyai GK dalam 

bentuk bulatan involutes juga. Oleh itu, GK pada permukaan LE adalah lengkung 

berkualiti tinggi susunan ketiga. Idea terakhir penyelidikan ini adalah menggantikan GK 

dengan sama ada planar atau ruang lengkung LE untuk mereka bentuk permukaan estetik 

baru yang dipanggil tampalan LE Coon. Dengan menggunakan paraboloid hiperbolik 

sebagai perbandingan, mula-mula kami memperoleh GK paraboloid hiperbolik, 
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menggantikannya dengan LLE dan Lengkung Ruang Log Estetik (LRLE), dan akhir 

sekali menjadikannya sebagai sempadan tampalan LE Coon. GK untuk kedua-dua 

permukaan dianalisis dengan menyiasat kelengkungan GK, terbitan kelengkungan, 

kilasan dan Graf Kelengkungan Logarithmic. Keputusan berangka menunjukkan bahawa 

kelengkungan GK untuk kedua-dua permukaan adalah monotonik manakala, profil 

terbitan kelengkungan bagi tampalan LE Coon adalah monotonik, tetapi bukan 

monotonik bagi paraboloid hiperbolik. Tambahan pula, GK pada tampalan LE Coon 

sememangnya LLE menunjukkan lengkung ini adalah lengkung berkualiti tinggi susunan 

ketiga. Oleh itu, tampalan LE Coon adalah permukaan yang berkualiti tinggi. Akhir sekali, 

kami mengunjurkan tampalan LE Coon kepada satah dengan menggunakan 

kelengkungan geodesik untuk mencipta jalur yang boleh ditampal bersama-sama sebagai 

tiruan proses lenturan panas dan sejuk. 
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SOME EXTENSIONS OF LOG AESTHETIC CURVES AND ITS 

ACCELERATION USING GENERAL PROCESSING UNIT (GPU) 

ABSTRACT 

 

The first part investigates the characteristics of Log Aesthetic Curve (LAC). The 

second part proposes new techniques to accelerate the computation of line of curvature 

(LoC) by using General Processing Unit (GPU) and the last part is to implement the LACs 

to the surface equations. We first use Vogt theorem and Kneser theorem to study the 

characteristics of LAC in terms of monotonicity. The results indicate that LAC has 

monotonic curvature characteristics, which conforms to Vogt’s Theorem and Kneser’s 

Theorem. Furthermore, we investigate the LoCs on two types of Log Aesthetic (LA) 

surfaces; i.e. LA surface of revolution and LA swept surfaces. These surfaces are 

generated with LAC which comprise of various family of curves governed by 𝛼. Since it 

is impossible to derive the LoCs analytically, we have implemented the LoC computation 

numerically on the Central Processing Unit (CPU) and GPU which showed significant 

speed up. Moreover, we investigated the curvature distributions of the derived LoCs using 

Logarithmic Curvature Graph (LCG). As expected, the LoCs on LA surface of 

revolutions are indeed the duplicates of its original profile curves. However, the LoCs on 

LA swept surface are LACs of different shapes except for the case of circle involute, 

where this type of surface possesses LoCs in the form of circle involutes as well. Hence, 

the LoCs on LA surfaces are high quality curves of order 3. The last idea on this research 

is to use either with planar or space Log-aesthetic curves to design a new aesthetic surface 

called Coon’s LA patch. Using hyperbolic paraboloid as a comparison, we first derive the 

LoCs on hyperbolic paraboloid and approximated to LACs and LASCs, making them as 

the boundaries of Coon’s LA patch. The LoCs for both the surfaces are analyzed by 
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investigating the LoC’s curvature, derivative of curvature, torsion and LCG. Numerical 

results indicate that the LoCs for both the surfaces are monotonic curvature whereas, the 

derivative curvature profile of LoCs on Coon’s LA patch is monotonic, but non-

monotonic for hyperboloid parabolic. Furthermore, the LoCs on Coon’s LA patch are 

indeed LACs indicating these curves are high quality curves of order 3. Hence, Coon’s 

LA patch is a high quality surface. Lastly, we project the Coons’ LA patch onto a plane 

using geodesic curvature to create strips which can be pasted together mimicking hot and 

cold bending process.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

Aesthetic curve research has been actively studied in the field of Computer 

Aided Geometric Design (CAGD) and Computer Aided Design (CAD). The curve can 

be used for the design of highways, railway route, etc. (Ahmad et al., 2007). The main 

characteristic of aesthetic curve is it has a monotonic curvature profile (Farin, 1996).  

In 1999, Harada et al. (1999) proposed Logarithmic Distribution Diagram of 

Curvature (LDDC) to analyse the relationship between the length frequencies of 

segmented curve with regards to its radius of curvature is plotted in a log-log 

coordinate system. LDDC was later converted into K-vector by Kanaya et al. (2003) 

and eventually Logarithmic Curvature Graph (LCG) (Gobithaasan et al., 2009). In 

brief, the aesthetic curve has a constant gradient of LCG (Kanaya et al., 2003). Based 

on the features of LCG, Miura (2006) presented the linear LCG as the general formula 

of Log Aesthetic Curve (LAC). While curvature profile involves the second 

derivatives of curves, LCG involves the third derivative, hence making it suitable for 

higher order shape interrogation tool (Gobithaasan and Miura, 2014). The LAC family 

has monotonic curvature profile which can be used to represent well known spirals, 

e.g., clothoid, logarithmic spiral, circle involute and Nielsen’s spiral. Yoshida and 

Saito (2006) developed a G1 algorithm to control LAC alternatively using bisection 

method. Moreover, Yoshida et al. (2009) introduced Log Aesthetic Space Curve 

(LASC), which curvature has linear LCG and torsion has linear Logarithmic Torsion 

Graph (LTG). The authors also proposed a method to compute LASC segment 

interactively using modified Nelder and Mead’s downhill simplex method. In 2009, 
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Levien and Sequin (2009) proved that LAC is the most promising curve for aesthetic 

design. 

Miura et al. (2012) applied the principle of variational to the LAC and used it 

as digital filter. Moreover, Gobithaasan et al. (2012) introduced Generalize LASC 

(GLASC), an extension of LASC, adding two additional degree of freedoms into 

LASC. The computational time for rendering LACs can be reduced by representing 

LAC in the analytic form; Incomplete Gamma Function (Ziatdinov et al., 2012) or 

computing numerically using classical Runge-Kutta method (Gobithaasan et al, 2014a) 

and adaptive methods (Gobithaasan et al., 2014b). It has been shown that the classical 

Runge-Kutta and adaptive methods can render faster than Incomplete Gamma 

Function (Gobithaasan et al., 2014b) with a decent accuracy for CAD environments.   

In 2012, Ziatdinov (2012) proposed a family of superspiral by generalizing 

LACs and developed superspiraloid by using the surface of revolution equation. Other 

variations of aesthetic surfaces include the work of Inoue et al. (2009) who applied 

LAC as profile curves to generate LA curved surface. Kineri et al. (2014) proposed 

LAC as a planar feature to design bi-cubic B-spline surfaces. Suzuki et al. (2018) 

proposed a minimum variation log-aesthetic surface as new definition of log aesthetic 

surface with the aid of log aesthetic filter. Recent works include developing new Log-

aesthetic space curve with similarity geometry method (Miura et al., 2019), 

introducing 𝜏-curve with aesthetic properties for curve generation (Miura et al., 2020) 

and analysing fluid flow with Log Aesthetic Curve (Wo et al., 2020). 

1.2 Motivation 

In 2006, Yoshida and Saito (2006) proved that LACs are drawable using 

drawable region. Then, Miura (2006) analysed the characteristics of LAC and 
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validated LAC has self-affinity property. However, the studies of the characteristics of 

LAC are countable. In 2013, Kurnosenko (2013) applied Vogt’s Thoerem and 

Kneser’s Theorem to investigate the monotonicity of Cornu spiral and biarc curve. The 

results indicated that these curves have monotonic curvature profiles. Hence, our first 

motivation is to analyse the characteristics of LAC in terms of monotonicity using 

Vogt’s Theorem and Kneser’s Theorem. 

Inoue et al. (2009) developed an algorithm that used LAC as a profile curve to 

generate log aesthetic curved surface using VR technique. Besides that, Ziatdinov 

(2012) proposed a family of superspiral by generalizing LACs and developed 

superspiraloid by using the surface of revolution equation. In 2014, Kineri et al. (2014) 

designed bi-cubic B-spline surfaces by implementing LAC as a planar feature. In 2018, 

Suzuki et al. (2018) proposed a minimum variation log-aesthetic surface as new 

definition of complete LA surface using log aesthetic filter. Hence, our second 

motivation is to revolve a LAC about an axis that is coplanar with a circle to form LA 

surfaces of revolution and to sweep a LAC along another LAC to form a LA swept 

surface.  

There are many tangent directions on a surface that can be used to generate a 

curve at a point which has the same surface normal direction. Hence many possible 

surface normal curvatures can be obtained in a particular surface normal direction. Of 

all the tangent directions to the point, the two tangent directions with the maximum or 

minimum surface normal curvature (except at umbilical and planar points) are called 

principal directions. In other words, the maximum or minimum surface normal 

curvature at that point is called the principal curvatures. A line of curvature (LoC) is a 

curve on a surface with tangents in the principal direction at that point. 
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Takezawa et al. (2016) proposed a method of using LoC to shape the doubly 

curved plates used in shipbuilding. There are two processes to shape the doubly curved 

plates. The first process is called cold bending and the next process is called hot 

bending. Cold bending is performed by pressing along the LoCs with smaller curvature 

magnitude, which causes the plate to bend along the LoC larger curvature magnitude 

as shown in Figure 1.1(a). Then, hot bending is applied by implementing local heat 

treatment along the LoC with larger curvature magnitude on the plate, causing the plate 

to bend along the LoC with smaller curvature magnitude as shown in Figure 1.1(b).  

 
 

(a) (b) 

Figure 1.1     Plate bending on LoCs (Joo et al., 2014): 

(a) Pressing along LoC with smaller curvature 

magnitude (blue line); 

(b) Applying local heat treatment along LoC with 

larger curvature magnitude (red line). 

In other words, the plates used in shipbuilding can be formed by applying these two 

processes to them. This indicates that LoCs molded the surface of the ship. Then, Joo 

et al. (2014) proposed an algorithm for computing the differential geometry properties 

of LoCs on parametric surfaces as well as its curvature and torsion. They further 

showed that these LoCs may aid in designing ship hulls. The paper also provided a 

way to develop LoC on a surface onto a plane using geodesic curvature.  

Furthermore, Fukano et al. (2017) proposed point-based shape monitoring 

method for bent plates of large storage tank. The plates used to construct the storage 
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tank are similar to those used in shipbuilding industry and are very thick and difficult 

to bend. Note that a typical ship hull is built of 200-300 thick doubly curved plates that 

are more than 1cm thick (Joo et al., 2014). Fukano et al.’s (2017) method is time 

consuming as the process requires laser scanning to extract the desired points on the 

plate, identifying the differences, plate bending, and repeating the process until the 

desired shape is formed. Takezawa et al. (2019) proposed an interactive method to 

control LoCs on doubly curved surface. They smoothed the experiment surfaces by 

implementing smoothed directions on the LoCs instead of using true principle 

directions. Takezawa et al. (2021) named the patches generated by the smoothed 

directions as generalized principle patches. Then, they proposed a fabrication method 

for unfolding generalized principle patches and reconstructed them to design carbon 

fiber reinforced plastics automobile parts and marine propeller blades. This motivates 

us to analyse the relationship between LACs and LoCs on LAC surfaces such as LA 

surfaces of revolution and LA swept surfaces. 

LoCs on typical surfaces such as hyperbolic paraboloid, elliptic paraboloid etc. 

can be obtained by solving an initial value problem (IVP) using numerical methods. 

When it comes to generating LoCs on LA surfaces, there is an additional IVP that 

requires to be solved numerically. The additional IVP of LAC equation itself increases 

the computation time for generating LoCs for LAC surfaces. One way to reduce the 

computation time is by means of GPUs to solve ODEs (Wolfram, 2020).  

The invention GPU is intended to help gamers, researchers and programming 

developers enjoy their computer activities without delaying or overloading the 

computer. GPU performs as a labor, do a lot of repetitive works while CPU performs 

as an executive, master “brain” to make decision instructed by the software (Sangman 

et al., 2014). Parallel processing of GPUs contains large number of Arithmetic Logic 
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Unit’s (ALU), which are better suited for dealing with repetitive work, i.e., video 

processing and graphical applications, than typical CPU. In addition, many researchers 

in various fields have implemented parallel programming for its performance in 

solving problems such as image processing (Yang et al., 2016), graph drawing (Qu et 

al., 2017) and optimization problems such as differential evolution (Qin et al., 2012) 

and genetic algorithms (John and Mitsuo, 2020). 

Compute Unified Device Architecture or well known as CUDA is a parallel 

computing platform and API invented by NVIDIA for general GPUs. This technology 

is now readily available in various applications, including in high level scientific 

computation programs, e.g. Mathematica (Wo et al., 2014). There are many success 

stories of CUDA implementations in the field of CAD, e.g. NURBS computations 

(Krishnamurthy et al., 2007), moment computations (Krishnamurthy and McMains, 

2011) and interactive NURBS rendering (Concheiro et al., 2014) on GPU. Hence, our 

fourth motivation is to implement CUDA API which is available in Mathematica to 

speed up the LoC’s computation time in GPU. 

Surface modeling is a basic mathematical method for forming surfaces in CAD 

application. Of all the computer-aided surface modeling methods, modeling building 

technique is one of the basic methods for building surfaces. There are two types of 

model-building techniques (Liege Universite, 2019). One is non-parametric such as 

subdivision surface and the other one is parametric such as NURBS surface and 

Coon’s patch. Coon’s patch is a parametric surface consisting of four curved segments 

connected like chains. This surface has been widely used in surface design and 

geometric modelling (Chang, 2015) for patching holes in a surface. NURBS surfaces 

are built based on control points, knots, degrees and weights (Liege Universite, 2019). 
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Designers can interactively compute NURBS surfaces by controlling these variables. 

Meanwhile, Coon’s patches can be drawn by four boundary curves, which are 

connected like a closed fence (Chang, 2015). The advantage of Coon’s patch is 

designers require only four boundary curves to design a surface rather than controlling 

each control points or weights to compute the desired surface. Examples of works 

include the implementation of Coon’s patch for automotive design (Fan et al., 2020) 

and image interpolation (Qiu and Zhu, 2020). Since LoCs can be considered as edges 

of a surface, our motivation is to replace LoC with either planar or space Log-aesthetic 

curves to design a new aesthetic surface called Coon’s LA patch and then analyse its 

LoCs. Then we can implement this technique to ship hull building. 

1.3 Research Objectives 

The objectives for this study are as follows: 

1. To determine the basic properties of LAC using Vogt’s Theorem and Kneser’s 

Theorem, 

2. To formulate LA surfaces (LA surfaces of revolution and LA swept surfaces) 

with various types of LACs, 

3. To investigate the relationship between LACs and LoCs on LA surfaces, 

4. To parallelize the evaluation of LoCs on the surface using GPUs with minimal 

invention of CPUs. 

5. To investigate the characteristics of the Coon’s patch shaped by LACs and 

LASCs. 

1.4 Scope of Research 

 There are three scopes for this study.  
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i) Runge-Kutta methods (classical RK method and Dormand-Prince method) are 

used for the computation. 

ii) The study will be conducted using computer software consisting of 

Mathematica version 11. 

iii) CUDA programming runs in Mathematica by adding the functions to the string. 

A computer with a specification: Intel® Core™ 2 Quad CPU Q8400 @ 2.66GHz 

2.67GHz with 12GB RAM and graphic card is GeForce GT 730 with 2.0GB total 

memory is used to carry out the study. The computation time results may vary for 

different computer specifications. Figure 1.2 shows the information of computer 

system used to evaluate CUDA programming. 

 

Figure 1.2 System information 
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1.5 Content of Thesis 

The content of thesis consists of seven chapters specifically introduction, 

literature review, the characteristics of LAC, investigating the characteristics of LoCs 

for LA surfaces, surface design with LACs, conclusion and references.  

 Chapter 1 consists of background of LAC, motivation, research objectives, 

scopes of research, and content of thesis. Chapter 2 describes the details of LAC and 

LASC. Related fundamentals such as differential geometry of space curves, surfaces 

and curves on surface are discussed in detail. Furthermore, this chapter describes how 

to perform CUDA programming in Mathematica. Meanwhile, this chapter also 

discusses the numerical methods, Vogt’s Theorem, Kneser’s Theorem, surface of 

revolution, swept surface, Coon’s patch and Bézier curve’s literature review. 

 Chapter 3 discusses the characteristics of LAC. Vogt’s Theorem and Kneser’s 

Theorem are used to analyse the characteristics of LAC. Chapter 4 studies the 

formation of LA surface of revolution, LA swept surface and Quadratic Bézier swept 

surface. This chapter also describes the relationship between LAC and LoCs on LA 

surface of revolution and LA swept surface. In addition, this chapter discusses CPU 

and GPU performance metrics for generating LoCs.  

 Moreover, Chapter 5 designs Coon’s LA patch and Coon’s Bézier patch by 

applying LACs and Bézier curves as the boundaries of the surface. The curvature and 

torsion of LoCs are analysed and compared with hyperbolic paraboloid. The 

development of Coon’s LA patch onto a plane is performed in this chapter. In addition, 

Chapter 6 discusses and concludes this research, and lastly is the references used in 

this research.
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Log Aesthetic Curve (LAC) 

This section shows some important equations for generating LAC. The method 

to compute LAC interactively as shown by Yoshida and Saito (2006) is also displayed. 

2.1.1 Log Aesthetic Curve Equation 

 In this section, Logarithmic Curvature Graph (LCG) which is the straight line 

(linear LCG) is used to describe about LAC equation. The LCG equation has slope, α 

is shown below (Yoshida and Saito, 2006): 

log (𝜌
𝑑𝑠

𝑑𝜌
) = 𝛼 log(𝜌)  + 𝐶  (1) 

where 𝑠 is arc-length parameterization of a curve,  𝜌 is radius of curvature and 𝐶 is 

constant. Using logarithmic identities, we obtain  

𝑑𝑠

𝑑𝜌
=

𝜌𝛼−1

Λ
  (2) 

where Λ = e−C  is parameter of LAC and 0 < Λ < ∞. Integrate equation (2) then  

𝑠 = {

log𝜌−log𝜌0

Λ
, 𝛼 = 0,

𝜌𝛼−𝜌0
𝛼

𝛼Λ
, otherwise.

,  

(3) 

𝜌 = {
𝜌0𝑒

Λs, 𝛼 = 0,

(𝜌0
𝛼 + Λ𝛼s)

1

𝛼, otherwise.
, 

(4) 

where 𝜌0 is initial radius of curvature of the curve and 𝜌 varies from 0 to ∞. The arc-

length parameterization s has upper boundary and lower boundary, depending on the 
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𝛼. Table 2.1 shows the upper boundary and lower boundary of s with respect to 𝛼 

(Yoshida and Saito, 2006). The curvature of log aesthetic curve is shown below: 

𝜅 = {

1

𝜌0𝑒Λs
, 𝛼 = 0,

(𝜌0
𝛼 + Λ𝛼s)−

1

𝛼, otherwise.
.  

(5) 

Besides that, we substitute equation (2) into 
𝑑𝜃𝑇

𝑑𝑠
=

1

𝜌
 (Yoshida and Saito, 2006): 

𝑑𝜃𝑇

𝑑𝑠

𝑑𝑠

𝑑𝜌
=

𝑑𝜃𝑇

𝑑𝜌
=

1

𝜌

𝜌𝛼−1

Λ
=

𝜌𝛼−2

Λ
.  (6) 

Integrate equation (6) then we have  

𝜌 = {
𝜌0𝑒

Λ𝜃𝑇 , 𝛼 = 1,

(𝜌0
𝛼−1 + Λ(𝛼 − 1)𝜃𝑇)

1

𝛼−1, otherwise.
.  

(7) 

The boundaries of 𝜃𝑇  (the angle between the tangent vectors of the given two 

endpoints) are shown in Table 2.1.  

Table 2.1 The upper boundary and lower boundary of s and 𝜽𝑻 (Yoshida and 

Saito, 2006) 

𝒔 𝜽𝑻 

𝜶 Lower 

Bound 

Upper 

Bound 

𝜶 Lower 

Bound 

Upper 

Bound 

𝛼 < 0 - −
𝜌0

𝛼

𝛼Λ
 𝛼 < 1 - 

𝜌0
𝛼−1

(1 − 𝛼)Λ
 

𝛼 = 0 - - 𝛼 = 1 - - 

𝛼 > 0 −
𝜌0

𝛼

𝛼Λ
 - 𝛼 > 1 

𝜌0
𝛼−1

(1 − 𝛼)Λ
 - 
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To note, we can draw LAC by applying equation (5) to the Frenet-Serret formula and 

set torsion equals to 0. 

2.1.2 Interactive Log Aesthetic Curve Segment 

Yoshida and Saito (2006) implemented a method to compute LAC 

interactively with given two endpoints and their tangent direction. Table 2.2 shows 

how LAC is computed using the given two endpoints and their tangent direction. 

Table 2.2 Computing LAC interactively 

Step Description Graph 

1 Determine 𝜃𝐸  and 𝜃𝐹  of endpoints 

A and B. 𝜃𝐸  and 𝜃𝐹  can be 

obtained by calculating the angle 

from tangent vector to the chord 

AB and 𝜃𝑇 = 𝜃𝐸 + 𝜃𝐹. 

 

 

 

 

2 With 𝜃𝐸 > 𝜃𝐹 , the original points 

with its tangent direction are 

transformed using translation, 

rotation and reflection with 

condition: 

a) If 𝛼 > 1 , point A is at 

origin {0,0} and its tangent 

direction is on x-axis (unit 

tangent vector of A is 

{1,0}), 
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b) If 𝛼 ≤ 1 , point B is at 

origin {0,0} and its tangent 

direction is on x-axis (unit 

tangent vector of B is 

{−1,0}). 
 

 

 

 

 

 

3 Use bisection method to get s and 

Λ value that satisfies given G1 data 

with the calculated 𝜃𝑇 values. 

 

4 Generate LAC segment (color red) 

with calculated 𝜃𝑇  and Λ  values 

and the endpoint at 𝜃𝑇  is labelled 

as point C. (Assuming 𝛼 = −1) 

 

 

 

 

 

5 Calculate the length from point B 

to point C and from point B to point 

A and then compute the ratio. The 

ratio will be the scaling factor for 

the curve segment. 
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6 Inverse transformations are 

performed until the two endpoints 

of the curve segment return to the 

original position of points A and B. 

 

 

 

 

 

 

2.2 Log Aesthetic Space Curve (LASC) 

Log Aesthetic Space Curve is an extension of LAC. In 2009, Yoshida et al. 

(2009) proposed that the setting of Logarithmic Torsion Graph (LTG) is similar to 

LCG and can be used to generate space curves. To note, the torsion of LAC is 0. 

Yoshida et al. (2009) introduced that LASC is a curve whose curvature and torsion are 

either monotonic increasing or monotonic decreasing. Hence, the torsion of the curve 

is similar to curvature of the curve. Based on equation (5), the torsion of LASC can be 

defined as below: 

𝜏 = {

1

𝜇0𝑒Ωs
, 𝛽 = 0,

(𝜇0
𝛽 + Ω𝛽s)

−
1

𝛽, otherwise.

  

(8) 

where 𝜏  is torsion of curve, 𝜇0  is initial radius of torsion (Yoshida et al., (2009) 

assumed this as a parameter), Ω is a shape parameter, 𝛽 is the slope of LTG and s is 

the arc-length of curve. If the curve is rendered from 0 to – s , then its torsion is 

monotonic increasing and vice-versa. Table 2.3 shows the upper boundary and lower 

boundary of s with respect to 𝛽. 
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Table 2.3 The upper boundary and lower boundary of s 

𝜷 Lower Bound of 𝒔 Upper Bound of 𝒔 

𝛽 < 0 - −
𝜇0

𝛽

𝛽Ω
 

𝛽 = 0 - - 

𝛽 > 0 −
𝜇0

𝛽

𝛽Ω
 - 

The boundaries of s are varied depend on the combination of the curve’s 

curvature and torsion as stated in Yoshida et al. (2009) paper. This paper proposed a 

method to compute LASC interactively as shown in Table 2.4. The method is similar 

to the method used to compute LAC.  Note that we use Frenet-Serret formula to 

generate LASC numerically. The initial value of the unit tangent, normal and binormal 

vector are set as 𝒕(0) = {1,0,0}, 𝒏(0) = {0,1,0} and 𝒃(0) = {0,0,1}. When we rotate 

the endpoint about x-axis to the xy plane, the sign of z-coordinate of  𝒕(𝑠) is negative.  

Table 2.4 Drawing LASC interactively 

Step Description Graph 

1 Determine 𝜃𝐸  and 𝜃𝐹  of two 

endpoints A and B from the given 

G1 data. 𝜃𝐸  and 𝜃𝐹  can be 

obtained by calculating the angle 

from tangent vector to the chord 

AB and 𝜃𝐸 > 𝜃𝐹. 
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2 Move points A and B until point 

A is at origin {0,0,0}.  

 

3 Rotate point B and tangent vector 

of points A and B about the point 

{0,0,0}  until tangent vector of 

point A is on the x-axis. Then, 

rotate point B and its tangent 

vector about x-axis until point B 

is on the xy-plane.  

 

 

4 If the sign of z-coordinate of point 

B’s tangent vector (𝑡𝐵) is positive, 

the z-coordinate of point B’s 

tangent vector is reversed. All z-

coordinates of the points on the 

curve segment are reversed.  

 

 

 

5 Generates the LASC segment 

from endpoint C (at origin) to 

endpoint D and then rotates the 

segment and endpoint’s tangent 

vector (𝑡𝐷) until endpoint D is on 

the xy-plane. Set the parameters 

Ω and 𝜌0, and then use bisection 

method to find the arc-length, s of 

LASC that satisfies 𝜃𝐷 = 𝜃𝐸 . 

Then, use Nelder and Mead’s  
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downhill simplex method to find 

parameters Λ  and 𝜇0  that satisfy 

𝑡𝐵. 𝑡𝐷 = 1 . Repeat Step 5 until 

both conditions are met. 

6 Scale the LASC segment until its 

endpoints are at points A and B. 

 

 

 

 

 

7 If Step 4 occurs, all z-coordinates 

of the points on the curve segment 

are reversed. Inverse 

transformations are performed 

until the two endpoints of the 

curve segment return to the 

original position of points A and 

B. 

 
 

This is why Step 4 is necessary. Nelder and Mead’s downhill simplex method is a 

simplex method to find local minimum for several variables (Quinten, 2013). In our 

case, there are two variables ( Λ  and 𝜇0 ) are required to minimize 𝑓(Λ, 𝜇0) =

|𝑡𝐵. 𝑡𝐷 − 1| = 0. The simplex method of two variables requires three simplex points 

(𝑥1, 𝑥2 and 𝑥3where 𝑥 = {Λ, 𝜇0}) that move like amoeba to approach to the minimum 

value of the function. First, function 𝑓(Λ, 𝜇0) is evaluated on each of the three simplex 

points to find the best point (B), second best point (S) and worst point (W) from the 

three simplex points. Then, the midpoint 𝑴 =
𝑩+𝑺

2
 is calculated. Next, calculate the 

reflection point R, Expansion point E and Contraction point C where 𝑹 = 𝑴+
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(𝑴 −𝑾) , 𝑬 = 𝑴+ 2(𝑹 −𝑴)  and 𝑪 = 𝑴+ 0.5(𝑴 −𝑾) . The original paper 

(Quinten, 2013) included one more step is to shrink the triangle (from three simplex 

points) to smaller triangle. We found that it took more time to minimise the function. 

Hence, we removed this step from the entire minimization. Figure 2.1 shows the 

flowchart of the Nelder and Mead downhill simplex algorithm. 

Figure 2.1 Nelder and Mead’s downhill simplex algorithm 

2.3 Space Curve 

Frenet-Serret Formulas in term of arc-length parameterization, 𝑠 are (Marsh, 

2005):  

𝒕′(𝑠) = 𝜅(𝑠)𝒏(𝑠),  

𝒏′(𝑠) = −𝜅(𝑠)𝒕(𝑠) + 𝜏(𝑠)𝒃(𝑠),  

𝒃′(𝑠) = −𝜏(𝑠)𝒏(𝑠),  

(9) 

where t is tangent vector, n is normal vector and b is binormal vector of the curve. Let 

𝑪(𝑠) be a parametric curve, we have : (Joo et al., 2014) 
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𝑪(𝑠) = {𝑥(𝑠), 𝑦(𝑠), 𝑧(𝑠)},  (10) 

𝑪′(𝑠) = 𝒕(𝑠), (11) 

𝑪′′(𝑠) = 𝒕′(𝑠) = 𝜅(𝑠)𝒏(𝑠), (12) 

𝑪′′′(𝑠) = 𝜅′(𝑠)𝒏(𝑠) + 𝜅(𝑠)𝒏′(𝑠). (13) 

In addition, assuming that 𝜑(𝑢) =
𝑑𝑠

𝑑𝑢
 and then the Frenet-Serret formulas in terms of 

parameter 𝑢 are defined as the following (Marsh, 2005): 

𝒕̇(𝑢) =
𝑑𝒕(𝑢)

𝑑𝑢
= 𝜑(𝑢)𝜅(𝑢)𝒏(𝑢), 

𝒏̇(𝑢) =
𝑑𝒏(𝑢)

𝑑𝑢
= 𝜑(𝑢)(−𝜅(𝑢)𝒕(𝑢) + 𝜏(𝑢)𝒃(𝑢)),  

𝒃̇(𝑢) =
𝑑𝒃(𝑢)

𝑑𝑢
= −𝜑(𝑢)𝜏(𝑢)𝒏(𝑢). 

(14) 

2.4 Vogt’s Theorem 

Vogt’s theorem is a theorem used to analyse the existence of a spiral from a 

given turning angle, which is rarely used to extend well-known curves. In 1914, Vogt’s 

Theorem was introduced to analyse convex arcs of planar curves with constant sign 

monotonic curvature (Kurnosenko, 2013). Then Guggenheimer (1977) reformulated 

Vogt’s Theorem as follows: 

“Let A and B be the endpoints of a spiral arc, the curvature nondecreasing from A to 

B. The angle 𝜃𝐵 of the tangent to the arc at B with the chord AB is not less than the 

angle 𝜃𝐴 of the tangent at A with AB. 𝜃𝐴 = 𝜃𝐵 only if the curvature is constant.” 

Kurnosenko (2013) studied the existence and positional inequality of short spirals and 

long spirals, necessary and sufficient conditions of it using Vogt’s Theorem. The 
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results show that as long as the curve has monotonic curvature profile, it is credible. 

Kurnosenko (2013) modified Vogt’s Theorem as follows:  

Vogt’s Theorem (Short Spirals): The boundary angles 𝜃𝐴 and 𝜃𝐵 of a normalized short 

spiral or circular arc satisfy the conditions below: 

𝑖𝑓 𝜅1 < 𝜅2:
𝑖𝑓 𝜅1 > 𝜅2:
𝑖𝑓 𝜅1 = 𝜅2:

    
𝜃𝐴 + 𝜃𝐵 > 0,
𝜃𝐴 + 𝜃𝐵 < 0,
𝜃𝐴 + 𝜃𝐵 = 0,

    
−𝜋 < 𝜃𝐴 ≤ 𝜋,
−𝜋 ≤ 𝜃𝐴 < 𝜋,
−𝜋 < 𝜃𝐴 < 𝜋,

    
−𝜋 < 𝜃𝐵 ≤ 𝜋;
−𝜋 ≤ 𝜃𝐵 < 𝜋;
−𝜋 < 𝜃𝐵 < 𝜋.

 (15) 

The author defined the meaning of short spiral and normalized spiral. Short spiral 

indicates that a planar curve with monotonic continuous curvature is short if it does 

not intersect the complement of its chord to the infinite straight line. Besides that, a 

normalized spiral or arc is an arc that is scaled and transformed so that its starting point 

is located at position A (coordinate {−𝑐, 0} on the x-axis) and the endpoint is located 

at position B (coordinate {𝑐, 0} on the x-axis). The best solution is to equal 𝑐 to 1 so 

that the product 𝑐𝜅(𝑠) ≡ 𝜅(𝑠) will be called as normalized curvature and the arc 

becomes a normalized dimensionless quantity.  

 

Figure 2.2 Normalized short arc 

Figure 2.2 shows the image of a normalized short spiral. It is important to note that 

when a curve is rendered from one end to the other and the curvature’s sign is the same 
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sign, the curve is a C-Spiral. Also, if the curvature of both endpoints are of different 

signs, then the curve is an S-Spiral. In other words, the curve is rendered from positive 

to negative curvature (or vice-versa) to form an S-Spiral. Since LAC has its limitations 

and extra constraints, our objective dwells around this theorem to prove the 

monotonicity of LAC for given input.  

2.5 Kneser’s Theorem 

Kneser’s Theorem analysed the properties of spiral using circle of curvature 

method (Guggenheimer, 1977). In the absence of inflection points, the author defined 

 Kneser’s Theorem on a spiral as follows: 

“Any circle of curvature of a spiral arc contains every smaller circle of curvature of 

the arc in its interior and in its turn is contained in the interior of every circle of 

curvature of greater radius.” 

 

Figure 2.3 Spiral and its circles of curvature 

Figure 2.3 shows the idea of Kneser’s Theorem. To note, the dashed circles are circles 

of curvature of different points on the spiral. The curvature of the circle of curvature 

is based on the curvature of the spiral at that point. If the smaller circle of curvature is 

contained in a larger circle of curvature, then the spiral satisfies Kneser’s Theorem. 
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2.6 Surface 

The first fundamental equation of the surface is (Patrikalakis and Maekawa, 

2001): 

Ι(𝑢, 𝑣) = 𝑑𝑠2 = 𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2 

where 𝐸 = 𝑹𝑢 ∙ 𝑹𝑢 , 𝐹 = 𝑹𝑢 ∙ 𝑹𝑣 , 𝐺 = 𝑹𝑣 ∙ 𝑹𝑣  and 𝑹 = 𝑹(𝑢, 𝑣)  is a parametric 

surface. The function of first fundamental equation is to calculate the arc-length and 

the surface area. The arc-length of curve on a surface and surface area can be calculated 

using equations below: 

ArcLength = ∫ √𝐸𝑢̇2 + 2𝐹𝑢̇𝑣̇ + 𝐺𝑣̇2𝑑𝑡
𝑡1

𝑡0
, (16) 

Surface Area = ∫ ∫ √𝐸𝐺 − 𝐹2𝑑𝑢𝑑𝑣
𝑣1

𝑢0

𝑣1

𝑣0
, (17) 

where 𝒖̇ =
𝒅𝒖

𝒅𝒕
 and 𝒗̇ =

𝒅𝒗

𝒅𝒕
. 

Example 1 (Patrikalakis and Maekawa, 2001) 

Let’s take hyperbolic paraboloid as an example: 

Hyperbolic Paraboloid = 𝑹(𝑢, 𝑣) = {𝑢, 𝑣, 𝑢𝑣}  (18) 

𝐸 = 1 + 𝑣2, 𝐹 = 𝑢𝑣, 𝐺 = 1 + 𝑢2. 

Assume that the parametric curve on the surface of hyperbolic paraboloid, 𝑪 is given: 

𝑪(𝑢(𝑡), 𝑣(𝑡)) = {𝑡, 𝑡}, 

𝑢̇(𝑡) =
𝑑𝑢

𝑑𝑡
= 1, 𝑣̇(𝑡) =

𝑑𝑣

𝑑𝑡
= 1. 

With 0 ≤ 𝑡 ≤ 1, we can further compute the arc-length of the curve: 
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ArcLength = ∫ √(1 + 𝑡2)(1)2 + 2(𝑡)(𝑡)(1)(1) + (1 + 𝑡2)(1)2𝑑𝑡
1

0

 

                    = ∫ √2 + 4𝑡2𝑑𝑡
1

0
 

                    =
1

2
(√6 + sinh−1 √2) = √

3

2
+
1

2
log(√2 + √3) ≈ 1.79785. 

To calculate the surface area of hyperbolic paraboloid, the boundaries of parameters 𝑢 

and 𝑣 must be given. The area of hyperbolic paraboloid equation is shown below: 

 Surface Area = ∫ ∫ √(1 + 𝑢2)(1 + 𝑣2) − (𝑢𝑣)2𝑑𝑢𝑑𝑣
𝑢1

𝑢0

𝑣1

𝑣0
. 

Suppose that 𝑢 = 𝑟 cos 𝜃, 𝑣 = 𝑟 sin 𝜃, 0 ≤ 𝑟 ≤ 1 and 0 ≤ 𝜃 ≤
𝜋

2
, then: 

Surface Area = ∫ ∫ 𝑟√(1 + 𝑟2)𝑑𝜃𝑑𝑟
𝜋

2
0

1

0
=

𝜋

6
(−1 + 2√2). 

Next, the second fundamental equation is: (Patrikalakis and Maekawa, 2001) 

ΙΙ(𝑢, 𝑣) = 𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2 

where 𝐿 = 𝚴 ∙ 𝑹𝑢𝑢, 𝑀 = 𝚴 ∙ 𝑹𝑢𝑣 and 𝑁 = 𝚴 ∙ 𝑹𝑣𝑣 and 𝚴 =
𝑹𝑢×𝑹𝑣

|𝑹𝑢×𝑹𝑣|
 is the unit normal 

vector of the surface point. The second fundamental equation can be used to investigate 

the shape of a surface. There are four common cases can be determined using second 

fundamental equation as shown in Table 2.5 (Patrikalakis and Maekawa, 2001). The 

plane on the surface is the tangent plane at point P. 𝐾 and 𝐻 indicate Gaussian and 

mean curvatures which their formulas are given. 

The first case is the elliptic point on the surface, Point P is the only point 

touches its tangent plane, and the normal curvatures at point P are all at the same sign. 

In the second case, the tangent plane cut through and divides the points on the surface  
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Table 2.5 Relationship between surface shape and second fundamental equation 

Case Description Graph 

Elliptic point LN-M2 > 0 

(K > 0) and  

H ≠ 0 

 

 

Hyperbolic 

point 

LN-M2 < 0  

(K < 0) and  

H ≠ 0 

 

 

Parabolic point LN-M2 = 0 

(K = 0), 

L2+N2+M2 ≠ 0 

and H ≠ 0 

 

 

Planar point L = M = N = 0 

 

into two sides. Hence, point P is the hyperbolic point. In other words, the sign of 

normal curvature at point P can be positive or negative depending on the tangent 

direction at that point. Furthermore, point P in the third case is a parabolic point that 

produces a line of intersection between paraboloid and tangent plane. The occurrence 

of line of intersection is caused by zero normal curvature on the paraboloid surface. 

The last case is the planar point at which the tangent plane is parallel to the planar 


