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PENDEKATAN SARINGAN MAYA BERASASKAN HIERARKI DAN 

FRAGMEN DALAM PENCARIAN PERENCAT ASETILKOLINESTERASE  

ABSTRAK 

Permodelan molekul telah terbukti dapat mempercepat dalam membantu reka 

bentuk ubat dengan memberikan pemahaman tentang sistem biomolekul pada tahap 

atom. Aplikasi pemodelan molekul yang melibatkan dua kaedah penyaringan maya 

untuk memudahkan reka bentuk ubat untuk mencari perencat Asetilkolinesterase 

(AChE) dilakukan dalam kajian ini. Terdapat dua kaedah penyaringan maya yang 

dibentangkan dalam kajian ini iaitu penyaringan maya berasaskan hierarki dan 

penyaringan maya berasaskan fragmen. Kaedah penyaringan maya hierarki (HVS) 

meliputi penyaringan kesamaan bentuk yang digabungkan dengan pendokkan molekul 

dan pemeriksaan visual membolehkan penemuan pada kelas sebatian perencat AChE 

yang baru iaitu,  1, 2, 4-triazoliltioetanon. Pada langkah pertama HVS, pemeriksaan 

kesamaan bentuk digunakan untuk mencari sebatian yang mempunyai bentuk yang 

sama dengan struktur donepezil. Sebanyak 920 sebatian telah senarai pendek dan 

mempunyai bentuk yang sama dengan sebatian donepezil mengikut skor 

“ShapeTanimoto”. Seterusnya, pendokkan molekul dilakukan dan menghasilkan kira-

kira 73 sebatian yang mempunyai nilai tenaga pendokkan di antara -13.35 hingga -

5.35 kkal/molar dan nilai tenaga ∆MM/GBSA di antara -30.72 hingga -86.26 kkal/molar. 

Seterusnya, semua sebatian yang disenarai pendek diperiksa secara visual berdasarkan 

bentuk dan interaksi pada poket protin AChE. Sebanyak 58 sebatian telah di senarai 

pendek untuk dibeli dan diuji secara eksperimen. Tiga belas sebatian yang mempunyai 

bentuk memanjang seperti donepezil terdiri daripada 1, 2, 4- triazoliltioetanon dan 

dilaporkan mempunyai nilai IC50 dalam julat 0.15 ± 0.07 hingga 3.32 ± 0.92 µM. Tiga 
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belas sebatian ini adalah terdiri daripada dua struktur aromatik di kedua-dua hujung 

sebatian dengan kelas 1, 2, 4-triazol sebagai penghubung sebatian. Pendokkan molekul 

menunjukkan tiga penggantian sebatian, R1, R2 dan R3 terikat pada tiga poket protin 

AChE yang berbeza dan berinteraksi dengan amino asid TRP86 dan TRP286 AChE. 

Struktur kelas 1,2,4-triazol dalam sebatian 1-13 berada berdekatan dengan struktur 

aromatik amino asid yang bersifat hidrofobik seperti PHE341, TYR337, dan PHE338. 

Sebatian ini juga terikat pada amino asid TYR337 melalui ikatan interaksi π-π. Tiga 

belas sebatian tersebut juga belum dilaporkan sebagai perencat protin AChE sebelum 

ini. Pada bahagian seterusnya, pendekatan penyaringan maya berasaskan fragmen 

(FBVS) digunakan untuk mencari perencat protin AChE yang lebih aktif. Penyaringan 

maya melibatkan pencarian substruktur dan pendokkan molekul telah digunakan. 

Teknik ini membawa kepada penemuan sebatian aktif, CF19 dengan nilai IC50 bernilai 

28 nanomolar. Dengan menggunakan pencarian substruktur sebagai langkah awal, dua 

puluh satu fragmen dari kumpulan perencat AChE daripada pangkalan data ChEMBL 

telah diambil. Fragmen akridin (F3) telah didapati sebagai fragmen paling banyak 

ditemui (2530 sebatian). Fragmen ini seterusnya digunakan sebagai rujukan untuk 

menyaring sebatian daripada pangkalan data Namiki Shoji. Melalui kaedah pencarian 

substruktur yang kedua, penambahan tiga kumpulan fragmen sebatian penyaringan 

dilakukan untuk mencari sebatian yang berpotensi daripada pangkalan data Namiki 

Shoji. Kumpulan fragmen telah dibahagikan kepada (i) fragmen F3/F22, (ii) fragmen 

F3/F23, F24, F25 dan F26, dan (iii) fragmen F22 sahaja. Pada langkah seterusnya, dua 

pusingan pendokkan molekul dan pengiraan tenaga ∆MM/GBSA untuk setiap kumpulan 

fragmen dilakukan. Pada setiap kategori fragmen, 50 sebatian disenarai pendek 

sebelum pendokkan kali kedua dijalankan. Berdasarkan nilai tenaga pendokkan dan 

pengiraan tenaga ∆MM/GBSA, sembilan belas sebatian disenarai pendek dan diuji secara 
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in vitro. Dua belas sebatian menunjukkan nilai peratusan perencat melebih 50 %. Ini 

juga membuktikan kejayaan penyaringan maya sebanyak 63 % melalui kaedah ini. 

Akhirnya, sebanyak dua sebatian menunjukkan nilai IC50 lebih daripada 30 µM, enam 

sebatian merekodkan nilai perencat AChE di antara 1 hingga 10 µM dan tiga sebatian 

merekodkan nilai IC50 di bawah 1 µM. Fragmen N-benzylpipredine dan benzimidazole 

yang terdapat pada sebatian, CF19 ( IC50: 28 nM) adalah merupakan sebatian AChE 

yang paling aktif, diikuti oleh CF15 (mengandungi fragmen benzylpipredine dan 

acridine) dengan nilai IC50, 0.65 µM. CF19 juga adalah sebatian yang mematuhi 

peraturan lima Lipinski dan peraturan tiga Jorgensen. Ini menunjukkan bahawa 

sebatian C19 adalah berpotensi untuk dijadikan sebagai ubat. Simulasi dinamik 

molekul selama 100 nanosaat juga dilakukan untuk memberi informasi tentang 

kestabilan dan dinamik sebatian CF19 pada protin AChE berbanding dengan 

donepezil. Kajian simulasi dinamik sebatian CF19 juga menunjukkan interaksi ikatan 

hydrogen yang stabil di antara CF19 dengan amino asid PHE295 dan TYR34 sebanyak 

99 % dan 96 % di sepanjang simulasi.  Penemuan kelas baru sebatian 1, 2, 4-

triazoliltioetanon dan sebatian CF19 ini adalah sangat menarik kerana boleh menjadi 

titik permulaan yang berguna untuk pengembangan terapi baru untuk merawat 

penyakit Alzheimer.   
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HIERARCHICAL AND FRAGMENT BASED VIRTUAL SCREENING 

APPROACHES IN THE DISCOVERY OF POTENT 

ACETYLCHOLINESTERASE INHIBITOR 

 
ABSTRACT 

 
 

 Molecular modelling has been proved to accelerate and guide drug design by 

providing an understanding about biomolecular system at the atomic level. A 

molecular modelling application involving two virtual screening methods to facilitate 

the drug design for finding Acetylcholinesterase (AChE) inhibitors was carried out in 

this study. There are two virtual screening methods were presented in this study which 

are the hierarchircal and fragment based virtual screening. Hierarchircal virtual 

screening (HVS) method involved a shape similarity screening that combined with 

molecular docking calculation and visual inspection allowed the identification of 1, 2, 

4-triazolylthioethanone as a novel class of AChE inhibitors. In the first step of HVS, 

shape similarity screening was used to find compounds that having similar shape to 

donepezil. About 920 shortlisted compounds was discovered of having similar shape 

as donepezil according on “ShapeTanimoto” scores. In the next step, molecular 

docking was performed and resulted about 73 shortlisted compounds which having the 

docking and ∆MM/GBSA energies values ranging from -13.35 to -5.35 kcal/mol and -

30.72 to -86.26 kcal/mol, respectively. Further, all shortlisted compounds were 

visually inspected based on their shape and binding interactions with AChE binding 

pocket. About 58 shortlisted compounds were selected to be purchased and 

experimentally tested based on their binding to AChE similarly with donepezil. 

Thirteen compounds which having an elongated shape similar to donepezil consists of 

1, 2, 4-triazolylthiothanone core and reported having the IC50 values in the range of 
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0.15 ± 0.07 to 3.32 ± 0.92 µM. The thirteen compounds consists of two aromatic rings 

at either end of their structures with 1, 2, 4-triazole ring forming the middle core of the 

compounds. Molecular docking shows the three substitutions of compounds, R1, R2 

and R3 which predicted to occupy three different sites of AChE and interacts with 

residues TRP86 and TRP286 of AChE. The 1,2,4-triazole ring in compounds 1-13 is 

predicted to occupy a region close to hydrophobic aromatic residues of PHE341, 

TYR337, and PHE338 and was found to make π-π stacking contacts with TYR337. 

The thirteen compounds have not been reported as AChE inhibitors in ChEMBL 

database. In the next part of the thesis, a fragment-based virtual screening (FBVS) 

approach was applied to discover more potent AChE inhibitors. The virtual screening 

involves substructure search and molecular docking calculation was carried out which 

leading to the discovery of a nanomolar potent compound,  CF19 with an IC50 value 

of 28 nM. By using substructure searching as the initial step, twenty-one fragments 

from the collective of AChE inhibitors with below than 1 µM inhibition activity in 

ChEMBL database were retrieved. Out of all, acridine fragment (F3) was found to be 

the most collective fragments (2530 compounds). The F3 fragment was further used 

as query to screen over Namiki Shoji compounds database which resulting the addition 

of three fragment groups of screening compounds over Namiki Shoji Database. The 

resulting hit from the three shortlisted groups are (i) fragment F3/F22 , (ii) fragment 

F3/F23, F24, F25 and F26, and (iii) fragment F22 only, were then shortlisted into the 

next step of screening. In the next step, two rounds of molecular docking and ∆MM/GBSA 

calculation for each fragments’ group was performed. At each fragments’ categories, 

50 hits compounds were retained after first docking step and subjected to the second 

round molecular docking. Based on the the docking and ∆MM/GBSA energies value, 

nineteen compounds were shortlisted and evaluated in vitro AChE assay. Twelve of 
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these demonstrated good inhibition potency (≥50 %), thus giving a VS success rate of 

63 %. It was finally discovered that two, six and three compounds showed IC50 values 

more than 30 µM, between 1 to 10 µM and below 1 µM, respectively. N-

benzylpipredine and benzimidazole containing compound, CF19 (IC50: 28 nM) is 

found to be the most potent AChE compound, followed by CF15 (N-benzylpipredine 

and acridine containing compound) with the IC50 value of 0.65 µM. Compound CF19 

also obeys Lipinski’s rule of five with the exception of one and obeys Jorgensen rule 

of three, signifying the fact that compound CF19 is potentially to be a drug-like orally 

compound. A 100 ns molecular dynamics simulation was also conducted to understand 

the stability and conformational dynamics of CF19 on AChE protein as compared to 

donepezil. Dynamics simulation study of CF19 has also demonstrated the stable H-

bond interactions of 99 % and 96 % occurrence of simulation time with residues 

PHE295 and TYR341, respectively. The scaffold and CF19 were particularly 

interesting as it could be a useful starting point for the development of novel 

therapeutics to tackle Alzheimer’s diseases.



1 
 

 

CHAPTER 1 

INTRODUCTION 

   
1.1 Problem Statement 

Currently, more than 46 million people worldwide are living with Alzheimer’s 

Disease (AD) and the number is expected to increase to 131.5 million by 2050 

(Alzheimer’s Disease International, 2021). Researches have presented various 

hypothesis about AD and how these hypothesis are used to guide the treatment of AD. 

Among the various ways to combat AD is targeting Acetylcholinesterase (AChE).   

There are four FDA approved drugs available in the market to treat AD i.e 

donepezil, tacrine, galantamine and rivastigmine (Nguyen et al., 2021). However, 

these approved drugs have limitations and known to cause side effects such as 

gastrointestinal upset, nausea, vomiting, diarrhoea and muscle cramps (Berk & 

Sabbagh, 2012). In fact, tacrine was withdrawn due to its hepatotoxicity. The recent 

approval of aducanumab by the United States Food and Drug Administration approved 

for AD treatment since 2003 reflect the extremely high failure rate of drugs developed 

for AD. Therefore, more research is needed to discover more candidates that can treat 

AD such that patients will be presented with the best treatment option available.  

On the related note, AChE has a unique protein structure that contains a deep 

and narrow shape of 20 Å long elongated gorge with the width dimension of ~45 x 

60 x 65 Å, which leading to the active site of AChE (Cheung et al., 2012). The 

structural detail showed that AChE inhibitors are mainly involved with the 
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interactions at the two binding sites of AChE, i.e. the peripheral anionic site (PAS) 

and cationic site (CAS).  The structure also indicates the different binding 

mechanisms of the substrate and inhibitors (Dvir et al., 2010; Silman & Sussman, 

2008). Due to their well-characterized active sites and comprehensive understanding 

of the structure−activity relationships of existing inhibitors with AChE, virtual 

screening (VS) method is particularly well-suited to be used for drug discovery.  

Over the last 5 years (2015−2020), at least 15 studies of VS over various 

database have been implemented and proved to discover potent new cholinesterase 

inhibitors (Miles & Roses, 2021). However, the VS methods applied were the 

stepwise screening method either with SBVS or LBVS separately. This increases the 

computing time for SBVS method to screen over the whole database as well as limit 

the structural diversity of the hits by using LBVS only. Therefore, the current study 

aims to applied VS in combination of SBVS and LBVS techniques as well as 

implemented a fragment based virtual screening (FBVS)  in the discovery of potent 

AChE inhibitors. 

1.2 Objectives 

The present research aimed to utilize computational approaches in discovering 

acetylcholinesterase inhibitors. Therefore, these objectives were pursued:  

1. To discover a potent AChE inhibitor that having the similar shape as 

donepezil structure using a stepwise combination of ligand based and structure 

based virtual screening (LBVS and SBVS) in hierarchircal manner.  

2. To find the most potent AChE inhibitor using a fragment based virtual 

screening (FBVS).   
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3. To investigate the binding, conformational changes and dynamics of 

AChE with the most potent compound using molecular dynamics simulation.    

 

1.3 Content of Thesis 

The present chapter provides the problem statement and objectives of the study. 

The focus of this thesis is to showcase the application of molecular modelling in drug 

discovery for the treatment of AD. Thus, Chapter 2 provides the literature review 

related to the Alzheimer’s disease and molecular modelling. The methodologies that 

were used throughout the projects are presented in Chapter 3. Finally, general 

summary for the significant discovery found in this research is presented in the last 

chapter. Some recommendations to improvise the study are also suggested in the 

context of drug discovery. 
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CHAPTER 2 

LITERATURE REVIEW  

2.1 Alzheimer’s Disease 

Alzheimer’s disease (AD) is defined as a slowly progressive neurodegenerative 

disease that is characterized by a decline in cognitive function in patients (Burns & 

Iliffe, 2009). It is estimated that more than 46 million people worldwide are living with 

Alzheimer's disease (AD) and the number is expected to increase to 131.5 million by 

2050. The majority of AD patients are from low and middle income countries 

(Alzheimer’s Disease International, 2021). In Malaysia, the prevalence of AD is 

estimated around 0.126% and 0.454% in 2020 and 2050, respectively (Tey et 

al., 2016). Management of AD patient is complex, therefore, the cost of managing AD 

is quiet expensive and is estimated at US$818 billion. It is forecasted that this cost is 

to increase to a trillion dollar by 2030 (Alzheimer's Disease International, 2021).  

AD is named after a German neuropathologist and clinician, Dr. Alois 

Alzheimer in 1906 (Ramirez-Bermudez, 2012; Thies & Bleiler, 2013). Dr. Alzheimer 

noticed changes in the brain tissue of a woman, Aguste Deter, who had died of an 

unusual mental illness. Her symptoms included memory loss, language problems, and 

unpredictable behavior. After she died, Dr. Alzheimer investigated her brain and spinal 

cord tissues. A symptomatic description of cognitive failures, as well as descriptions 

and illustrations of senile plaques (SP) and neurofibrillary tangles (NFT), were 

included in Alzheimer's initial report on her. SP and NFT are now widely 

acknowledged as pathological markers of Alzheimer's disease by researchers 

(Ramirez-Bermudez, 2012; Thies & Bleiler, 2013).  
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Commonly, AD patients develop various symptoms that can be divided into 

three groups which are:  (1) cognitive failures, (2) disruptions in psychiatry and 

behaviour, and (3) problems in doing regular activities (Burns & Iliffe, 2009; Thies & 

Bleiler, 2013). The cognitive failures are the loss of memory, having difficulties in 

language, and challenges in planning or solving problems. AD patients with these 

symptoms have difficulties to remember new information. Agitation, sadness, and 

hallucinations are among the second set of symptoms. These symptoms prevent patients 

from being able to perform tasks such as eating, bathing, or dressing. Patients with 

Alzheimer's disease were also unable to identify or communicate with family members 

at this point. Individual instances vary in their evolution from moderate to severe 

Alzheimer's disease, although it usually takes years (Burns & Iliffe, 2009).  

2.1.1 Etiology 

AD develops from multiple factors. Age is the primary risk factor, since the 

condition is most prevalent in those aged 65 and beyond (Burns & Iliffe, 2009; Thies 

& Bleiler, 2013). Additionally, cerebrovascular illness, diabetes, obesity, 

hypertension, dyslipidemia, depression, smoking, traumatic brain injury, genetics, and 

family history are the contributing factors of AD (Alzheimer’s Disease International, 

2021). At present, there is no cure for AD. Current pharmacology treatments for AD 

patients are only to improve the cognitive symptoms (James et al., 2020; Yiannopoulou 

et al., 2020). To date, the etiology of AD is not known. However, many hypotheses 

such as cholinergic dysfunction (Scarpini et al., 2003), amyloid-β (Aβ) deposits (Terry 

et al., 1964), τ-protein aggregation (Grundke-Iqbal et al., 1986; Wilson et al., 2013), 

oxidative stress (Wilson et al., 2013), neuroinflammation (Linker et al., 2011), 

excitotoxicity (Kaidery et al., 2013) calcium impairment (Diaz et al., 2009), 

mitochondrial dysfunction (Aliev et al., 2014) and bacterial infection (Domini et al., 
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2019) have been suggested and used to explain the pathogenesis of AD. Exploration 

of these hypotheses has led to the identification of several proteins that influence the 

generation and exacerbation of the disease. These include acetylcholine and 

butyrylcholine esterases (AChE and BuChE) which are involved in cholinergic 

hypothesis (Davies & Maloney, 1978), BACE-1 (amyloid hypothesis) (Hardy & 

Higgins, 1992), PDEs (non-amyloid hypothesis) (Cummings et al., 2019), GSK-3b 

(tau protein hypothesis) (Zhang et al., 2019; Panza et al., 2016), MAOs 

(monoaminergic hypothesis) (Panza et al., 2016; Massart et al., 2012), NMDA receptor 

(glutamatergic hypothesis) (Shimizu et al., 2000; Johnston et al., 1968), 5-HT 

receptors (serotonergic hypothesis) (Shimizu et al., 2000; Rodriguez et al., 2012) and 

H3 receptor (histaminergic system) (Panula et al., 2015). Targeting AChE involved in 

cholinergic hypothesis is one of many approaches to impair cholinergic function of 

AD brain (Weng et al., 2003).  

2.1.2 Causes of AD  

Of the various hypothesis, cholinergic dysfunction and amyloid-beta (αβ) 

accumulation are believed to be the main causes of AD. The cholinergic hypothesis 

was initially postulated in1982, when researchers discovered that AD patients' brains 

lacked activity at cholinergic neurons (Davies & Maloney, 1976;  Perry et al., 1981). 

According to cholinergic hypothesis, the cognitive deficits of  AD are related to the 

decline of neurotransmitter acetylcholine (Terry & Buccafusco, 2003). Although the 

cholinergic theory has been addressed with considerable doubt, it remains critical for 

understanding AD today. Most of treatments for AD has been discovered aimed at 

restoring the cholinergic deficit.  
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2.1.2(a) Cholinergic Hypothesis 

In the brain, Acetylcholine (ACh) acts as a neurotransmitter and involved in 

many physiological processes. There are sensory information, memory, learning, focus 

and many critical functions (Breijyeh & Karaman, 2020). Two enzymes are involved 

in the regulation of ACh levels in the brain: choline acetyltransferase (ChAT) and 

acetylcholinesterase (AChE). While ChAT catalyses the production of ACh from 

choline and acetyl-CoA, AChE catalyses ACh's hydrolysis to choline and acetate. 

ChAT enzyme levels have been shown to be reduced by up to 90% in patients with 

severe AD when compared to normal (Giacobini, 2003). AChE on the other hand acts 

to terminate synaptic transmission which was mediated by ACh. These are the two 

factors that cause ACh degeneration in AD patients (Falco et al., 2016; Green et al., 

2005). 

2.1.2(a)(i) Acetylcholinesterase (AChE)  

Acetylcholinesterase (AChE, acetycholine acetylhydrolase, E.C. 3.1.1.7) is a 

serine hydrolase that belongs to the cholinesterase family of proteins (Sussman et al., 

1991). AChE is discovered in many types of conducting tissue. There are nerve and 

muscle, central and peripheral tissues, motor and sensory fibers, and cholinergic and 

noncholinergic fibers. The molecular weight of AChE is 76 kD and is made up of a 

large central β-sheets surrounded by 14 α-helices (Weinstock, 1999). In cholinergic 

hypothesis, it is an enzyme that involved in the breakdown of the neurotransmitter 

acetylcholine (ACh) into acetate acid and choline (McHardy et al., 2017). As AChE 

catalyzes the breakdown of acetylcholine, inhibition of AChE activity has been reported 
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to increase synaptic acetylcholine levels and improve cholinergic function in the brain 

(Bartus et al., 1982; Tabet, 2006). 

2.1.2(a) (ii) Structural and Functional Sites 

The first AChE crystal structure was purified from Torpedo 

californica (TcAChE). It was reported in 1991 (Sussman et al., 1991). The crystal 

structure of AChE from human is later succesfully purified by Kryger et al. in 1999. 

Structurally, AChE contains a long and narrow active-site gorge, about 5 Å wide and 

20 Å deep, that extends from the surface of the enzyme down to the catalytic site. The 

gorge has two distinct ligand binding sites which are the anionic sub-site of the 

catalytic site (CAS), and the peripheral anionic site (PAS). The CAS site which 

contains a catalytic triad (H440-E334-S203) and a key aromatic residue, W86 is 

posited close the bottom of the gorge. The PAS which consists among others of W286 

residue is located close to the entrance of the active-site gorge. In the middle of the 

gorge, a bottleneck formed mainly by the side-chains of F330 and Y124. The middle 

of the gorge is so narrow and only admits passage of a water molecule. Generally, this 

intrinsic property is shared by AChEs from various species.  

The active-site AChE gorge has two additional remarkable features (Sussman 

et al., 1991; Colletier et al., 2006; Kryger et al., 1999). One is that the walls and base 

of the gorge are comprised of aromatic residues. The other characteristic is a 

substantial electrostatic dipole that is properly oriented along the gorge axis and is 

generated by the overall distribution of charge residues across the catalytic region. This 

properties attract positively charged ligands to penetrate into the active site. Research 

has suggested that these two features may work together (Ripoll et al., 1993). The 

dipole acts as a propellant to pull ligands by electrostatic interactions, while the many 
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aromatic groups in the residues act as a cascade of low-affinity binding sites for 

positively charged ligands. Schematic representation of AChE binding sites is shown 

in Figure 2.1.  

 

 

Figure 2.1 Schematic representation of AChE binding sites. 

2.1.2(a) (iii) Function and Mechanism  

Acetylcholinesterase (AChE) is the enzyme that degrades acetylcholine in the 

synaptic cleft at the neuromuscular junction and cholinergic synapses in the central 
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nervous system. The events occurring at the synapse are shown in the Figure 2.2. 

Initially, a nerve impulse from a pre-synaptic neuron will cause the release of the 

neurotransmitter, acetylcholine (ACh) at the synaptic cleft. Acetylcholinesterase at the 

synaptic cleft hydrolyzes and breaks down the neurotransmitter ACh. The breakdown 

product choline is then absorbed by the pre-synaptic neuron to re-synthesize more 

neurotransmitter. When a nerve impulse reaches a cholinergic synapse, vesicles on the 

presynaptic neuron undergo exocytosis thereby releasing ACh into the synaptic cleft. 

On the postsynaptic cholinergic neuron, ACh binds to AChRs (ACh receptors, some 

of which may be ligand-gated ion channels). This will cause the ion channel to open 

and allowing sodium ions to pass. This results in a depolarization of the postsynaptic 

neuron and the continuation of the nerve impulse. Also, AChE is present on the 

postsynaptic neuron, anchored to the cell membrane via a covalently attached 

lipophilic moiety (i.e. phosphatidylinositol). AChEs scavenge and hydrolyze the ACh 

from cholinergic synapses after neurotransmission (Colovic et al., 2013).   

AChE initiates  a nucleophilic attack on the ACh carbonyl carbon, thereby 

acylating the enzyme and releasing four choline as depicted in Figure 2.3. This is 

followed by the hydrolysis of the acyl-enzyme yielding acetic acid and a regenerated 

enzyme (Turgeon, 1998). AChEs are well known to be extremely efficient enzymes 

(Wiener, 2004), for which the speed with which AChE hydrolyzes ACh is well suited 

to the known function of the enzyme. 
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Figure 2.2 Mechanism of AChE meachanism in neurotransmission. 
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Figure 2.3 Schematic diagram of substrate binding to the enzyme AChE at the 
active site of the enzyme (Wiener, 2004). 

 
 
 
2.1.3 Current Drugs Targeting Cholinesterase for AD Treatment 

For more than two decades, the development of potent acetylcholinesterase 

(AChE) inhibitors has been an ongoing task to treat Alzheimer’s diseases. The first 

cholinesterase inhibitor licensed was tacrine. Tacrine was the first molecule to enter 

clinical trials for AD treatment and demonstrated positive effects on memory function 

in young and aged patients. The research on tacrine started in 1984, and the drug was 

approved by the US Food and Drug Administration (FDA) for AD treatment and 

related dementias in 1993. However, tacrine was then withdrawn due to its 

hepatoxicity (Watkins et al., 1994).  

In 1970, physostigmine was developed. Some studies demonstrated that this 

drug provided temporarily moderate relieve in symptoms of AD patients. 

Physostigmine has also proved to stabilize the decline of cognitive function and 

functional ability (van Dyck et al., 2000). Donepezil on the other hand is a new AChE 
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inhibitor which was the second drug approved by FDA in 1996. It is structurally 

different from other cholinesterase inhibitors. It was derived from indanone group of 

compounds and was developed in 1983 by Sugimoto and co-workers at the Eisai 

Research Laboratory in Japan (Sugimoto et al., 2002). It is also a selective reversible 

inhibitor of AChE acting centrally by increasing the bioavailability of acetylcholine at 

the synaptic cleft (Jennifer & Simon, 2016).  

Rivastigmine, known as Exelon® is approved by FDA in 2000. Rivastigmine 

is a pseudo irreversible carbamate-selective inhibitor of AChE and BuChE for the 

treatment of mild-to moderate AD. It was also used for the treatment of mild-moderate 

Parkinson’s dementia (Grossberg & Desai, 2003). In 2006, a selective reversible 

inhibitor of AChE and allosteric modulator of nicotinic cholinergic receptors known 

as galantamine was introduced (Loy & Schneider, 2006).  

Many research have also highlighted a potent, reversible, and selective 

inhibitor of AChE and NMDA receptor antagonist such as Huperzine A. Huperzine A 

is a new alkaloid derived from the Chinese herb Huperzia serrata (Yang et al., 2013). 

Until now, Huperzine A has not yet been recommended for clinical use despite of 

many clinical trials have shown the potential effect of this compound (Li et al., 2008). 

Four approved drugs targeting cholinesterase to treat AD are shown in Figure 2.4.  
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Figure 2.4 AChE inhibiting drugs approved for the treatment of Alzheimer’s 
disease. 

2.2 Molecular Modelling 

Molecular modelling has been called the fourth axis of chemistry where it lies 

somewhere between theory, observation, and experiment. The core of molecular 

modelling is to describe the state and behaviour of molecules through computer 

simulations. Molecular modelling has been applied to various research studies, 

including drug design, computational biology, nanostructures, and material science 

(Pimentel et al., 2013). The advancement of molecular modelling in drug discovery is 

due to these main reasons: explosive growth in the available structures of proteins and 

ligands in the database extracted from X-ray crystallography, nuclear magnetic 

resonance (NMR) and electron microscopy studies, and secondly, substantial advances 

in methodology and software, as well as the availability of massive supercomputers 

(Saxena et al., 2009). In the late 90s, molecular modelling has been introduced as an 
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application of a "computational chemistry" method where International Union of Pure 

and Applied Chemistry (IUPAC) describe it as a molecular element of study made 

practicable via the use of computers (Wermuth et al., 1998). Later, IUPAC defined 

molecular modelling as the study of properties and structure of molecule using 

computational chemistry and graphical visualisation techniques with the goal of 

providing a three-dimensional representation under a given set of conditions (Barreiro 

et al., 2002). Ever since, the growth in software and hardware, along with a continued 

decline in expenditure, have made molecular modelling one of the most promising 

fields of the twenty-first century. 

Briefly, molecular modelling relies on two branches of theories; one is based 

on quantum mechanics (Griffiths, 2005), and the other is based on classical mechanics 

(Burkert & Allinger, 1982). Any sufficiently small molecules must be described by the 

laws of quantum mechanics.  Nonetheless, under the right conditions, it is still 

beneficial to approximate the molecule using classical mechanics. This approach is 

called the '' molecular mechanics'' (MM) or "force-field'' method (Burkert & Allinger, 

1982). All molecular mechanics methods are empirical where the parameters in the 

model are obtained by fitting to known experimental data. Considering these two-

central cores of molecular modelling, molecular mechanics and quantum mechanics 

are briefly introduced below. 

2.2.1 Quantum Mechanical (QM) Methods 

In general, quantum mechanics methods are aimed at solving Schrodinger 

equation which represents the electrons in energy calculation (Szabo & Ostlund, 

1989). To describe the state of a system in quantum mechanics, it was postulated the 
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existence of a coordinate function called a molecular wave function, which is the 

solution of Schrodinger equation as below; 

 
𝐻Ψ = EΨ             2.1 
 

 
where H is the Hamiltonian, a mathematical expression of the energy terms of the 

molecule comprising the potential to kinetic energy of the electron system is particles 

and Ψ molecular wave function described in terms of spatial coordinates of the 

particles constituting the system in a certain state (Foresman & Frisch, 2015). 

There are several computational methods used in the quantum mechanics 

calculation, among them are the density functional theory, ab initio  and semi-

empirical calculation (Johansson et al., 2013). Ab initio calculations implies an 

approach from fundamental physical constants which includes a summation electronic 

population of molecules. This computation is not based on empirical data. This 

category includes Hartree-Fock (HF), configuration interaction (CI), many-body 

perturbation theory (MBPT), coupled-cluster (CC) theory, and other approaches 

(Szabo & Ostlund, 1989). These techniques, most notably Hartree-Fock (HF), utilise 

the whole Schrodinger equation to handle all electrons in a chemical system (Barreiro 

et al., 2002) using sets of basic functions. Additionally, partly polarised basis functions 

have been devised, such as 3-21G*, which is the same minimal 3-21G basis function 

with partial polarisation (Leach, 2001). Ab initio method is more accurate; however, it 

is time consuming and incurs high computation cost. In contrast to ab initio 

procedures, semi-empirical methods involve assessing empirical parameters, such as 

those derived from experimental data such as geometry of equilibrium, heat of 

formation, molecular dipole moment and ionisation potentials. (Barreiro et al., 2002; 

Hehre, 2003). The most often used semi-empirical methods are AM1 (Austin Model 
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1) (Dewar et al., 1985) and PM3 (Parametric Method 3) (Stewart, 1989). Both methods 

employ fairly similar concepts but differ in their parameterization.  

Density Functional Theory (DFT) is the most often employed approach in drug 

design (Szabo & Ostlund,1989). The primary goal is to substitute the wave function 

for the electron density in methods such as the Hartree-Fock. The HF calculations take 

an average electron density into account, whereas the DFT calculations take into 

account the instant interactions between pairs of electrons with opposing spins 

(Foresman & Frisch, 1996). It is a method based on Hohenberg and Kohn's hypothesis, 

according to which all properties of a system are functions of the charge density. The 

density functional's molecular orbital computations are often expressed as a linear 

expansion of atomic orbitals (basis functions), which can be expressed as Gaussian 

type functions, Slater orbitals, or orbital numeric functions (Leach, 2001). These 

models are also applicable to molecules with 50–100 atoms (Hehre, 2003). Because 

the precise function is unknown, a diverse variety of available functions can produce 

different outcomes for the same issue. B3LYP (Becke, Lee, Yang, and Parr) is a 

frequently used hybrid approach in which a portion of the function is derived using 

quantum mechanics (HF combines energy exchange and DFT exchange term) and the 

remaining parts is parameterized (adds functional correlation) (Foresman & Frisch, 

1996). 

A frontier molecular orbital (FMO) theory is introduced by Kenichi Fukui in 

1952.  He published paper in the Journal of Chemical Physics entitled, “A molecular 

theory of reactivity in aromatic hydrocarbons (Fukui et al., 1952). He later shared the 

Nobel Prize in Chemistry with Roald Hoffman for his work on reaction mechanism. 

The FMO theory was initially used to explain the electrophilic substitution in 

naphthalene, but it became gradually clear that the scope of this theory is much 



18 
 

broader. For instance, the concept of frontier orbital symmetries was successfully 

applied to rationalize the outcomes of cycloaddition reactions and other pericyclic 

reactions (Houk, 1975). This theory led to the important aspect of the theory which are 

the effects of the highest occupied and lowest unoccupied molecular orbitals (HOMO 

and LUMO) on reaction mechanisms. According to the theory, the perturbation energy 

of interaction between two molecules mainly comes from the interaction between 

HOMO and LUMO. The energy of the HOMO is linked to the ionization potential and 

characterizes the tendency of the molecule toward attack by electrophiles, while the 

energy of the LUMO is linked to the electron affinity and characterizes the 

susceptibility of the molecule toward attack by nucleophiles. A high HOMO level also 

represents a good nucleophile, alternatively, a lower LUMO level represents a good 

electrophilic compound. If the energy of one molecular is different from another 

molecule, the effect of the interaction gives an energy split. As a result, the smaller the 

energy difference between the two orbitals, the stronger the interaction (HOMO-

LUMO gap) (Heifetz, 2020).  

In the drug design (protein-ligand), the reaction between protein and ligand can 

only happen between the lowest unoccupied molecular orbitals (LUMOs) of a protein 

and the highest occupied molecular orbital (HOMO) of its ligand. The second rule of 

the protein-ligand interactions is that only those residues located in both the LUMOs 

of a protein and a surface pocket of a protein are active residues of the protein and the 

corresponding pocket is the ligand binding site (Pang et al., 2008). Other definitions 

relating LUMO and HOMO energies are the hardness and softness. Hard nucleophiles 

have a low-energy HOMO; soft nucleophiles have a high-energy HOMO; similarly, 

hard electrophiles have a high-energy LUMO; and soft electrophiles have a low-

energy LUMO (Heifetz, 2020).  
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2.2.2 Molecular Mechanical (MM) Methods 

Molecular mechanics (MM) method can be applied if the systems are too large 

to be effectively treated using quantum mechanical methods. MM method can easily 

handle several hundred thousand atoms, and in case of a coarse-grained approach, 

several million atoms (Genheden et al., 2018). Compared with quantum mechanics, 

molecular mechanics ignores electrons in the energy calculation (Leach, 2001).  

Molecular mechanics (MM) (Tsibouklis, 1998) is based on a mathematical 

model of a molecule that consider atoms as sphere and bonds as springs. The concept 

behind MM is to express the energy of a molecule as a function of its resistance toward 

the ability of bonds to stretch, bend and twist as shown in Figure 2.5. The non-bonded 

atoms on the other hand, interact through van der Waals attraction, steric repulsion, 

and electrostatic attraction/repulsion. These properties are easiest to explain 

mathematically when atoms are considered as spheres of characteristic radii. This 

energy equation is also used to achieve the potential energy surface minima 

(Hinchliffe, 2008).  
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Figure 2.5 Representation of bonded and non-bonded interactions used in 

molecular mechanics. 
 
 

In MM, the potential energy is calculated by the summation of the energy terms 

that describe interactions between bonded atoms which are bonds, angles, and torsions. 

The calculation also include the non-bonded interactions, such as van der Waals and 

electrostatic interactions using the following equation, 
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where the bonded terms represent the stretching of bonds (l), bending of valence angles 

(θ) and rotation of torsional angles (ω). Three force 

constants: kl, kθ and Vn characterize the energetic cost relative to the equilibrium value, 

needed to increase the value of a bond length (l0), angle (θ0) or rotation around a torsion 

angle. The torsion term represents a periodic rotation of a dihedral angle with 

periodicity n and phase γ. The non-bonded energy is the sum of repulsion, attraction, 

and electrostatics between non-bonded atoms. The parameter εij is related to the well-

depth of Lennard-Jones (LJ) potential, r0ij is the distance at which the LJ potential has 

its minimum. qi is the partial atomic charge, ε0 is the vacuum permittivity, and rij is the 

distance between atom i and atom j. The Lennard Jones and Coulomb potentials 

describe the short-range non-bonded interactions (Ivanov, 1996; Wang et al., 2020). 

Ewald summation and particle mesh ewald (PME) method were introduced for long 

range electrostatic calculation (Sagui & Darden, 1999). The calculations of potential 

energy via Eq. 2.1 are used to search for local energy minima, to construct and analyze 

multidimensional potential energy surfaces (PES), to follow trajectory of movement 

(in MD, molecular dynamics simulations), or to study averaged thermodynamic and 

geometry characteristics (via MC, Monte Carlo sampling) of the systems (Leszczynski 

et al., 2017). 

2.2.3 Hybrid Quantum Mechanical/Molecular Mechanical (QM/MM) Methods 

Molecular mechanics methods have become a primary tool for computational 

biochemistry nowadays. It allows the modelling of enormous molecules, such as 

protein and DNA, but it is simplified and lacks inaccuracy. Quantum mechanics 

approaches aim to solve Schrodinger equations and be very efficient; however, it is 

also very computationally expensive. As computers powers continue to improve, the 
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optimal method would be one that combined the speed of molecular mechanics and 

quantum mechanics' accuracy by developing QM/MM in solving many biological 

systems (Sabin & Canuto, 2010). A massive step towards this was achieved in 1976 

when two scientists, Arieh Warshel and Michael Levitt, published a paper about 

enzymatic reactions that outlined a new, powerful hybrid tool of QM/MM (Warshel & 

Levitt, 1976). Warshel and Levitt were able to simulate a much larger system in a 

computationally effective way. This was also a groundbreaking achievement in 

molecular modelling as they were awarded the Nobel prize in chemistry in 2013 along 

with Martin Karplus (Fersht, 2013). 

Hybrid QM/MM simulations can be implemented to a large system such as 

protein ligand system by portioning the target problem into two parts. One part of the 

protein/enzyme which are involved in a chemical reaction (catalysis) can be treated 

with QM level simulation. The remaining part of the enzyme which encompasses a 

much larger number of atoms is simulated using MM. QM/MM methodologies are 

different in different ways; (1) the type of scheme used to calculate the QM/MM 

energy; (2) the different boundary regions chosen; (3) how the interaction between the 

QM and MM region is investigated; (4) how an appropriate computational method is 

selected; and (5) how the enzymatic reaction and the associated conformational 

flexibility are tackled (Aminpour et al., 2019). There are advantages and disadvantages 

of QM/MM methods. The most common QM/MM methods are Car–

Parrinello/Molecular Mechanics MD (Car & Parrinello, 1985), empirical valence bond 

(EVB) Method (Warshel & Levitt, 1976), the cluster model (Sousa et al., 2012), and 

QM/MM MD methods. 
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2.3 Computer Aided Drug Design and Virtual Screening  

The process of drug discovery and development is challenging, time-consuming, 

and expensive (Leelananda & Lindert, 2016). Traditionally, drug discovery 

approaches relied on stepwise synthesis and screening of large number of compounds 

to identify the correct solution for a particular disease. Nowadays, scientists are 

combining computer-aided drug design efforts as an initial approach in combining 

chemical and biological space to streamline drug discovery, design, and optimization. 

It is estimated that the time and cost of currently bringing a new drug to market from 

drug discovery vary, but 7-12 years and tens to hundreds of millions of U.S dollars are 

often cited (Sertkaya et al., 2016). In 2020, it was reported that the median cost of 

getting new drug into the market was $985 million, and the average cost was $1.3 

billion (Wouters et al., 2020). It has been estimated that in general five out of 40,000 

compounds tested in animals reach human testing, and only one of five compounds 

reaching clinical studies is approved (Wouters et al., 2020). 



 
 

 

Figure 2.6 Modern drug design development. Each step contains characteristic actions, methods, and tools used. Computer-aided drug design 
can be applied to facilitate drug discovery in the phases denoted with a star (*). 
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