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KAJIAN AKTIVITI PENCEGAHKEMO KANSER BAGI FABRIKASI 

NANOPARTIKEL BERKAPSULKAN TQ DENGAN PF68-PLGA 

TERHADAP TITISAN SEL KANSER PAYUDARA TERPILIH 

ABSTRAK 

Kerintangan ubat ialah halangan utama dalam terapi kanser payudara. Oleh itu, 

beberapa kajian telah dijalankan untuk mengatasi masalah ini dengan menggunakan 

sebatian bioaktif. Thymoquinone (TQ) telah dikaji secara meluas untuk ciri-ciri 

antikansernya. Dalam keadaan klinikal, potensi terapinya belum diterokai kerana 

sifatnya yang tidak stabil. Lantaran itu, objektif kajian ini menyasarkan kepada sintesis 

nanopartikel polimer yang mengandungi TQ untuk mengatasi masalah ini. Tiga jenis 

sel kanser payudara (MCF 7, UACC 732, MDA-MB 231) yang menunjukkan 

kerintangan ubat telah dihasilkan menggunakan kaedah ‘pulse method’. Sintesis 

nanopartikel TQ telah dilakukan dengan menggunakan teknik penyejatan-pelarut 

emulsi (emulsion-solvent evaporation) campuran polimer poly(L-lactide-co-

glycolide)-b-poly(ethylene glycol) dan Pluronics F68. Ciri-ciri nanopartikel TQ ini 

ditentukan menggunakan FTIR, taburan saiz, morfologi, kecekapan enkapsulasi 

(encapsulation efficiency) dan kajian pelepasan (drug release study) TQ. Pengesahan 

indeks rintangan (RI) dilakukan dengan cerakinan MTS, penghasilan P-glycoprotein 

dan kecerakinan pengaliran keluar ubat. Kesan-kesan anticancer nanopartikel TQ-

PLGA-PF68 dikaji menggunakan analisis fungsian, cerakinan TUNEL, qRT-PCR dan 

kaedah Western blot. Saiz nanopartikel TQ-PLGA-PF68 ialah <100 nm, bulat dengan 

pengkapsulan jelas TQ dalam teras berdasarkan pemerhatian FTIR and TEM. Ia 

mempunyai kecekapan pengkapsulan (94%) dan pelepasan TQ >50% dalam keadaan 
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berasid. RI terhadap tamoksifen bagi sel TamR MCF 7 ialah 2.32 kali ganda dan 1.32 

kali ganda pada TamR UACC 732 dan 1.59 kali ganda pada PacR MDA-MB 231 

terhadap paclitaxel. Analisis lanjut telah dilakukan dengan TamR MCF 7 

memandangkan ia kanser payudara paling tersebar luas dan menunjukkan rintangan 

lebih tinggi kepada kemoterapi standard. Cerakinan TUNEL menunjukkan bahawa 

nanopartikel TQ-PLGA-PF68 menggalakkan apoptosis dalam sel TamR MCF 7 

(P<0.0001) dan penghentian kitaran sel di fasa S. Penghasilan P-gp adalah 33 kali 

ganda lebih rendah dalam sel TamR MCF 7 selepas dirawat dengan nanopartikel TQ-

PLGA-PF68 (P<0.05). Ini telah disokong oleh cerakinan pengaliran keluar yang 

menunjukkan pengumpulan intrasel Rhodamine 123 (P<0.05). Analisis sitotoksikan 

menunjukkan perencatan perkembangbiakan sel (nilai IC50=96.34 μg/mL; P<0.05). Ini 

disokong oleh kajian fungsian, di mana perencatan pembentukan koloni (P<0.05) dan 

penghijrahan (P<0.05). Analisis lanjut menunjukkan penurunan dalam ekspresi gen 

yang terlibat dalam kerintangan ubat, mekanisme kitar sel dan apoptosis (ABCG2, 

CYP1A1, CYP2B6, CYPC19, CYP2D6, CYP3A4, CYP3A5, SULT1E1, BRCA1, 

CDKN1A, CDKN2A, EGFR, NF-κB1, SULT1A1, UGT2B1, ABCC2, CDKN1B). 

Analisis KEGG menunjukkan hubungan kepada beberapa jaringan lain yang 

berhubung kait dengan laluan pengisyaratan rintangan (resistance signaling pathway) 

(P<0.05). Analisis proteomik mengesahkan penurunan ekspresi, P-gp (P>0.05) dan 

pengisyaratan hilirnya (downstream signaling) melibatkan protein NF-κB (P>0.05) 

and p21 (P<0.05). Penemuan mencadangkan rawatan menggunakan nanopartikel TQ-

PLGA-PF68 boleh mengurangkan mekanisme-mekanisme kerintangan ubat oleh sel 

kanser payudara dari kumpulan reseptor oestrogen positif. 
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INVESTIGATION ON CANCER CHEMOPREVENTIVE ACTIVITY OF 

FABRICATED TQ ENCAPSULATED PLGA-PF68 NANOPARTICLES ON 

SELECTED BREAST CANCER CELL LINES 

ABSTRACT 

 Drug resistance is remains as a major obstacle in breast cancer therapy. This 

has attracted considerable interest to overcome drug resistance with bioactive 

compounds. Free thymoquinone (TQ) has been extensively studied for its anticancer 

properties. In the clinical setting, its therapeutic potential has not been explored due to 

its volatile nature. Therefore, the study aimed to develop TQ polymeric nanoparticles 

and evaluate its effects on drug resistant breast cancer cells. Development of drug 

resistant breast cancer subtype (MCF 7, UACC 732, MDA-MB 231) were done using 

pulse method. Synthesis of nanoparticles was done by encapsulating TQ with 

polymeric poly(L-lactide-co-glycolide)-b-poly(ethylene glycol) and Pluronics F68 

using emulsion-solvent evaporation technique and characterised using FTIR 

spectroscopic study, size distributions, morphology, entrapment efficiency, and drug 

release study. Confirmation of resistance index (RI) was performed with MTS assay, 

P-glycoprotein expression and efflux assay. Anticancer effects were studied using 

functional analysis, TUNEL assay, qRT-PCR array and Western blot method. Size of 

TQ-PLGA-PF68 nanoparticles was <100 nm, spherical with confirmed encapsulation 

of TQ within core based on FTIR and TEM observation. It had high encapsulation 

(94%) and drug release of >50% at acidic conditions.  RI of TamR MCF 7 cells was 

2.32-fold and 1.32-fold in TamR UACC 732 to tamoxifen and 1.59-fold in PacR 

MDA-MB 231 to paclitaxel. Further analysis was done with TamR MCF 7 as it is the 

most prevalent breast cancer and exhibited higher resistance to standard 
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chemotherapy. TUNEL assay indicated that TQ-PLGA-PF68 nanoparticles induced 

apoptosis in TamR MCF 7 cells was t ime dependant ( P<0.0001) and 

arrest of cells  at  S-phase. P-gp expression was 33-fold lower in TamR MCF 7 cells 

after treatment with TQ-PLGA-PF68 nanoparticles (P<0.05). This was supported by 

efflux assay which exhibited intracellular accumulation of Rhodamine 123 (P<0.05). 

Cytotoxicity analysis exhibited significant inhibition of cell  

proliferation (IC 5 0  value=96.34 μg/mL; P<0.05). This is supported by functional 

study, where inhibition of colony formation (P<0.05) and migration (P<0.05) were 

noted. Further analysis on relative gene expression provides evidence of 

downregulation of genes involved in drug resistance, cell cycle and apoptosis 

mechanisms (ABCG2, CYP1A1, CYP2B6, CYPC19, CYP2D6, CYP3A4, CYP3A5, 

SULT1E1, BRCA1, CDKN1A, CDKN2A, EGFR, NF-κB1, SULT1A1, UGT2B1, 

ABCC2, CDKN1B). KEGG analysis showed link to several resistance signaling 

pathways (P<0.05). Finally, proteomic analysis confirmed the downregulation of P-gp 

(P>0.05) and its downstream signaling involving NF-κB (P>0.05) and p21 proteins 

(P<0.05). Findings suggest TQ-PLGA-PF68 nanoparticles treatment could mitigate 

drug resistant mechanisms of oestrogen receptor positive breast cancer cells. 
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CHAPTER 1  

 

INTRODUCTION 

1.1 Breast Cancer: An Overview 

 Cancer is defined as the unregulated proliferation of cancer cells by dividing 

continuously and have the capability of invading other tissues or organs (Pugazhendhi 

et al., 2018). Cancer can arise almost anywhere in the body. It is characterised as 

carcinoma (originates from the epithelial cells i.e. breast cancer), sarcoma (arise from 

connective tissue i.e. osteosarcoma), lymphoma (originates from the lymph nodes) and 

leukaemia (immature blood cells that grow in the bone marrow) (Zhou et al., 2012). 

 Globally, breast cancer is one of the most common cancer and is the highest 

incidence of cancer-related death among women (Siegel et al., 2018). Breast cancer 

affects more than 2 million women annually. In 2018, it was reported that 627,000 

(15%) women died from breast cancer (WHO, 2018). In Malaysia, breast cancer is the 

most commonly diagnosed cancer among Malaysian women regardless of their 

backgrounds and it is also the main cause of cancer death in Malaysia  women (Bray 

et al., 2018). 

 Breast cancer subtypes are classified based on pathological biomarkers. There 

are four breast cancer subtypes and defined by the expression of oestrogen receptor 

(ER), progesterone receptor (PR) and overexpression of human epidermal growth 

receptor (HER2) as shown in Table 1.1. They are classified into luminal A subtype 

(ER+/PR+/HER2-) that makes up approximately 50-60% of breast cancers which are 

slow-growing and less aggressive (Perou & Borresen-Dale, 2011; Yersal & Barutca, 
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2014; Dai et al., 2017). The luminal B subtype (ER+/PR+/HER2+) represents 15-20% 

of breast cancers and exhibit more aggressive phenotype compared to luminal A 

subtype (Perou & Borresen-Dale, 2011; Yersal & Barutca, 2014; Dai et al., 2017). 

Meanwhile, HER2 positive subtype (ER-/PR-/HER2+) accounts for 15-20% of breast 

cancer subtypes, which are highly invasive and aggressive in terms of biological and 

clinical behaviour (Yersal & Barutca, 2014; Dai et al., 2017; Vernieri et al., 2019). 

While, 10-20% of breast cancer is basal-like, which is referred as triple negative breast 

cancer (TNBC) that ER-, PR-, and does not overexpress HER2 (Perou & Borresen-

Dale, 2011; Dai et al., 2017). Generally, it has the worse prognosis of all sub-types 

(Sprouse & Herbert, 2014). Meanwhile, the Ki-67 is a cell proliferation marker and 

present only during the active phases of the cell cycle. Proliferation is a key feature of 

the progression of tumours (Urruticoechea et al., 2005). High levels of Ki-67 indicate 

cells that are actively proliferating, thus are prone to mutation initiation and expansion. 

In breast cancer, a result of Ki-67 less than 10% is considered low, 10-20% borderline, 

and high if more than 20%.  

 In United States, it was reported that between 2012-2016, the breast cancer 

luminal A subtype is the common subtype with the prevalence of 85 new cases per 

100,000 women (Fallahpour et al., 2017). Meanwhile, an increasing trend is seen in 

Malaysia. The luminal A subtype rate increased by 2% in every five-year cohort, 

where it increased from 54.5% in 1994–1998, to 56.4% in 1999–2003 and 58.4% in 

2004–2008 (Yip et al., 2011). Unlike, the rate of HER2 positive breast cancer which 

remained constant.  
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Table 1.1: 2013 St. Gallen - Breast cancer subtypes classification. 

Subtype Characteristics Medical therapy 

Lumimal A ER                             ++ Endocrine therapy 

 PR                             +  

 HER2                        -  

 Low Ki-67 (<14%)  

Luminal B ER                            + Chemotherapy; 

 PR                            +/- Endocrine therapy; 

 HER2                       +/- Anti-HER2 targeted 

therapy 

 High Ki-67 (>40%)  

HER2-positive ER                             - Chemotherapy; 

 PR                             - Anti-HER2 targeted 

therapy 

 HER2                       ++  

 High Ki-67   

Triple negative ER                             - Chemotherapy 

 PR                             -  

 HER2                        -  

 High Ki-67   

     (Nielsen et al., 2004; Goldhirsch et al., 2011)  

 Several factors may lead to the initiation of breast cancer, such as genetic 

abnormalities that affected the gene expression and mutation of the tumour suppressor 

genes. The oncogenes that are frequently deregulated in breast cancer includes ErbB2, 

PI3KCA, MYC, and CCND1 (encodes cyclin D1) (Lee & Muller, 2012). Occurrence 

of mutations in the tumour suppressor genes BRCA1, BRCA2, and p53 are also 

responsible for development of breast cancer (Lee & Muller, 2012). Mutation in 

oncogenes and in tumour suppressor genes can generate a clonal cell population with 

proliferative characteristics that leads to the induction of cancer (Basu, 2018). 

 Hormonal factor has an  important role in breast cancer and is strongly linked 

with risk of ER positive PR positive breast cancer (Cotterchio et al., 2003; Yue et al., 

2010). Women with increased exposure to oestrogen because of early menarche, late 
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menopause, long-term menopausal oestrogen therapy, and oestradiol (E2) levels have 

higher risk of breast cancer. 

 

1.2 Breast Cancer Treatment 

 A mammary tumour develops when the cells that make up the breast 

tissue replicate abnormally. This caused the complexity of breast cancer mechanisms 

that demands for comprehensive therapies. For patients, treatments rely on the stage 

and subtype. Surgical removal of the tumour is the first choice in treatment of breast 

cancer. Due to this the treatment is done by surgery or radiotherapy. Subsequently, the 

treatment involves chemotherapy and endocrine therapies. This is done to lower the 

risk of relapse and improve overall survival. Meanwhile, the higher classification and 

inoperable tumours are normally treated with chemotherapy. It is addressed as 

neoadjuvant treatment, which aims to reduce the size of the tumours. This will be 

followed by surgical treatment. In breast cancer treatment, type of treatment will be 

based on  the status of the axillary nodes, subtypes and menopausal state  (Wesolowski 

& Ramaswamy, 2011). However, majority of the breast cancer patients would need  

multiple therapies because of  acquired resistance towards chemotherapy, anti-HER2 

therapy and endocrine therapy (Cree & Charlton, 2017). Around 75% of breast cancer 

patients are reported to express oestrogen alpha (ERα) (Piva et al., 2014). Therefore, 

this has led to the strategy of inhibiting oestrogen signalling as a therapeutic approach. 

Despite development of targeted anti-oestrogen therapies for ER positive, 

approximately 30-50% of patients still encounter relapse (Szostakowska et al., 2019). 

Studies have shown that almost 15% of them with  early stage had developed signs of 

recurrence within five years on adjuvant setting with endocrine therapy (Dowsett et 

al., 2012). By 15 years, the recurrence rate was as high as 30% (Dixon, 2014). 
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However, approximately 40% of patients presenting with metastatic ER-positive state 

would eventually develop resistance after 2 years of endocrine therapy (Dixon, 2014). 

 The molecular targeting  of tamoxifen is directed towards  oestrogen receptor 

and is the standard  treatment for patients expressing  ER-positive (Manna & Holz, 

2016). Interestingly, about 10% of patients with ER-negative breast cancers have 

responded to tamoxifen treatment (Manna & Holz, 2016). Numerous reports have 

found a significant fraction of women with ER-negative benefited from tamoxifen 

treatment (Radin & Patel, 2016). 

 For HER2 positive subtype, it has responded well to anti-HER2 therapies 

including trastuzumab and pertuzumab, lapatinib and the antibody-drug conjugate 

trastuzumab emtansine (Rinnerthaler et al., 2019). Despite all these therapies, relapse 

is still reported to occur. This is because the HER2 metastatic ability in distant sites 

can counter the anti-HER2 targeting (Goel et al., 2017; Vernieri et al., 2019). Thus, 

resistance develops eventually, with  primary or acquired resistance to anti-HER2 

therapies is contributing most to the treatment failure (Wang & Dang, 2016; Vernieri 

et al., 2019). 

 On the other hand, triple negative breast cancer (TNBC) is characterised by 

poor survival in comparison to the other breast cancer subtypes mainly due to absence 

of ER, PR and HER2 where targeted therapies towards ER and HER2 are ineffective 

in TNBCs. This subtype shows a higher tendency of relapse particularly in distant 

metastasis (Yuan et al., 2014; Wahba & El-Hadaad, 2015). Moreover, resistance to 

chemotherapy is a major concern as treatment for TNBCs rely entirely on 

chemotherapy as standard of care (Sprouse, 2014; Nedeljković & Damjanović, 2019) 

and the respond of TNBCs towards chemotherapy is  poor (Liedtke et al., 2008). 



6 

Consequently, TNBCs patients often develop resistance (Nedeljković & Damjanović, 

2019). 

 Furthermore, for many women with early breast cancer, breast-conserving 

surgery (BSC) is currently considered the best treatment option, followed by breast 

irradiation as recommended by National Comprehensive Cancer Network (NCCN) 

guidelines. This to destroy cancer cells that may not have been removed in the 

conserved breast tissue to prevent local recurrence and distant metastasis. Studies show 

that women who have BCS followed by radiation therapy have similar long-term 

survival rates as women who have a mastectomy. The likelihood of local relapse after 

breast conservations is low, at roughly 2-3% after 5 years (Nijenhuis & Rutgers, 2013). 

These techniques allow women with different forms of breast cancer to conserve their 

breasts.  

 

1.3 Tamoxifen 

 Tamoxifen (Figure 1.1), a selective oestrogen receptor modulators (SERMs) is 

currently prescribed for ER positive breast cancer (An, 2016). It  was approved by the 

U.S. Food and Drug Administration (FDA) for the treatment of premenopausal women 

suffering from advanced breast cancer (Macgregor & Jordan, 1998; Hultsch, 2018). It  

is also used for treating man with  breast cancer (Eggemann et al., 2019). For the past 

three decades, tamoxifen has been used and significantly improved disease-free 

survival among breast cancer patients (Early Breast Cancer Trials Collaborative 

Group, 1992). Therefore, it has become the main hormonal therapy to prevent relapse 

among patient with ER-positive.  
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Figure 1.1: Chemical structure of tamoxifen. PubChem CID=2733526. 

https://pubchem.ncbi.nlm.nih.gov/compound/Tamoxifen. Created with 

BioRender.com. 

 

1.3.1 Tamoxifen Metabolism  

Tamoxifen is a nonsteroidal triphenylethylene derivative that is metabolised by 

cytochrome P450 (CYP450) to form active metabolites such as 4-hydroxytamoxifen 

(4-OHT) and endoxifen (Figure 1.2). Principally, tamoxifen blocks oestrogen 

signalling in breast cancer cells and thus, inhibit ER activity associated with tumour 

cell growth (Dean, 2012) (Figure 1.3). The 4-OHT and endoxifen exhibit a 10-fold 

higher affinity to ER. They have 30 to 100-fold potency to inhibit cell proliferation of 

estrogen-dependent cells compared to tamoxifen. In fact, level of endoxifen in serum 

is more than 6-fold higher compared to 4-OHT  (Higgins & Stearns, 2010). Thus, this 

provide evidence that endoxifen plays an important role for the activity of tamoxifen  

(Higgins & Stearns, 2010). 
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Figure 1.2: Major metabolic pathways for tamoxifen and the main cytochrome 

P450 (CYP) enzymes involved with the capacity of ER binding. Created with 

BioRender.com.
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Figure 1.3: Schematic diagram shows tamoxifen binding to oestrogen receptor and prevention of oestrogen to its receptor 

(adapted from https://www.riverpharmacy.ca). Created with BioRender.com.
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1.4 Chemoresistance 

Resistance of cancer cell limits the effectiveness of chemotherapy. Cancer may 

be intrinsically drug-resistant or acquired-resistance to chemotherapy during course of 

treatment (Longley & Johnston, 2005; Holohan et al., 2013; Clarke et al., 2015). 

Intrinsic resistance is contributed by pre-existing intracellular resistance-mediating 

factors (Holohan et al., 2013). In contrast, development of acquired drug resistance 

happens during treatment of tumours (Holohan et al., 2013). Additionally, resistance 

can also be acquired through the selection pressure of a resistant population of cells. 

By such pressure it will cause the development of resistant cell population that has the 

ability to cause  recurrence with larger evolvability characteristic (Foo & Michor, 

2014; Sprouse & Herbert, 2014). Therefore, to reduce the incidence of breast cancer 

resistance, new therapy is needed to overcome this challenge.  

 In general, both pharmacokinetic factors and pharmacodynamic properties of 

the drugs have been associated with  the development of drug resistance 

(Asaduzzaman, 2016). Cancer cells may use multiple mechanisms to escape drug 

treatment (Figure 1.4). This includes inadequate access of the drug to the tumour cells 

due to the inhibition of drug uptake (Asaduzzaman, 2016), or more commonly through 

increase of drug efflux (Sprouse, 2014). Proteins that are involved in drug efflux is 

controlled by the overexpression of multidrug efflux pumps such as P-glycoprotein 

(encoded by MDR1), MRP1 (encoded by ABCC1) and ABCG2 (encoded by BCRP) 

(Januchowski et al., 2016; Spitzwieser et al., 2016). Another mechanism to decrease 

the drug uptake is by compartmentalising the drug into intracellular vesicles, thus the 

drug would not be able to reach the target (Lu, 2015). Nevertheless, effect of the drug 

can be modulated by the capability of the cancer cell to repair DNA damage and 

enhance DNA repair mechanism (Zhu et al., 2018). Deregulation of the cancer cell 
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cycle or ability to escape the apoptosis pathway enables the limitless cell division (Thu 

et al., 2018). Recently, alteration of local drug metabolism (reprogrammed 

metabolism) (Hultsch et al., 2018) and detoxification (Cree & Charlton, 2017) were 

reported as characteristics of cancer resistance. 

 

 
 

Figure 1.4: Multiple mechanisms that are involved in the development of 

resistance to therapeutic agents. Created with BioRender.com. 

  

Although endocrine resistance is widely use, between 25-35% of the treated 

patients would develop recurrence. It can be contributed by either intrinsic or acquired 

resistance towards endocrine therapies (Haque & Desai, 2019). Potential mechanisms 

that have been associated with endocrine resistance involve alterations of cell survival 

and cell proliferation (Osborne & Schiff, 2011). Moreover, the acquisition of 

endocrine resistance is manifested by morphological changes that show epithelial- 

mesenchymal transition (EMT) transition along with increased migratory rate in both 
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anti-oestrogen resistant cells (Piggott et al., 2018; Zhu et al., 2018). Besides that, 

resistance to endocrine therapy is exhibited by tumour-inducing cells which is stem-

like protrusions. This features could contribute to disease progression (Brien et al., 

2011; Luqmani & Alam-Eldin, 2016). Endocrine resistance exhibited higher 

expression of cyclin-D1 gene that is involved in cell growth. Additionally it causes the 

activation of CDK4 and CDK6 genes in tandem with high expression of Bcl2 proteins, 

the anti-apoptotic protein (Rudas et al., 2008). Endocrine resistance also modify the 

expression of proteins that are involve in cell cycle such as C-MYC, RB1, p21 and 

P27KIP1 (Thangavel et al., 2011; Dixon, 2014). Besides cell cycle, the other 

mechanism involves ligand binding to growth receptors such EGFR, HER2 and IGF-

1. Activation of the receptors would cause downstream signaling that involved NF-κB 

and PI3K/Akt/mTOR pathway.  

This indicates that, resistant cells have the capability to survive even with 

existing mode of therapies. Therefore, to mitigate resistance to anti-cancer drug, there 

is a pressing need to explore into new drug as an alternative to the current therapies. 

Ongoing clinical trials are venturing new agents to be given along with endocrine 

therapy (Leary et al., 2007; Alfakeeh & Brezden-Masley, 2018). Another possibility 

to overcome drug resistance is by materializing the herbal medicines that confer the 

anti-cancer properties. In addition, the plant-derived compounds have been  the source 

of many chemotherapeutic agents (Mokashi, 2004; Wang et al., 2015). Natural 

compounds like quercetin and curcumin have been used for treatment in clinical trials 

to overcome cancer drug resistance (Sotiropoulou et al., 2014). Some studies have 

reported that alkaloids, flavonoids and other plant compounds could inhibit P-gp when 

given along with chemotherapeutic drugs (Lee et al., 2018). One of the extensively 

studied plant is Nigella sativa, has long been regarded as the most treasured nutrient-
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rich herbs in history around the world and numerous scientific studies are in progress 

to validate the traditionally claimed uses of small seed of this species (Mariod et al., 

2017; Ahmad et al., 2019). 

 

1.5 Nigella sativa 

Nigella sativa L. (N. sativa) is a small shrub (20-90 cm tall) from the family 

Ranunculaceae. It is native plant to Southern Europe, North Africa and Southeast Asia. 

N. sativa has tapering green leaves and rosaceous white, yellow, pink, pale blue or 

purplish flowers with 5-10 petals. The ripe fruit (capsule: 3-7 united follicles) contains 

numerous tiny seeds, dark black in color and possess a severe pungent smell, contains 

considerable amount of oil (Figure 1.5). N. sativa was first botanically described and 

characterized by Linnaeus in 1753 (Table 1.2).  

 

  
 

Figure 1.5:  Nigella sativa flower (A) and black seeds (B). (Adapted from 

http://bioweb.uwlax.edu/bio203/)  
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Table 1.2: Taxonomic group of Nigella sativa (NCBI: txid555479) 

 

Kingdom Plantae 

Order Ranunculales 

Family Ranunculaceae 

Genus Nigella 

Species N. sativa 

 

 

 The black seeds of N. sativa (Ranunculaceae) have been mentioned in many 

historical and religious references. The black seed contains several components of the 

volatile oil including TQ (2-Isopropyl-5-methylbenzo- 1,4-quinone, 30-48%), 

thymohydroquinone, dithymoquinone, p-cymene (7-15%), carvacrol (6-12%), 4-

terpineol (2-7%), t-anethol (1-4%), sesquiterpene longifolene (1-8%), α-pinene and 

thymol (Ali & Blunden, 2003; Islam, 2018). TQ has been reported to exhibit anti-

oxidant (Dur et al., 2016; Imran et al., 2018), anti-inflammatory (Woo et al., 2013; 

Ballout et al., 2018) and  chemo-sensitization effects (Mostofa et al., 2017). The 

antiproliferative effects of TQ have been reviewed by Almajali et al. (2021) in many 

types of cancer, such as breast cancer, lung cancer, gastric cancer, colon cancer, 

prostate cancer, skin cancer, ovarian cancer, liver, cervical cancer and blood cancer. 

Additionally, TQ protects healthy  cells from  oxidative damage, making it an efficient  

chemotherapeutic agent (Ecevit et al., 2017; Mariod et al., 2017). 

 

1.6 Thymoquinone: A Promising Drug for Circumventing Multidrug 

Resistance (MDR) 

TQ, discovered as a substantial component of the volatile oil (hydrophobic 

chemical compounds from plants that can easily evaporate at normal temperatures), is 

the most bioactive chemical and demonstrates a wide range of therapeutic advantages 

among the several active ingredients reported thus far (Mariod et al., 2017). TQ shows 
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potential pharmacological properties such as anti-oxidant, anti-inflammatory, anti-

cancer and other important biological activities (Khan et al., 2011). These 

pharmacological effects of TQ are due to quinine constituent (Figure 1.6). It inhibited 

cancer cell growth and progression based on in vitro and in vivo study models 

(Majdalawieh et al., 2017; Ballout et al., 2018). Moreover, TQ has also been found to 

be cytotoxic in several types of parental and multi-drug resistant human tumour cell 

lines (https://patents.justia.com/patent/6218434, Worthen et al., 1998; Ali & Blunden, 

2003). 

 

Figure 1.6: Chemical structure of TQ. PubChem SID=386221103. 

(https://pubchem.ncbi.nlm.nih.gov/substance/386221103). Created with 

BioRender.com 

 

For instance, TQ treatment showed promising results in doxorubicin-resistant 

human breast cancer cells (Arafa et al., 2011). There was an extensive decrease of the 

cell survival regulators, phosphorylated Akt and Bcl2 along with an increased 

expression of PTEN and apoptotic markers such as Bax, cleaved caspases, and cleaved 

PARP after doxorubicin-resistant MCF-7/DOX cells were exposed to TQ. TQ also 

produced an augmented expression of p53 and p21 proteins with a concomitant G2/M 

arrest in the same cell line.  

Meanwhile, study by Bashmail et al. (2018) had assessed the chemo-

modulatory potential of TQ to gemcitabine (GCB) against human breast 
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adenocarcinoma (MCF-7) and ductal carcinoma (T47D) cells. TQ induced apoptosis, 

necrosis, and autophagy in MCF-7 and T47D breast cancer cells, demonstrating 

cytotoxic effects and promising chemo-modulatory effects to GCB against these breast 

cancer cells, in addition to depleting tumour associated resistant stem cell fraction 

(Bashmail et al., 2018). Although the use of GCB was clinically approved for the 

treatment of metastatic breast cancer since 2004,  it suffers from many drawbacks such 

as lack of selectivity, exaggerated normal tissue toxicity and the emergence of tumour 

resistance (Barton-Burke, 1999; Burstein, 2000) and appear in the form of tumour 

relapse and/or recurrence and remote organ metastasis (Jia & Xie, 2015). Therefore, 

TQ might be able to overcome resistance to GCB and would be a potential successful 

therapy for breast cancer. 

A separate study have demonstrated anti-proliferative and pro-apoptotic 

activities of TQ in both a non-small cell lung cancer (NSCLC) and a small cell lung 

cancer SCLC cell lines (Jafri et al., 2010). It also appears that there may be synergism 

between TQ and cisplatin. This combination was active in vivo as demonstrated by the 

mouse xenograft study. By suppressing NF-κB, TQ may be able to overcome ciplastin 

resistance and enhance its efficacy. Thus, TQ or likely synthetic analogues of TQ 

should be developed for possible future human use not only in lung cancer but in 

possibly other tumour types as well. 

TQ anti-cancer activities have been studied in numerous experimental animal 

models (Khan et al., 2011; Goyal et al., 2017). Although it has been extensively 

studied, its application in clinical setting is still limited due to its poor bioavailability 

and hydrophobicity (Odeh et al., 2012; Ballout et al., 2018) for considering it as the 

primary therapeutic agent. In order to overcome TQ solubility and biodistribution, TQ 
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encapsulation may improve its delivery to the target sites (Ballout et al., 2018) (Figure 

1.7) 
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Figure 1.7: Multitargeted protective effects of TQ mechanism against drug-resistant breast cancer. Created with BioRender.com.
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1.7 Nanoparticulates to Treat Breast Cancer 

 Nanoparticulates have been gaining research interest over the recent years. 

Their application in cancer therapy has given promising findings over existing breast 

cancer therapy that includes surgery, radiotherapy, chemotherapy and hormonal 

therapy (Hortobagyi, 1998). These therapies demonstrate low specificity and side 

effects towards the patients (Adair et al., 2010; Tang et al., 2017). For instance, 

doxorubicin from the family of anthracyclines promotes cardiotoxicity in patients with 

breast cancer (Smith et al., 2010). This is due to the fact that their ability to treat cancer 

is hampered by cumulative dose-dependent cardiotoxicity, which can result in 

irreparable heart failure (Volkova & Russell, 2012; Cai et al., 2019). Studies in cells 

and animals reveal that the mechanism of anthracycline-induced cardiotoxicity (AIC) 

is multifaceted, with free radical generation inducing numerous types of cellular harm 

(Geisberg & Sawyer, 2010; Cai et al., 2019). In addition, anthracyclines alter nucleic 

acid biology by intercalation into DNA and modulate intracellular signaling, leading 

to cell death and the disruption of homeostatic processes such as sarcomere 

maintenance (Rawat et al., 2021). Meanwhile, paclitaxel and docetaxel from the 

family of taxanes caused bone marrow suppression (Nurgalieva et al., 2011) and 

hypersensitivity reactions (Lee et al., 2009) in the breast cancer patients. Compared 

with conventional cancer therapies, nanomedicine has many benefits, as they are less 

prone to drug degradation while being transported. The other advantage includes 

improve biocompatibility and increase delivery of drug to tissues. The ideal 

characteristics of a nanoparticle should comprise various aspects such as non-toxic, 

biocompatible, nano-scale size, encapsulation efficiency, stability, drug release and 

targeting sites (Table 1.3). Nanomedicine also exhibits great potential to effectively 

target and eliminate breast cancer stem cells, which are involved in resistance. List of 
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formulations for breast cancer therapeutics with approval of Food and Drug 

Administration (FDA) and ongoing clinical trials are provided in Table 1.4. The 

liposomes, polymeric nanoparticles and nanoparticle albumin-bound (Nab™)-

paclitaxel are the most common nanoparticles designed to treat breast cancer (Figure 

1.8). 

Table 1.3: Selection criteria for a nanoparticulate-based therapeutic platform. 

 

Desired characteristics Comments 

Inherently nontoxic and biocompatible 

materials 

The initial material selections should be 

based on nontoxic and biocompatible 

materials especially with an aim toward 

human healthcare. 

Small size (10-200 nm) This is a proven range of effective 

particle diameter for a wide variety of 

delivery system. However, there is no 

particular size that seems most 

efficacious, especially for in vivo 

studies.  

Encapsulation of active agent The active agents/drugs must be 

encapsulated within the nanoparticles to 

be protected from unwanted degradation 

or clearance during blood circulation. To 

achieve the therapeutic dosage, the 

nanoparticles must encapsulate a high 

percentage of the active agents/drugs 

(>50%). 

Colloidally stable in physiological 

conditions/environments 

The nanoparticles and surface 

functionalisation should be resistant to 

agglomeration caused by solution Ph 

values, ionic strength, macromolecular 

interactions, and temperature encountered 

in the physiological environment. 

Targeting to cell or tissue of choice Targeting ensures the greatest uptake 

concentration of chemotherapeutics 

within the desired lesions and the least 

side effects with healthy tissues. 

Biologically or extrinsically controlled 

release of active agents 

There should be a trigger mechanism 

such as the acidic Ph within the tumour 

or during endosome maturation to 
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ensure the release of the encapsulated 

drug into the targeted tissues 

Reasonable circulation time Resistance to agglomeration that 

remove the nanoparticle-encapsulated 

drug from the patient must be avoided to 

promote long circulation times in the 

circulatory system for as many of the 

nanoparticles to find and sequester in the 

cancer cells as possible. 

There must be clearance mechanisms for 

the nanoparticle vehicle after 

completing its task, to avoid the 

cumulative and/or systemic side effects 

such as interference with biological 

functions. 

    Adapted with permission from Adair et al. (2010). 
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Table 1.4: List of nanomedicines as breast cancer therapeutics approved by the U.S. FDA and those in clinical trials. 

 

Product Nanoplatform/agent Manufacturer (in USA) Status in USA Reference/Clinical 

trial identifier 

Doxil®  

 

PEGylated liposomal/doxorubicin 

hydrochloride  

Janssen Products Approved in 

1995 

Barenholz, 2012 

Abraxane®  

 

Nanoparticle albumin-bound 

paclitaxel 

Abraxis Bioscience Approved in 

2005 

Hawkins et al., 2008 

Myocet®  Non-PEGylated 

liposomal/doxorubicin 

Sopherion Therapeutics Phase III NCT00294996 

NK-105  PEG-polyaspartate/paclitaxel Nippon Kayaku Phase III NCT01644890 

Genexol® -PM  PEG-poly (D, L-

lactide)/paclitaxel 

Samyang Biopharmaceuticals Phase III NCT00876486 

NK-012  PEG-polyglutamic acid/SN-38 Nippon Kayaku Phase II NCT00951054 

 Xyotax®  Paclitaxel poliglumex Dana-Farber Cancer Institute Phase II NCT00148707 

ThermoDox®  Heat-activated 

liposomal/doxorubicin 

Celsion Phase I/II NCT00826085 

Liposomal annamycin  Liposome/semi-synthetic 

doxorubicin analogue annamycin 

New York University, School 

of Medicine 

Phase I/II NCT00012129 
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Rexin-G  Targeting protein tagged 

phospholipid/microRNA-122 

Epeius Biotechnologies 

 

Phase I/II NCT00505271 

SPI-077  Stealth liposomal cisplatin LiPlasome Pharma Phase I NCT01861496 

S-CKD602  PEGylated liposomal/CKD602 Alza Phase I NCT00177281 

Nanoxel®  
PEG-poly (D, L-lactide)/docetaxel 

PEG-Polylactic-co-glycolic 

Fresenius Kabi Oncology 

 

Phase I NCT00915369 

BIND-014  PEG-Polylactic-co-glycolic 

acid/docetaxel 

BIND 
Phase I NCT01300533 
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Figure 1.8: Nanoparticulate-based chemotherapeutic delivery platforms 

approved by the US FDA for cancer treatment. (A) Liposomes are spherical 

vesicle composed of an aqueous core and a membranous lipid bilayer, preferable 

for encapsulation of hydrophilic drugs; (B) Nanoparticle albumin-bound 

paclitaxel (Nab-paclitaxel) is a colloid suspension of paclitaxel; (C) Polymeric 

nanoparticles are self-assembled from amphiphilic and biodegradable polymers 

in aqueous solution and are effective to encapsulate hydrophobic drugs. Created with 

BioRender.com. 

 


