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PENYELESAIAN GELOMBANG MENJALAR BAHARU UNTUK 

BEBERAPA PERSAMAAN PECAHAN TAK LINEAR MENGIKUT 

PELUASAN KAEDAH PENGEMBANGAN-(𝑮′ 𝑮⁄ ) ASAS 

ABSTRAK 

Disebabkan oleh kepelbagaian dan kepentingan aplikasi persamaan pembezaan 

pecahan tak linear dalam masalah dunia sebenar, wujud keperluan untuk membina 

penyelesaian analitikal yang tepat. Dengan bantuan penyelesaian analitik yang tepat, 

jika wujud, fenomena yang dimodelkan boleh difahami dengan lebih baik. Secara 

umumnya, kelas penyelesaian utama bagi persamaan evolusi (PE) tak linear adalah 

penyelesaian gelombang menjalar. Kaedah pengembangan (𝐺′ 𝐺⁄ ) ialah salah satu 

kaedah yang kerap digunakan untuk membina penyelesaian gelombang menjalar 

kepada beberapa PE tak linear. Objektif tesis ini adalah untuk membina dan 

menggunakan beberapa peluasan kaedah pengembangan (𝐺′ 𝐺⁄ ) yang sediaada untuk 

mendapatkan penyelesaian gelombang bentuk tertutup kepada beberapa persamaan 

pembezaan pecahan tak linear berdasarkan teori gelombang bersendirian dan 

pemetaan ansatz. Peluasan ini merangkumi: kaedah pengembangan-(𝐺′ 𝐺⁄ , 1 𝐺⁄ ), 

kaedah pengembangan-(𝐺′ 𝐺⁄ ) umum dan ditambahbaik, dan kaedah pengembangan 

umum-(𝐺′ 𝐺⁄ ) baru. Melalui peluasan ini, telah ditemui beberapa penyelesaian dan 

ilustrasi penting untuk persamaan pembezaan pecahan yang dipertimbangkan. 

Penyelesaian yang diperoleh terdiri dari parameter tertentu, dan jika parameter 

memberikan nilai tertentu, beberapa penyelesaian yang diperoleh bersamaan dengan 

hasil yang diterbitkan dalam kesusateraan terbuka sebagai kes khas. Sebilangan 

penyelesaian yang diperoleh dapat dilihat dalam bentuk 3D dan 2D dengan bantuan 

perisian algebra komputer Maple 17. Beberapa contoh ujian diberikan untuk 
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menggambarkan kesahihan cadangan peluasan kaedah pengembangan-(𝐺′ 𝐺⁄ ) dan 

perkembangannya. Pecahan tak linear persamaan pembezaan yang dipertimbangkan 

adalah model populasi biologi pecahan masa, persamaan KdV-Zakharov-Kuznetsove 

pecahan masa, persamaan Burgers gandingan pecahan ruang-waktu, persamaan KdV 

terubahsuai pecahan masa, persamaan Whitham-Broer-Kaup gandingan pecahan 

ruang-waktu, persamaan Sharma-Tasso-Olever pecahan masa am dan persamaan 

Klein-Gordon pecahan ruang-waktu. Cadangan pengembangan ini telah berjaya 

digunakan untuk menguraikan persamaan pembezaan separa pecahan tak linear yang 

dinyatakan di atas. sebilangan besar corak gelombang perjalanan serta  digunakan 

untuk mengkaji beberapa jenis persamaan evolusi tak linear lain yang wujud dalam 

sains dan kejuruteraan tak linear yang diminati semasa. Hasil yang diperoleh 

menggunakan tiga peluasan kaedah pengembangan (𝐺′ 𝐺⁄ ) yang ada dan 

perkembangannya dibandingkan dengan beberapa hasil yang diperoleh dalam literatur 

terbuka. Hasil kajian menunjukkan bahawa terdapat penyelesaian gelombang menjalar 

baharu yang dihasilkan termasuk soliton berkala, berpintal, memadat, memuncak, 

bentuk lonceng dan lain-lain. 
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NEW TRAVELING WAVE SOLUTIONS FOR SOME NONLINEAR 

FRACTIONAL DIFFERENTIAL EQUATIONS BY EXTENSIONS OF BASIC 

(𝑮′ 𝑮⁄ )-EXPANSION METHOD 

ABSTRACT 

Due to varied and important applications of nonlinear fractional differential 

equations in real world problems, it is often required to construct their exact analytical 

solutions. With the help of exact analytical solutions, if they exist, the modelled 

phenomena can be better understood. Generally, an important class of solutions of 

nonlinear evolution equations (EEs) is their travelling wave solutions. The (𝐺′ 𝐺⁄ )-

expansion method is one of the more frequently used to construct travelling wave 

solutions to some nonlinear EEs. The objective of this thesis is to establish and put in 

use some extensions of the existing (𝐺′ 𝐺⁄ )-expansion method to obtain closed-form 

wave solutions to some nonlinear fractional differential equations based on solitary 

wave theory and mapping ansatz. The extensions include: (𝐺′ 𝐺⁄ , 1 𝐺⁄ )-expansion 

method, generalized and improved (𝐺′ 𝐺⁄ )-expansion method and new generalized 

(𝐺′ 𝐺⁄ )-expansion method. Through these extensions, it has found some significant 

and illustrative solutions to the considered fractional differential equations. The 

solutions obtained are comprised of certain parameters, and if the parameters assign 

particular values, some of the obtained solutions become identical to published results 

in the open literature as a special case. Some of the solutions obtained are visualized 

in 3D and 2D figures with the aid of computer algebra software Maple 17. Several test 

examples are given for illustrating the validity of these extensions of the (𝐺′ 𝐺⁄ )-

expansion method and its developments. The nonlinear fractional differential 

equations considered are: the time fractional biological population model, the time 



xvii 

fractional KdV-Zakharov-Kuznetsov equation, the space-time fractional coupled 

Burgers equations, the time fractional modified KdV equation, the space-time 

fractional coupled Whitham-Broer-Kaup equations, the general time fractional 

Sharma-Tasso-Olever equation and the space-time fractional Klein-Gordon equation. 

The suggested extensions have successfully been applied to unravel the above stated 

nonlinear fractional partial differential equations. This study also reveals that the 

results obtained can illustrate a large number of traveling wave patterns and can be 

used to study other types of nonlinear evolution equations arise in nonlinear science 

and engineering of current interest. The obtained results, using three existing 

extensions of the (𝐺′ 𝐺⁄ )-expansion method and its developments are compared with 

some obtained results in the open literature. The findings show that new travelling 

wave solutions were generated including, periodic, kink, compacton, cuspon, bell 

shape soliton etc. 
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CHAPTER 1  
 

INTRODUCTION 

1.1 Background 

Fractional calculus is the generalization in the theory of integral and derivative 

of arbitrary order, dated back to 1695 in a discussion between ˆL'Hopital  and Leibnitz. 

Fractional calculus has elicited much interest over the past few decades, and its history 

and development were explored in detail by Miller and Ross (1993), Samko et al. 

(1993) and Podlubny (1998). Nonlinear fractional partial differential equations 

(FPDEs) are defined as a type of equations that utilize fractional derivatives, have 

gained the interest to many scientists due to their applications in various fields of 

science and engineering. Apart from the theoretical aspects, the modelling of nonlinear 

FPDEs has numerous applications and has become a major topic of interest. It is worth 

mentioning that the first application of fractional derivative was presented in 1823 by 

Abel (Oldham and Spanier, 1974; Miller and Ross, 1993), who applied fractional 

derivative to the solution of an integral equation that arises in the formulation of the 

tautochrone problem. This problem deals with the determination of the shape of the 

curve such that the required time of descent of a mass sliding down along the curve 

under the action of gravity with ignoring of the friction is independent of the starting 

position. 

The importance of nonlinear FPDEs arises in wide variety of physical 

problems, such as, fluid dynamics, plasma physics, solid mechanics, optical fiber and 

quantum field theory (Rudolf, 2000; Meerschaert and Tadjeran, 2004; Sabatier et al., 

2007; Gupta, 2016; Bibi et al., 2017; Khater and Kumar, 2017; Khater et al., 2017; 

Mohyud-Din et al., 2017; Akbar et al., 2018; Ellahi et al., 2018; Ferdous and Hafez, 
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2018; Uddin et al., 2019). The analytical solutions of nonlinear FPDEs play an 

important role in understanding and analysing the internal mechanisms of natural 

phenomena (Tang et al., 2012; Zhang et al., 2012; Ahmad and Mohyud-Din, 2014; 

Zhang, 2015; Yaşar and Giresunlu, 2016; Yaşar et al., 2016; Gupta and Ray, 2017; 

Islam et al., 2019). 

1.2 Motivation 

Nonlinear FPDEs are assumed to be the generalized form of classical partial 

differential equations (CPDEs). Many experimental data highlighted that the state of a 

physical phenomenon does not depend only on its current state but also depends on its 

historical states, which can be successfully modelled by using the theory of derivatives 

of fractional order (Guo et al., 2012a; Hesameddini et al., 2016; Mohyud-Din et al., 

2017). 

Wang et al. (2008a) established a method called the (𝐺′ 𝐺⁄ )-expansion method 

for obtaining travelling wave solutions to nonlinear evolution equations (EEs), which 

claims it can be used to solve a wide variety of nonlinear EEs. This thesis is motivated 

by the Wang et al.’s (2008a) leading work, named the basic (𝐺′ 𝐺⁄ )-expansion method. 

In this thesis, we extend the method to examine some nonlinear FPDEs in the sense of 

conformable fractional derivative. The main idea of this method with conformable 

fractional derivative is to express the solution of nonlinear FPDEs by a polynomial in 

(𝐺′ 𝐺⁄ ) where 𝐺 = 𝐺(𝜉) satisfies a second order linear ordinary differential equation 

(ODE) and 𝜉 = 𝐾
𝑥𝛽

𝛽
+ 𝑁

𝑦𝛾

𝛾
+𝑀

𝑧𝛿

𝛿
± 𝐶

𝑡𝛼

𝛼
, where 0 < 𝛼, 𝛽, 𝛾, 𝛿 ≤ 1; 𝐾,𝑁,𝑀 are 

nonzero constants and 𝐶 is the wave speed. The degree of the polynomial can be 

determined by considering the homogeneous balance between highest order 

derivatives and nonlinear terms that appear in nonlinear ODE. The coefficients of the 
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polynomial can be obtained by solving a set of algebraic equations that result from the 

process of using the method (Eslami, 2017; Yaslan and Girgin, 2019). Thus, it has 

been claimed that the (𝐺′ 𝐺⁄ )-expansion method is direct, concise and effective (Bekir 

and Güner, 2013; Bekir and Güner, 2014). The second order linear ODE is known as 

an auxiliary equation. 

Obtaining more travelling wave solutions may assist in providing more 

information for understanding certain complex physical phenomena. To generate more 

travelling wave solutions the basic (𝐺′ 𝐺⁄ )-expansion method can be extended and this 

is the primary focus of this thesis. 

1.3 Problem Statement 

Most of the analytical methods are rather cumbersome and the exact solutions 

procedures become very complex as the degree of nonlinearity increases (Aslan, 

2009). Furthermore, they are applicable only to certain classes of nonlinear FPDEs. 

Therefore, Wang et al. (2008a) established the basic (𝐺′ 𝐺⁄ )-expansion method for 

obtaining travelling wave solutions to nonlinear EEs which can be used to solve wide 

variety of nonlinear FPDEs. Thus, in order to demonstrate the substantiality of the 

basic (𝐺′ 𝐺⁄ )-expansion method, to expand its applicability, and to extend the method, 

this study will introduce further new extensions of the basic (𝐺′ 𝐺⁄ )-expansion 

method. 

1.4 Research Gap 

If the order of the reduced ODE (the ODE found from the PDE by using 

traveling wave variable) is equal to or less than three, it may usually possible to 

establish usable solutions of the resulting algebraic equations using the basic (𝐺′ 𝐺⁄ )-
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expansion approach with the use of symbolic computation software, such as Maple. 

Otherwise, the existence of the solution to the resulting algebraic equations cannot be 

guaranteed. This is due to the fact that the number of equations in the set of algebraic 

equations is usually greater than the number of unknowns. However, there are many 

problems in the real world where the order of modified ODEs is four or greater. In this 

case, sometimes no useful solutions of the algebraic equations can be found to deal 

with such problems. Thus, modification of the existing methods is required. On the 

other hand, each nonlinear equation has its own characteristics physically substantial 

rich structure. Therefore, in order to demonstrate the suitability of a method and to 

expand the range of applicability, further studies should be conducted. 

1.5 Objectives 

The main objective of this thesis is to extend some existing modifications, as 

for instance, the (𝐺′ 𝐺⁄ , 1 𝐺⁄ )-expansion method, generalized and improved (𝐺′ 𝐺⁄ )-

expansion method and new generalized (𝐺′ 𝐺⁄ )-expansion method of the basic 

(𝐺′ 𝐺⁄ )-expansion approach to establish standard and inclusive travelling wave 

solutions to some nonlinear FPDEs in the sense of conformable fractional derivative. 

The secondary aim is, we will further validate three existing extensions of the basic 

(𝐺′ 𝐺⁄ )-expansion method by applying these methods to a number of important 

nonlinear FPDEs for which they have yet to be applied. Therefore, the objectives 

pursued in this study are: 

 To develop and apply new extensions of the basic (𝐺′ 𝐺⁄ )-expansion method 

which can yield further travelling wave solutions for certain nonlinear FPDEs. 
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 To apply certain existing extensions of the basic (𝐺′ 𝐺⁄ )-expansion method to 

nonlinear FPDEs for which they have not been applied and thus validating the 

methods. 

 To perform a comparative study between the travelling wave solutions 

obtained and previous results solved by using other similar approaches. 

 To classify some of the travelling wave solutions obtained into different 

patterns of soliton. 

1.6 Methodology 

The methodology of this study is as follows. Three existing extensions of the 

basic (𝐺′ 𝐺⁄ )-expansion method which are, the (𝐺′ 𝐺⁄ , 1 𝐺⁄ )-expansion method, the 

generalized and improved (𝐺′ 𝐺⁄ )-expansion method and the new generalized (𝐺′ 𝐺⁄ )-

expansion method are applied to solve nonlinear FPDEs for which they have not been 

applied and thus validating the methods. New modifications of these existing 

extensions will be proposed and applied. The extensions, we have established consist 

of the use of different skilled assumption of the solution and compute the travelling 

wave solutions for diverse nonlinear FPDEs. To check that the extensions yield 

realistic results, the travelling wave solutions are compared with those solutions found 

in the literature solved by using other similar approaches. Some of the travelling wave 

solutions will also be classified using techniques that are well-established. 

1.7 Scope of Study 

This study focuses on some existing extensions of the basic (𝐺′ 𝐺⁄ )-expansion 

method. In particular, (𝐺′ 𝐺⁄ , 1 𝐺⁄ )-expansion method, generalized and improved 

(𝐺′ 𝐺⁄ )-expansion method and new generalized (𝐺′ 𝐺⁄ )-expansion method for finding 
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travelling wave solutions of some nonlinear FPDEs which they have not been applied. 

Besides, new extensions of these existing extensions of the basic (𝐺′ 𝐺⁄ )-expansion 

method were proposed and applied to solve certain nonlinear FPDEs. The nonlinear 

FPDEs include: 

 The (2+1)-dimensional time-fractional biological population model, the (3+1)-

dimensional time fractional KdV-Zakharov-Kuznetsove equation and the 

space-time fractional coupled Burgers equations (Chapter 3). 

 The time-fractional modified KdV equation and the space-time fractional 

coupled Whitham-Broer-Kaup equations (Chapter 4). 

 The (2+1)-dimensional time fractional biological population model and the 

(3+1)-dimensional time-fractional KdV-Zakharov-Kuznetsove equation 

(Chapter 5). 

 The general time-fractional Sharma-Tasso-Olever equation and the space-time 

fractional Klein-Gordon equation (Chapter 6). 

 The time fractional modified KdV equation and the space-time fractional 

coupled Whitham-Broer-Kaup equations (Chapter 7). 

 The general time fractional Sharma-Tasso-Olever equation and the space-time 

fractional coupled Burgers equations (Chapter 8). 

1.8 Limitations 

In reality, there is no unique method that can be utilized for investigating all 

types of space-time fractional conformable nonlinear FPDEs. As a result, any change 

made to a certain method at any time allows it to develop some new solutions which 

are always beneficial. There are some limitations depending on the problems of all the 

existing implemented methods and the proposed approaches. When the order of 
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fractional differential equations is higher (greater than four), it is difficult to find the 

solutions and even in some cases, solution is not found. As a result, mathematicians 

are frustrated with their efforts to find solutions to space-time FPDEs. Therefore, 

research on new methods is crucial to recovering exact solutions to the space-time 

conformable FPDEs.   

1.9 Outline of the Thesis 

A description of the chapters contained in this thesis is as follows. In Chapter 

1, the background of this study, the motivation of study, the scope of study, the 

research objectives and the research methodology are described. In Chapter 2, some 

basic concepts which are required in this study will be reviewed. From Chapter 3 to 

Chapter 8, some important nonlinear FPDEs have been investigated by applying 

existing and new extensions of the basic (𝐺′ 𝐺⁄ )-expansion method and the subsequent 

solutions obtained are investigated. 

Chapter 9 consists of the conclusions of the thesis and a discussion of possible 

further works in this field. 



8 

CHAPTER 2  
 

BASIC CONCEPTS AND LITERATURE REVIEW 

2.1 Introduction 

In recent times, nonlinear FPDEs have availed a lot of attention. This interest 

can be attributed to the advancement in the theory of fractional calculus in addition to 

the applications of such constructs in different disciplines such as engineering, physics, 

biology, etc. To improve the understanding of the mechanisms of complex nonlinear 

physical phenomena, and ensure their practical applications, there is a need to develop 

solutions to these equations. Research on travelling wave solutions of nonlinear FPDEs 

plays a significant role in understanding the qualitative and quantitative aspects of 

several phenomena and processes in mathematical physics. In this chapter, we introduce 

the basic concepts of fractional calculus, nonlinear FPDEs and travelling wave solutions 

so as to provide the necessary framework for this thesis. 

2.2 Fractional Calculus 

The fractional calculus involves the integration and differentiation to arbitrary 

(non-integer) order. The original ideas of fractional calculus can be traced back to the 

end of 17th century, the time when the classical differential and integral calculus theories 

were developed by Newton and Leibniz (Diethelm, 2010). Exactly, it was introduced in 

the year of 1695, when ˆL'Hopital  wrote a letter to Leibniz raising the possibility of 

generalizing the meaning of derivatives from integer order to non-integer order (Kilbas 

et al., 2006). Since then, many famous mathematicians have studied this area further, 

creating the field which is known today as fractional calculus. Some definitions of 

fractional integrals and derivatives have been introduced in the next sections. 
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2.2.1 Fractional integrals 

The fractional integrals refer to the integrals of arbitrary order (Podlubny, 1998). 

For a function 𝑓(𝑥), the fractional integral for the order, 𝛼 > 0, can be denoted as: 

𝑐𝐷𝑥
−𝛼𝑓(𝑥) or 𝑐𝐼𝑥

𝛼𝑓(𝑥), 

wherein, 𝑐 and 𝑥 represent the two limits of a fractional integral operator and these are 

generally called as the terminals of the fractional integral (Podlubny, 1998). In 1847, 

Riemann obtained a formula for the fractional integration by applying the Taylor series 

generalization in the following manner: 

𝑐𝐷𝑥
−𝛼𝑓(𝑥) = 𝑐𝐼𝑥

𝛼𝑓(𝑥) =
1

Γ(𝛼)
∫

𝑓(𝑡)

(𝑥−𝑡)1−𝛼
 𝑑𝑡 + 𝜓(𝑥)

𝑥

𝑐
, 𝛼 𝜖 ℝ+,                     (2.1)    

where ℝ+ is the set of positive real numbers, Γ(𝛼) is a gamma function, which is one 

of the fundamental functions of the fractional calculus and 𝜓(𝑥) is a complementary 

function was introduced by Riemann since he did not fix the lower integration limit 𝑐 

(Miller and Ross, 1993). Eq. (2.1) with lower limit 𝑐 = 0 and without a complementary 

function 𝜓(𝑥) is the most common definition of fractional integration today, called the 

Riemann-Liouville fractional integral. Sonin (1869) presented the Riemann-Liouville 

definition in his paper. Furthermore, he used the Cauchy integral formula for the integral 

order derivatives of the complex domain, given by (Weilbeer, 2005). 

𝐷𝑛𝑓(𝑧) =
𝑛!

2 𝜋 𝑖
 ∫

𝑓(𝑡)

(𝑡−𝑧)𝑛+1
 𝑑𝑡

𝑐
.                                                                       (2.2) 

The Riemann-Liouville integral is defined as follows: 

𝑐𝐼𝑥
𝛼𝑓(𝑥) =

1

Γ(𝛼)
∫

𝑓(𝑡)

(𝑥−𝑡)1−𝛼
 𝑑𝑡

𝑥

𝑐
, 𝛼 𝜖 ℝ+.                                                        (2.3) 

Also, the Riemann-Liouville integral can be derived in another way by 

considering the 𝑛-fold for any function ( )f x  as (Dold and Eckmann, 1975): 
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𝑐𝐼𝑥
𝑛𝑓(𝑥) = ∫ 𝑑𝑥1  ∫ 𝑑𝑥2… ∫ 𝑓(𝑥𝑛)

𝑥𝑛−1

𝑐

𝑥1

𝑐
𝑑𝑥𝑛

𝑥

𝑐
.                                          (2.4) 

From Dirichlet’s approach, the 𝑛-fold integral can be considered as a single 

integral 

𝑐𝐼𝑥
𝑛𝑓(𝑥) =

1

(n−1)!
∫

𝑓(𝑥𝑛)

(𝑥−𝑥𝑛)1−𝑛
 𝑑𝑥𝑛

𝑥

𝑐
.                                                              (2.5) 

Eq. (2.5) can be thought as the general formula of Eq. (2.3) by replacing 𝑛 by 𝛼 

and assuming 𝑥𝑛 = 𝑡. 

2.2.2 Fractional derivatives 

The fractional derivatives can be described as the derivatives of arbitrary order. 

On the other hand, the integer order derivatives refer to the order of derivatives that are 

restricted to the positive integers. Therefore, the fractional derivatives are known as the 

generalized form of the integer order derivatives. There are several definitions to the 

fractional derivative of order 𝛼 > 0. The common definition for the fractional 

derivatives of a function 𝑓(𝑡) with lower limit 𝑐 = 0 is the Riemann-Liouville 

definition (Klages et al., 2008). 

𝑐𝐷𝑡
𝛼𝑓(𝑡) =

1

Γ(1−𝛼)

𝑑

𝑑𝑡
∫

𝑓(𝜉)

(𝑡−𝜉)𝛼
 𝑑𝜉

𝑡

0
, 0 < 𝛼 < 1.                                             (2.6) 

The general form of Eq. (2.6) is written in the following manner (Diethelm, 

2010) 

𝑐𝐷𝑡
𝛼𝑓(𝑡) = {

1

Γ(𝑛−𝛼)

𝑑𝑛

𝑑𝑡𝑛
∫

𝑓(𝜉)

(𝑥−𝜉)𝛼+1−𝑛
 𝑑𝜉,   (𝑛 − 1) < 𝛼 < 𝑛

𝑡

𝑐
,   𝑛 𝜖 ℕ,

𝑑𝑛

𝑑𝑡𝑛
𝑓(𝑡),   𝛼 = 𝑛,   𝑛 𝜖 ℕ.

         (2.7) 

Another form of fractional derivative called Jumarie modified Riemann 

Liouville derivative has been proposed, which is given by (Jumarie, 2006): 
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𝐷𝑡
𝛼𝑓(𝑡) = {

1

Γ(1−𝛼)

𝑑

𝑑𝑡
∫

𝑓(𝜉)−𝑓(0)

(𝑡−𝜉)𝛼
 𝑑𝜉,   0 < 𝛼 < 1

𝑡

0
,

(𝑓𝑛(𝑡))
(𝛼−𝑛)

,   𝑛 ≤ 𝛼 < 𝑛 + 1,   𝑛 ≥ 1.
                                   (2.8) 

Recently, Khalil et al. (2014) introduced a new definition of fractional derivative 

called conformable fractional derivative (will be explained at the end of this section), 

which is defined as follows: 

𝑇𝛼(𝑓)(𝑡) = lim
𝜀→0

𝑓(𝑡+𝜀 𝑡1−𝛼)−𝑓(𝑡)

𝜀
,                                                                    (2.9) 

where 𝑓: [0,∞) → ℝ, 𝑡 > 0 and 𝛼 ∈ (0, 1]. 

Some important properties of the conformable fractional derivative are given in 

the following theorems as (Khalil et al., 2014; Abdeljawad, 2015): 

Theorem 2.1: (Khalil et al., 2014; Abdeljawad, 2015) Suppose 𝛼 ∈ (0, 1] and if the 

conformable fractional derivative of functions 𝑔, 𝑓 of order 𝛼 exists at 𝑡 > 0. Then 

i) 𝑇𝛼(𝑎𝑔 + 𝑏𝑓) = 𝑎𝑇𝛼(𝑔) + 𝑏𝑇𝛼(𝑓), ∀𝑎, 𝑏 ∈ ℝ. 

ii) 𝑇𝛼(𝑡
𝜑) = 𝜑𝑡𝜑−𝛼, ∀𝜑 ∈ ℝ. 

iii) 𝑇𝛼(Υ) = 0, ∀ constant functions 𝑔(𝑡) = Υ. 

iv) 𝑇𝛼(𝑔𝑓) = 𝑔𝑇𝛼(𝑓) + 𝑓𝑇𝛼(𝑔). 

v) 𝑇𝛼 (
𝑔

𝑓
) =

𝑓 𝑇𝛼(𝑔)−𝑔 𝑇𝛼(𝑓)

𝑓2
. 

vi) If, furthermore, 𝑔 is differentiable; then 𝑇𝛼(𝑔)(𝑡) = 𝑡
1−𝛼 𝑑

𝑑𝑡
𝑔(𝑡). 

Theorem 2.2: (Khalil et al., 2014; Abdeljawad, 2015) Suppose 𝑔: [0,∞) → ℝ be a 

function such that 𝑔 is differentiable and also the conformable fractional derivative of 

𝑔 of order 𝛼 exists. Let 𝑓 be a function defined in the range of 𝑔 and also differentiable. 

Then 

𝑇𝛼(𝑔𝜊𝑓)(𝑡) = 𝑡
1−𝛼𝑓′(𝑡)𝑔′(𝑓(𝑡)). 
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The conformable fractional derivative is a good tool to model the processes of 

real life problems governed by fractional differential equation. This definition is 

simpler, efficient and also obeys some conventional properties that cannot be satisfied 

by the existing definitions of fractional derivative, for instance the product rule and the 

chain rule (Khalil et al., 2014; Abdeljawad, 2015; Liu, 2015; Eslami and Rezazadeh, 

2016; Eslami, 2017). 

2.3 Nonlinear Fractional Partial Differential Equations  

Nonlinear FPDEs have become a useful tool for depicting the inner mechanisms 

of the incidents of the real world. In the last two decades, much attention to nonlinear 

FPDEs has been paid due to their recurrent applications in the area of physics and 

nonlinear science (Miller and Ross, 1993; Podlubny, 1998; Kilbas et al., 2006). 

Therefore, seeking analytical solutions to nonlinear FPDEs play an important role in 

understanding the qualitative as well as quantitative features of many nonlinear 

phenomena and processes in various areas, such as fluid dynamics, nonlinear optics, 

solid mechanics, plasma physics, and quantum field theory. 

Selected nonlinear FPDEs which have been considered in this study are: 

 The time fractional modified Korteweg-de-Vries (MKdV) equation. 

 The general time fractional Sharma-Tasso-Olver (STO) equation. 

 The space-time fractional Klein-Gordon (KG) equation. 

 The systems of nonlinear FPDEs: 

(i) The space-time fractional coupled Burgers (CB) equations. 

(ii) The space-time fractional coupled Whitham-Broer-Kaup (CWBK) 

equations. 

 The higher dimensional nonlinear time FPDEs: 
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(i) The (2+1)-dimensional time fractional biological population (BP) 

model. 

(ii) The (3+1)-dimensional time fractional KdV-Zakharov-Kuznetsov 

(KdV-ZK) equation. 

The nonlinear EEs are very important in several scientific and engineering 

fields, such as solid state physics (Eilenberger, 1981), fluid mechanics (Whitham, 

1974), plasma physics (Hasegawa, 2012) etc. The upcoming sections will discuss the 

specific nonlinear fractional equations mentioned above. 

2.3.1 The modified Korteweg-de Vries equation with time fractional 

derivative 

In 1895, Diderik Johanes Korteweg and Gustav de Vries derived the KdV 

equation (Korteweg and De Vries, 1895) to describe shallow water waves of long wave 

length and small amplitude. The canonical KdV equation is a nonlinear dispersive 

equation of third-order. However, the KdV equations appear in third, fifth, seventh or 

higher order forms. 

One of the well-known third-order KdV equations is the modified KdV (MKdV) 

equation. The MKdV equation with time fractional order is (Sahoo and Ray, 2016; 

Akbulut and Taşcan, 2017): 

𝐷𝑡
𝛼𝑢 + 𝑎 𝑢2𝑢𝑥 + 𝑏 𝑢𝑥𝑥𝑥 = 0, 0 < 𝛼 ≤ 1,                                                 (2.10) 

where 𝛼 describes the order of the fractional time derivative and 𝑎, 𝑏 are arbitrary 

constants. The MKdV equation is derived by perturbation expansions based on the 

assumption that the soliton width is small compared with the scale length of the plasma 

inhomogeneity. In this assumption, soliton maintains all of its identities, such as, 
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amplitude, width and speed. The MKdV equation appears in applications such as 

electric circuits and multi-component plasmas, electromagnetic waves in size quantized 

films, elastic media, electrodynamics and traffic flow (Wazwaz, 2010). The MKdV 

equation is also used to represent physical models in various physical phenomena, such 

as to describe the dipole blocking, ion acoustic waves in a magnetized plasma, in the 

issues of atmospheric blocking phenomenon and study of coastal waves in ocean 

(Watanabe, 1984; Ya-Xuan et al., 2005; Xiao-Yan et al., 2006; Biswas, 2009; Johnpillai 

et al., 2011; Mousavian et al.,2011; Bulut, 2014). The third-order time-fractional MKdV 

equation has been studied by many researchers. For example, Abdulaziz et al. (2009) 

executed the homotopy perturbation method for this equation to establish approximate 

analytical solutions, whereas Song and Wang (2010) constructed approximate solutions 

of the same equation by using the enhanced Adomian decomposition method. Bulut et 

al. (2014) implemented the generalized Kudryashov method to obtain exact solutions 

of the same equation while Sahoo and Ray (2016) studied this equation and obtained 

travelling wave solutions via the basic (𝐺′ 𝐺⁄ ) method and improved (𝐺′ 𝐺⁄ )-expansion 

method. 

2.3.2 The general time fractional Sharma-Tasso-Olver equation 

The general Sharma-Tasso-Olver (STO) equation is an important nonlinear EE 

which plays a crucial role both in physics and applied mathematics. 

The general time fractional STO equation is of the form: 

𝐷𝑡
𝛼𝑢 + 3𝑏(𝑢𝑥)

2 + 3𝑏𝑢2𝑢𝑥 + 3𝑏𝑢𝑢𝑥𝑥 + 𝑏𝑢𝑥𝑥𝑥 = 0, 𝑡 > 0, 0 < 𝛼 ≤ 1,  (2.11) 

where 𝑏 is arbitrary constant and 𝑢 = 𝑢(𝑥, 𝑡) is an unrevealed function. This equation 

is used to investigate the fission and fusion phenomena for solitons, quantum relativistic 
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atom theory, electromagnetic interactions and the relativistic energy-momentum 

relation in mathematical physics and engineering (Uddin et al., 2019). Many researchers 

investigated the general time-fractional STO equation using different techniques. For 

instance, Bibi et al. (2017) used the Khater technique to establish exact solutions to this 

equation. Roy et al. (2018) implemented the new generalized (𝐺′ 𝐺⁄ )-expansion method 

to obtain travelling wave solutions of the same equation whilst Uddin et al. (2019) 

studied this equation and obtained travelling wave solutions via double (𝐺′ 𝐺⁄ , 1 𝐺⁄ )-

expansion method. 

2.3.3 The space-time fractional Klein-Gordon equation 

In 1926, the Klein-Gordon (KG) equation was named by the physicists Oskar 

Klein and Walter Gordon after they proposed that it describes relativistic electrons. The 

KG equation correctly describes the spinless relativistic composite particles, like the 

pion and plays a significant role in several real world applications, for instance, the 

nonlinear optics, solid-state physics and quantum field theory (Wazwaz, 2005; 

Wazwaz, 2008). 

The KG equation with space-time fractional derivative is (Shallal et al., 2018) 

𝐷𝑡
2𝛼𝑢 − 𝐷𝑥

2𝛼𝑢 − 𝜔𝑢 − 𝑒𝑢3 = 0, 0 < 𝛼 ≤ 1,                                            (2.12) 

where 𝜔 and 𝑒 are nonzero constants and 𝑢 = 𝑢(𝑥, 𝑡) is an unknown function. Many 

researchers used a variety of approaches to look into the space-time fractional KG 

equation. For illustration, Yaşar and Giresunlu (2016) used the (𝐺′ 𝐺⁄ , 1 𝐺⁄ )-expansion 

method to establish exact solutions of this equation whilst Shallal et al. (2018) 

functioning the modified extended tanh method for obtaining travelling wave solutions 

for the same equation. 
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2.3.4 The systems of nonlinear FPDEs 

Many phenomena cannot be easily described by a single nonlinear FPDEs. To 

describe them accurately, we have to construct and study systems of nonlinear FPDEs. 

Moreover, coupled systems of fractional order are amongst the strongest tools of 

modern mathematics as they play a key role in developing differential models for high 

complication systems. So, the study of coupled systems of fractional order are 

significant because this kind of systems appears in many scientific applications and 

physical phenomena (Ahmad and Nieto, 2009; Su, 2009; Wang et al., 2010; Sun et al., 

2012). In this thesis, we will put in use the space-time fractional coupled Burgers (CB) 

equations (Bekir and Güner, 2014; Islam and Akbar, 2018) given by: 

𝐷𝑡
𝛼𝑢 − 𝐷𝑥

2𝛼𝑢 + 2𝑢𝐷𝑥
𝛼𝑢 + 𝑝𝐷𝑥

𝛼(𝑢𝑣) = 0,                                                  (2.13) 

𝐷𝑡
𝛼𝑣 − 𝐷𝑥

2𝛼𝑣 + 2𝑣𝐷𝑥
𝛼𝑣 + 𝑞𝐷𝑥

𝛼(𝑢𝑣) = 0,                                                   (2.14) 

where 0 < 𝛼 ≤ 1, 𝑢 = 𝑢(𝑥, 𝑡) and 𝑣 = 𝑣(𝑥, 𝑡). 

The study to CB equations is very significant, since the system is a simple model 

of sedimentation or evolution of scaled volume concentrations of two kinds of particles 

in fluid suspensions or colloids, under the effect of gravity (Nee and Duan, 1998). The 

constants 𝑝 and 𝑞 depend on the system parameters such as the Stokes velocity of 

particles due to gravity and the Brownian diffusivity. The CB equations with space and 

time-fractional derivative have been studied by many researchers. As for instance, Zhao 

et al. (2012) executed the extended fractional sub-equation method for this system of 

equations to establish analytical solutions. Bekir and Güner (2014) constructed exact 

solutions of the same system by using the basic (𝐺′ 𝐺⁄ ) method, whereas Islam and 

Akbar (2018) studied this system of equations and obtained exact wave solutions via 

the new generalized (𝐺′ 𝐺⁄ )-expansion method. 
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We will also investigate the coupled Whitham-Broer-Kaup (CWBK) equations 

of space-time fractional order (Bekir and Güner, 2013): 

𝐷𝑡
𝛼𝑢 + 𝑢𝐷𝑥

𝛼𝑢 + 𝐷𝑥
𝛼𝑣 + 𝑝𝐷𝑥

2𝛼𝑢 = 0,                                                          (2.15) 

𝐷𝑡
𝛼𝑣 + 𝐷𝑥

𝛼(𝑢𝑣) − 𝑝𝐷𝑥
2𝛼𝑣 + 𝑞𝐷𝑥

3𝛼𝑢 = 0,                                                   (2.16) 

where 0 < 𝛼 ≤ 1 represents the order of the fractional space-time derivative. 

In this coupled system, the field of horizontal velocity is represented by 𝑢 =

𝑢(𝑥, 𝑡), 𝑣 = 𝑣(𝑥, 𝑡), which is the height that deviate from equilibrium position of liquid 

and the constants 𝑝, 𝑞 are represented in different diffusion power (Kupershmidt, 1985). 

As it is known, the CWBK equations, originally introduced by Whitham (1967), Broer 

(1975) and Kaup (1975) describe the propagation of shallow water waves with different 

dispersion relations. Furthermore, shallow water in porous medium, which is used to 

absorb wave energy and prevent tsunami is also described by the CWBK equations of 

fractional order (Wang et al., 2017). Many researchers studied this system by using 

different methods. For example, Guo et al. (2012a) utilized an improved fractional sub-

equation method to solve this system. Lu (2012a) solved the same system by the 

Bäcklund transformation while Bekir and Güner (2013) investigated this system via the 

basic (𝐺′ 𝐺⁄ )-expansion method. 

2.3.5 The Higher-dimensional Nonlinear FPDEs 

The higher dimensional nonlinear FPDEs are widely used to describe natural 

complex phenomena in various field of the real world, especially plasma physics, 

quantum field theory, nonlinear optics and many others (Sahoo and Ray, 2015). Many 

engineering phenomenon are being modelled by applying high-dimensional FPDEs, see 

for example (Flik et al., 1992; Wheatcraft and Meerschaert, 2008; Ghazizadeh and 
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Maerefat, 2010). Due to important applications of higher-dimensional fractional 

equations in science and engineering, it is essential to obtain their travelling wave 

solutions. 

The time fractional biological population (BP) model is one of the higher 

dimensional equations (Bekir and Güner, 2013) 

𝐷𝑡
𝛼𝑢 − (𝑢2)𝑥𝑥 − (𝑢

2)𝑦𝑦 − ℎ(𝑢
2 − 𝑟) = 0,   0 < 𝛼 ≤ 1,                           (2.17) 

where ℎ and 𝑟 are constants, u  represents the population density and ℎ(𝑢2 − 𝑟) 

represents the population supply due to births and deaths. A BP model is a mathematical 

model, which helps us to understand the dynamical procedure of population changes 

and provides valuable predictions. Most of the earth’s processes affect human life. 

Procedures in population modelling have significantly enhanced our understanding of 

biology and the natural world. Diverse researchers have investigated the (2+1)-

dimensional BP model of time-fractional order by different methods. For instance, El-

Sayed et al. (2009) implemented the Adomian decomposition method to investigate this 

model. Zhang and Zhang (2011) assessed the same model via the fractional sub-

equation method. Lu (2012a) studied the same model by using the Bäcklund 

transformation of fractional Riccati equation whilst Bekir and Güner (2013) 

investigated this model via the basic (𝐺′ 𝐺⁄ )-expansion method. 

In this thesis, we also study, the (3+1)-dimensional time fractional KdV-

Zakharov-Kuznetsov (KdV-ZK) equation 

𝐷𝑡
𝛼𝑢 + 𝑎𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 + 𝑏(𝑢𝑦𝑦𝑥 + 𝑢𝑧𝑧𝑥) = 0,                                             (2.18) 

where 0 < 𝛼 ≤ 1 and 𝑎, 𝑏 are arbitrary constants. 

It is well known that the KdV equation arises as a model for one-dimensional 

long wavelength surface waves propagating in weakly nonlinear dispersive media as 



19 

well as the evolution of weakly nonlinear ion acoustic waves in plasmas (El-Tantawy 

and Moslem, 2014). There are several weakly two-dimensional variations on the KdV 

equation. The Zakharov-Kuznetsov (ZK) equation is one of two well-studied canonical 

two-dimensional extensions of the KdV equation (Kadomtsev and Petviashvili, 1970). 

In the recent past, Guo et al (2012b) derived the (3+1)-dimensional variable coefficient 

cylindrical KdV equation describing the nonlinear propagation of dust acoustic waves. 

By considering this, the (3+1)-dimensional KdV-ZK equation is derived for a plasma 

comprised of cool and hot electrons and a species of fluid ions (Mace and Hellberg, 

2001). Diverse researchers studied this model by using different methods. For example, 

Sahoo and Ray (2015) utilized the improved fractional sub-equation method to examine 

this equation. Kaplan and Bekir (2016) studied the same equation by the exp(−𝜙(𝜉)) 

method, whilst Unsal et al. (2017) investigated this equation via the basic (𝐺′ 𝐺⁄ ) 

method. 

2.4 Travelling Wave Solutions 

Travelling wave is a wave in which the medium moves in the direction of 

propagation of the wave. A special type of travelling wave solutions of nonlinear FPDEs 

is classified as solitary wave solutions. A travelling wave solution is a solution of 

permanent form moving with a constant velocity. Travelling wave solutions are able to 

describe various type of phenomena in nature, as for instance, vibrations, solitons and 

propagation with a finite speed. Thus, they can be utilized to give more insight into the 

physical aspects of certain problems. To understand the occurrence of travelling wave 

solutions, mathematical dealings have been used to describe the travelling wave 

function in the form of 𝑢(𝑥, 𝑡) = 𝑓(𝑥 − 𝐶𝑡) where 𝐶 is the speed of the wave 

propagation. The travelling wave solutions are usually constructed by reducing the 
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nonlinear EEs to the associated ODEs (Wazwaz, 2010; Gepreel and Omran, 2012; Chen 

and Jiang, 2018). 

For generating travelling wave solutions, we need to convert nonlinear EEs into 

ODEs with the travelling wave transformation. The travelling wave transformation is 

represented by the form (Wang et al., 2008a): 

𝑢(𝑥, 𝑡) = 𝑢(𝜉),   𝜉 = 𝑥 ± 𝐶𝑡, 

where 𝐶 describes the speed of the wave propagation and 𝑢(𝑥, 𝑡) represents the wave 

disturbance moving in the negative or positive 𝑥-direction (i.e., if 𝜉 = 𝑥 − 𝐶𝑡, the wave 

moves in the positive 𝑥-direction, whereas the wave moves in the negative 𝑥-direction 

for 𝜉 = 𝑥 + 𝐶𝑡) (Wazwaz, 2010). 

  

Figure 2.1 Travelling wave of 

|𝑣31(𝑥, 𝑡)| for 𝜆 = −1, 𝜇 = 1, 𝐾 = 1,

𝐴2 = −0.5, 𝛼 = 0.9 with −7 ≤ 𝑥 ≤ 7 

and 0.1 ≤ 𝑡 ≤ 2, 𝜉 = 𝐾
𝑥𝛼

𝛼
− 𝐶

𝑡𝛼

𝛼
   

Figure 2.2 Travelling wave of 

|𝑣31(𝑥, 𝑡)| for 𝜆 = −1, 𝜇 = 1, 𝐾 = 1,

𝐴2 = −0.5, 𝛼 = 0.9 with −7 ≤ 𝑥 ≤ 7 

and 0.1 ≤ 𝑡 ≤ 2, 𝜉 = 𝐾
𝑥𝛼

𝛼
+ 𝐶

𝑡𝛼

𝛼
   

 

 

Fig. 2.1 and Fig. 2.2 show the solution of the CB equations with space-time 

fractional derivative by considering solution 𝑣31 which is described in subsection 3.5.1 

of section 3.5 of this thesis. In addition, in Fig. 2.1, the travelling wave moves in the 

positive 𝑥-direction, because 𝜉 = 𝐾
𝑥𝛼

𝛼
− 𝐶

𝑡𝛼

𝛼
 and Fig. 2.2 shows that the travelling 

wave moves in the negative 𝑥-direction due to 𝜉 = 𝐾
𝑥𝛼

𝛼
+ 𝐶

𝑡𝛼

𝛼
. 
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2.5 Classification of Travelling Wave Solutions 

There are many types of travelling wave solutions and we will introduce the 

types in this section. 

2.5.1 Solitary waves and solitons 

In 1834, John Scott Russell was the first who observe the solitary waves and he 

empirically derived the relation (Scott-Russell, 1844): 

𝐶2 = 𝑔(𝑙 + 𝑠), 

where 𝐶 is the solitary wave speed, 𝑠 is the maximum amplitude above the water 

surface, 𝑙 is the finite depth of the ocean and 𝑔 is the acceleration of gravity. 

The solitary wave can be defined as waves which are stable and can travel over 

very large distance with constant shape neither decreasing in amplitude nor breaking 

waves in water. The speed of the wave depends on the height of the wave (Zabusky and 

Kruskal, 1965). Solitary waves do not follow superposition rule. For example: when a 

taller (faster) wave overtakes a shorter (slower) wave, they do not combine and come 

together. They appear to exchange places with the faster wave jump through to a slower 

one. 

As per elastic scattering property (Wazwaz, 2010) soliton is a form of solitary 

waves. Even after colliding with each other they tend to keep their original form and 

speed. They are seen in various physical phenomena. A soliton can be described in Fig. 

2.3 as a bell-shaped sech2 in which soliton solution is characterized by infinite tails or 

infinite wings. The solution 
1

2
sech2 (𝑥 + 𝑦 −

7

150
), from Chapter 3 (the (3+1)-

dimensional time fractional KdV-ZK) is displayed in Fig. 2.3 with −3 ≤ 𝑥, 𝑦 ≤ 3. 
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Figure 2.3 Bell-shape soliton 

 

2.5.2 Periodic Solitons 

Periodic soliton is one sort of travelling wave (Wazwaz, 2010). Trigonometric 

functions are periodic. The shape of periodic soliton is presented in Fig. 2.4 for 

|𝑢41(𝑥, 𝑦, 𝑡)| which will be further discussed in Chapter 3 (the (2+1)-dimensional time 

fractional BP) of this thesis. 

 

Figure 2.4 Periodic soliton 

2.5.3 Kink Waves 

Kink waves are a type of travelling waves, which go up or down from one 

asymptotic position to another. (Wazwaz, 2006; Wazwaz, 2010). Kink waves shown in 

Fig. 2.5 of 𝑢12(𝑥, 𝑡), which will be further discussed in section 4.3 of this thesis. 
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Figure 2.5 Kink wave 

 

2.5.4 Cuspon 

Cuspons are also another form of solitons where solutions represent cusps at 

their crests. Cuspons are classified as periodic cuspon and cuspon with exponential 

decay (Parkes and Vakhnenko, 2005). Cuspon is depicted in Fig. 2.6 of |𝑢3(𝑥, 𝑦, 𝑧, 𝑡)|. 

Solution 𝑢3 will be further discussed in section 3.4 of this thesis. 

 

Figure 2.6 Cuspon 

 

2.5.5 Compacton 

Compactons are also solitons with finite wave length and solitary waves with 

compact support (Rosenau and Hyman, 1993). Compactons are solitons characterized 

by the absence of the infinite tails or wings where width narrows as the amplitude 
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increases and the width of the compacton is independent of the amplitude. Compacton 

is described in Fig. 2.7 of 𝑢12(𝑥, 𝑦, 𝑧, 𝑡). Solution 𝑢12 has been taken for compacton 

from section 5.4 of this thesis. 

 

Figure 2.7 Compacton 

 

2.6 Literature Review 

In the last few years, analytical methods were proposed to obtain exact solutions 

of nonlinear FPDEs. In this chapter, we review the literature on the basic (𝐺′ 𝐺⁄ )-

expansion method and its applications to some nonlinear FPDEs. Also, we discuss some 

of the important extensions of this method. 

2.6.1 Analytical Methods 

Numerous physical and engineering problems are modelled by differential 

equations. In many cases, the solutions of these problems are difficult to obtain due to 

their nonlinear arrangement. Thus, the numerical methods are introduced to find the 

approximate solutions of nonlinear differential equations. Nevertheless, numerical 

solutions do not explicitly depict the nature of the physical systems and are inadequate 

in determining the general properties of certain system of equations. Due to these major 

reasons, a wide range of analytical methods have been established for solving the 


