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PERIHAL PENYELESAIAN BEBERAPA PERSAMAAN DIOPHANTINE

BERBENTUK ax +by = z2

ABSTRAK

Persamaan Diophantine ax + py = z2 yang mana p adalah nombor perdana banyak

dikaji oleh ahli matematik. Menyelesaikan persamaan jenis ini sering merangkumi

Konjektur Catalan dalam proses pembuktian. Di sini, kami mengkaji penyelesaian

integer bukan negatif untuk beberapa persamaan Diophantine dari keluarga yang sa-

ma. Kami akan menggunakan teorem Mihailescu (yang merupakan pembuktian kepa-

da konjektur Catalan) dan kaedah asas untuk menyelesaikan persamaan Diophantine

16x � 7y = z2, 16x � py = z2 dan 64x � py = z2, kemudian kami akan mengkaji suatu

generalisasi yang mana (4n)x � py = z2 dan x,y,z,n adalah bukan integer negatif. Se-

terusnya, dengan menggunakan teorem Mihailescu dan pendekatan asas dalam teori

nombor, iaitu teori kongruen, kami akan menentukan penyelesaian persamaan Dio-

phantine 7x +11y = z2, 13x +17y = z2, 15x +17y = z2 dan 2x +257y = z2 yang mana

x,y dan z adalah integer bukan negatif. Kami juga akan membuktikan bahawa seba-

rang nombor bulat bukan negatif n, semua penyelesaian integer bukan negatif daripada

persamaan Diophantine 11n8x+11y = z2 adalah dalam bentuk (x,y,z) = (1,n,3(11)
n
2 )

dengan n genap dan ia tidak mempunyai penyelesaian jika n ganjil. Akhirnya, kami

akan menumpukan perhatian untuk mencari penyelesaian kepada persamaan Diophan-

tine 3x + pmny = z2 yang mana y = 1,2 dan p > 3 adalah nombor perdana.
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ON THE SOLVABILITY OF SOME DIOPHANTINE EQUATIONS OF THE

FORM ax +by = z2

ABSTRACT

The Diophantine equation ax+ py = z2 where p is prime is widely studied by many

mathematicians. Solving equations of this type often include Catalan’s conjecture in

the process of proving these equations. Here, we study the non-negative integer solu-

tions for some Diophantine equations of such family. We will use Mihailescu’s theo-

rem (which is the proof of Catalan’s conjecture) and elementary methods to solve the

Diophantine equations 16x � 7y = z2, 16x � py = z2 and 64x � py = z2, then we will

study a generalization where (4n)x � py = z2 and x,y,z,n are non-negative integers.

By using Mihailescu’s theorem and a fundamental approach in the theory of numbers,

namely the theory of congruence, we will determine the solution of the Diophantine

equations 7x +11y = z2, 13x +17y = z2, 15x +17y = z2 and 2x +257y = z2 where x,y

and z are non-negative integers. Also, we will prove that for any non-negative integer

n, all non-negative integer solutions of the Diophantine equation 11n8x +11y = z2 are

of the form (x,y,z) = (1,n,3(11)
n
2 ) where n is even, and has no solution when n is

odd. Finally, we will concentrate on finding the solutions of the Diophantine equation

3x + pmny = z2 where y = 1,2 and p > 3 a prime number.

viii



CHAPTER 1

INTRODUCTION

1.1 Introduction to Diophantine Equations

The study of Diophantine equations is the study of integer and rational number

solutions to systems of equations or polynomial equations. It has its origins in ancient

Babylonian, Egyptian, and Greek writings, making it one of the earliest branches of

number theory, if not all of mathematics.

The "Father of Algebra" Diophantus (Heath, 1910) is best known for his book

Arithmetica, which deals with solving algebraic equations and number theory. How-

ever, only very few pieces of information are known about his life, and there has been

significant controversy about the exact years he lived, but it is known that he lived

in the 3rd century. Diophantus did mention the definition of a polygonal number from

Hypsicles’ work, which was written before 150 BCE, therefore we can assume he lived

beyond that era (Bashmakova and Silverman, 1997).

One of the great things that Diophantus contributied to mathematics is that he was

the first to use symbols in algebra. His contribution to the field was the reason that

Diophantine equations were named after him (Heath, 1910).

One of the fascinating aspects of the field is that the problems are often simple

to state but extremely difficult to answer, and even when they can be solved, they of-

ten necessitate the use of extremely advanced mathematical methods and tools. More
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importantly, mathematicians frequently must invent and build new ways to address

number-theoretical problems, and these approaches become key branches of mathe-

matics with applications in issues other than those for which they were developed.

Many technological, engineering and applied mathematics sectors have benefited

from the discovery of the Diophantine Equation. For instance, large values of the ar-

gument would not be able to analyze the answer to numerous issues without its assis-

tance (Klykov, 2021). In computer science, in general, and Cryptography, in particular,

Diophantine Equations led to the most useful applications where it has been used to

determine the level of security based on the level of difficulty of solving a certain class

of Diophantine equations (Ding et al., 2018; Klavska, 2017).

Diophantine equations were applied to some problems in chemistry where one can

reduce all chemical compounds to a combination of chemical elements, which in turn

can help reduce all integers to a product of prime factors in a particular way (Crocker,

1968; Okumura, 2015).

1.2 Literature review

The Diophantine equation ax+ py = z2 where a= 2 and p is prime is one of the Dio-

phantine equations families that were studied widely by mathematicians. Many fields

of mathematics can benefit from Diophantine equations, such as the high-accuracy

computation of prime logarithms (Brenner and Foster, 1982). For various primes,

some of the equations of the type ax+ py = z2 have been entirely solved. In 2007, Acu

showed that the only two non-negative integer solutions where p = 5 are (x,y,z) =

(3,0,3) and (2,1,3) (Acu, 2007) . Later in 2011, Suvarnamani proved that there is no

2



non-negative integer solution (x,y,z) for the case p = 7,11 when x is even (Suvarna-

mani et al., 2011).

After Catalan’s conjecture was proved, it played a main part in studying several

equations of the form ax + py = z2. In 2018, Rabago, using Mihailescu’s theorem,

proved that the two Diophantine equations 4x �7y = 3z2 and 4x �19y = 3z2 have only

two solutions (x,y,z) = (0,0,0) and (1,0,1), then stated a generalization for these

two equations by proving that the Diophantine equation 4x � py = 3z2 has only the

two solutions (0,0,0) and (1,0,1) (Rabago, 2018). The method Rabago’s used was

similar to what Peker and Cenberci did in 2012, where they gave the solutions for the

Diophantine equation (4n)x + py = z2 (Peker and Cenberci, 2012).

Between the years 2012-2014, Sroysang studied the Diophantine equation 5x +

py = z2 for the cases where p= 7,23,63 (Sroysang, 2013c); (Sroysang, 2013b); (Sroysang,

2014c), and the Diophantine equation 3x + py = z2 for the cases where p = 17,45,85

(Sroysang, 2014a); (Sroysang, 2014b); (Sroysang, 2013a). Sroysang work involved

the use of Mihailescu’s theorem in all the cases.

Recently, Sugandha et al. used the theory of congruence to prove that 3x + 5y =

z2 has only one non-negative integer solution (x,y,z) = (1,0,2) (Agus et al., 2020).

The same result was established earlier in 2012 by Sroysang who used Mihailescu’s

theorem to determine the solution (Sroysang, 2012).

In 2019, Lipaporn et al. studied the Diophantine equation 3x+ p5y = z2, where x,y

and z are non-negative integers and p is a prime number not equal to 2 or 5 (Laipaporn

et al., 2019). In the same year, Bakar et al. investigated the Diophantine equation

3



5x + pmny = z2 to generalize some of Sroysang work by finding the solutions where

x,m,n,z are positive integers with p > 3 and y = 1,2 (Bakar et al., 2019).

Another work related to Mihailescu’s theorem was made by Chotchaisthit who

studied the Diophantine Equation 43n2x +43y = z2m and proved that all non-negative

integer solutions are of type (3,n,3(43)2) if n is even and m = 1 (Chotchaisthit, 2017).

All of the Diophantine Equations mentioned above are special cases of the Dio-

phantine Equation ax + by = z2. Studying these cases would contribute to the finding

of a general form of solutions to this family of equations. Inspired by all references

mentioned earlier, we will focus on the solvability of some Diophantine Equations of

the form ax +by = z2.

Motivated by Rabago’s work, we will use Mihailescu’s theorem, number theory

concepts, and characteristics of congruence to focus on determining the existence of

the solution of the Diophantine equations 16x �7y = z2, 16x � py = z2 and 64x � py =

z2, after that, we generalize the previous equations where we find the solutions of

the Diophantine equation (4n)x � py = z2. After studing the Diophantine equation

(4n)x� py = z2, we will focus on some Diophantine equations of the type px+ p(l)y =

z2, where we will determine the solutions of the Diophantine equations 7x +11y = z2,

13x + 17y = z2 and 15x + 17y = z2 using the theory of congruence and Mihailescu’s

theorem. Then we focus on finding the solutions for the Diophantine equations 2x +

257y = z2, 11n8x +11y = z2 and 3x + pmny = z2.

4



1.3 Problem statement

In 2004, Catalan’s conjecture was proved by Mihailescu, and since then, it was

used to solve many Diophantine equations of the type ax + by = z2. Rabago in 2018,

by using Mihailescu’s theorem showed that the Diophantine equation 4x� py = 3z2 has

two solutions (0,0,0) and (1,0,1). This, in turn, motivates us to generalize Rabago’s

work by finding the solutions of the Diophantine equation (4n)x � py = z2. One year

later, Lipaporn et al. studied the Diophantine equation 3x + p5y = z2, where x,y and z

are non-negative integers and p is a prime number not equal to 2 or 5. That, in turn,

motivates us to generalize Lipaporn work where we concentrate on finding the solu-

tions of the Diophantine equation 3x + pmny = z2 where x,m,n,z are positive integers

with p > 3 and y = 1,2. Many other scholars focused on using Mihailescu’s theorem

to find solutions for special cases of Diophantine equations of the form ax + by = z2.

Therefore, we expand the research scope by using various methods to determine the

solutions of the Diophantine equations 7x + 11y = z2, 13x + 17y = z2, 15x + 17y = z2,

2x + 257y = z2 and 11n8x + 11y = z2. Combining various methods and tools to study

this specific type of equation can help to gain more understanding of the form of an-

swers given to this family of equations.

1.4 Research objectives

The following are the objectives of this thesis:

1. To obtain all solutions for the Diophantine equations 16x�7y = z2, 16x� py = z2

and 64x� py = z2 and deduce the solutions to the Diophantine equation (4n)x� py = z2

using Mihailescu’s theorem.
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2. To determine the existence and produce the solutions (if exist) to the Diophantine

equations 7x+11y = z2, 13x+17y = z2, 15x+17y = z2 and 2x+257y = z2 using theory

of congruence and Mihailescu’s theorem.

3. To discover all possible solutions to the Diophantine equation 11n8x +11y = z2

using Mathematical induction.

4. To determine the solutions of the Diophantine equation 3x + pmny = z2 using

Mihailescu’s theorem and by determining bounds on the fundamental solution.

1.5 Thesis outline

The thesis comprises six chapters. Chapter 1 is an introduction to the history and

applications of the Diophantine equations, followed by a literature review, then the

problem statement and research objectives, ended with the thesis outline. In Chapter 2,

we review necessary concepts, definitions, and theorems that are used throughout this

thesis. In Chapter 3, the Diophantine equation 16x � 7y = z2 is investigated to prove

that it has only two solutions (x,y,z), (the trivial solution) (0,0,0), and (1,1,3), where

x,y, and z are non-negative integers, also the Diophantine equations 16x � py = z2

and 64x � py = z2 were solved, after that, we proved a generalization of the previ-

ous equation, where (4n)x � py = z2 and x,y,z are non-negative integers. Chapter 4

discusses the solvability of the Diophantine equations 7x + 11y = z2, 13x + 17y = z2

and 15x +17y = z2 using Mihailescu’s theorem and the theory of congruence to deter-

mine the solutions. In Chapter 5, we study more Diophantine equations of the form

ax + by = z2 starting by focusing on determining all possible solutions of the Dio-

phantine equation 2x+257y = z2 and using the result to investigate three corollaries to

6



show that the Diophantine equations 2x + 257y = w4 and 8m + 66049n = w4 have no

non-negative integer solutions, and (m,n,z) = (1,0,3) is the only solution for the Dio-

phantine equation 8m+66049n = z2, after that we investigate the Diophantine equation

11n8x +11y = z2. Finally, we concentrate on finding the integral solutions of the Dio-

phantine equation 3x+ pmny = z2 where y = 1,2 and p > 3 a prime number. Chapter 6

contains the conclusions and future work.
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CHAPTER 2

PRELIMINARIES

This chapter contains a review of some tools, definitions, lemmas and theorems that

will be needed throughout the thesis. Here we focus especially on Catalan’s conjecture

since it plays a main part of this thesis, also, we give a brief definition and some

properties for the theory of congruence, Divisibility and Mathematical Induction.

2.1 Catalan’s conjecture

The story of Catalan’s conjecture starts in the year 1844 when Catalan (Lebesgue,

1850) proposed the following:

The difference between two perfect powers where we ignore 0 and 1 is always

more than 1 unless these powers are equal to 8 = 23 and 9 = 32. In other words,

ax �by = 1

has the only nontrivial solution: 32 �23 = 1.

In 1850, Lebesgue (Le and Soydan, 2020) proved that the Diophantine Equation

xm�y2 = 1 has no solutions where x,y and m are positive integers with m > 1. Fifteen

years later, (Ko, 1965) proved that the Equation x2�yn = 1 where x,y and n are positive

integers and n > 1, has the unique solution x = 3 and y = 2.

(Cassels, 1960) focused on the discovery of important arithmetical properties of

8



Catalan’s equation (xp � yq = 1) and most subsequent works on Catalan’s equation re-

lied heavily on his findings. For more than 150 years, the conjecture has been open, and

many mathematicians and researchers have made so much effort to solve it. The con-

jecture remained unproved until 2004 when Mihailescu managed to prove it (Schoof,

2010). Mihailescu showed that the existence of solutions to Catalan’s equation did

produce an excess of q-primary cyclotomic units in that case. The previous fact led to

a contradiction that proved Catalan’s conjecture where Mihailescu stated the following

theorem:

Theorem 2.1. (Mihailescu, 2004): (3,2,2,3) is a unique solution (a,b,x,y) for the

Diophantine equation ax�by = 1 where a,b,x and y are integers such that min{a,b,x,y}>

1.

After Catalan’s conjecture was proved, many researchers relied on it to solve dif-

ferent types of Diophantine Equations, and nowadays, much of the work related to

the Diophantine equation ax + by = cz relies on Catalan’s conjecture to study these

equations and to determine the solutions.

2.2 Mersenne Primes

When 2n �1 is prime it is said to be a Mersenne prime. In 1664, Mersenne stated

that the numbers 2n �1 were prime for:

n = 2,3,5,7,13,17,19,31,67,127 and 257.

It took three centuries and many mathematical discoveries before the exponents in

Mersenne’s conjecture had been completely checked. It was determined that he was
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not completely correct and the correct list is: n = 2,3,5,7,13,17,19,31,61,89,107

and 127 (Dickson, 1971). After that, Mersenne primes were studied in depth because

of their close connection to perfect numbers. Many properties were discovered during

the study of Mersenne primes. One of the most important properties of Mersenne

primes is that: if for some positive integer n, 2n � 1 is prime, then so is n (Delello,

1986).

2.3 The theory of congruence

Gauss devised an extremely useful concept in number theory that makes a variety

of issues involving integer divisibility much easier to solve. This gave birth to the

theory of congruences. First, we give a definition and some facts.

Definition 2.1. (Stein, 2008) Let u,v,r and k be integers and t 2N. Then u⌘ v ( mod t)

if t | (u� v) and u 6⌘ v( mod t) if t - (u� v).

Here, are some facts from the definition of Congruence (Crilly, 1978):

• If u ⌘ v (mod t), then v ⌘ u (mod t).

• If u ⌘ v (mod t) and v ⌘ r (mod t), then u ⌘ r (mod t).

• If u ⌘ v (mod t) and r ⌘ k (mod t), then ur ⌘ vk (mod t).

• If u ⌘ v (mod t) and r ⌘ k (mod t), then u± r ⌘ v± k (mod t).

• If u ⌘ v (mod t), then ur ⌘ vr (mod t).
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The following are some other facts from the Congruence definition that will be

used in this thesis:

• If n is a perfect square, then n ⌘ 1 ( mod 4) when n is odd, and n ⌘ 0 ( mod 4)

when n is even.

• If n is a perfect square, then n ⌘ 0 ( mod 3) when n is divisible by 3, and n ⌘

1 ( mod 3) when n is not divisible by 3.

• 17n ⌘ 1 ( mod 3) for every even integer n.

To check the this property, one can show the following:

171 ⌘ 2 ( mod 3),

172 ⌘ 1 ( mod 3),

173 ⌘ 2 ( mod 3), ...

It seems that if n is odd, then 17n ⌘ 2 ( mod 3), and if n is even, then 17n ⌘ 1 ( mod 3).

This pattern will keep repeating, because in the case where x is even, we have 172 ⌘

1 ( mod 3), and so increasing the exponent n by 2 will never change the remainder

( mod 3) since:

172 ⌘ 1 ( mod 3),

171 ·171 ⌘ 1 ·1 ( mod 3).

Therefore, 17n is congruent to 1 ( mod 3) when n is even.
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• 15n ⌘ 0 ( mod 3) for every integer n.

By using the same method as in the previous property, one can see that:

151 ·151 ⌘ 0 ·0 ( mod 3),

152 ⌘ 0 ( mod 3).

One can use the same technique, through induction, to show that the powers of 15 are

congruent to 0 mod 3 since we can continue multiplying our resulting equation by the

initial equation 151 ⌘ 0 ( mod 3). Which means that all powers of 15, when divided

by 3, give us a remainder of 0.

The same technique applied earlier can be used to show the next two properties.

• 13n ⌘ 1 ( mod 4) for every integer n.

• 15n ⌘ 1 ( mod 4) for every integer n.

2.4 Divisibility

One of the most essential concepts in number theory is divisibility. A precise defi-

nition of what it means for a number to be divisible by another number is essential for

defining other number-theoretic concepts such as that of prime numbers.

Definition 2.2. (Fine and Rosenberger, 2016) Let u,v,r 2 Z, with u 6= 0. We say (u

divides v) if there exists t 2 Z such that v = tu.

Here are some useful properties of divisibility (Fine and Rosenberger, 2016):
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• If u | v and v | r, then u | r

• If r | u and r | v, then r | u+ v and r | u� v

• If r | u and r | v, then, for any x,y 2 Z, r | ux+ vy.

2.5 Mathematical Induction

Pascal is credited with being the first to express the principle of induction explicitly

(Coughlin and Kerwin, 1985) which have been used later by Fermat who made good

use of it in a related technique known as indirect proof by infinite descent (Bussey,

1918).

Definition 2.3. (Andreescu et al., 2010) Let (P(n))n�0 be a sequence of propositions.

Mathematical induction assists us in proving that P(n) is true for all n � n0, where n0

is a given non-negative integer.

Theorem 2.2. (Kwong, 2015) Let P(n) be a proposition about n. Let a 2 N. Suppose

that:

(a) P(a) is true,

(b) for all n � a, p(n) is true ) p(n+1) is also true.

Then p(n) is true for all n � a.

In general, Mathematical Induction is a mathematical proving method, where we

show that a propositional function p(n) is true for all integers n � 1. To show that, we

need to follow two steps:

• Verify that p(1) is true.

• Show that if p(k)is true for some integer k � 1, then p(k+1) is also true.
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For example, if we want to use Mathematical Induction to prove that 7+14+21+

...+7n = 7n(n+1)
2 is true for every positive integer, first, we have to show that it is true

when n = 1. When n = 1, we get 7(1) = 7(1)((1)+1)
2 = 7.

Second, we assume that n= k such that 7+14+21+ ...+7k = 7k(k+1)
2 is true when

k � 1. Then we have to show that it is true when n = k+1 such that 7+14+21+ ...+

7(k+1) = 7(k+1)((k+1)+1)
2 is true when k � 1.

7+14+21+ ...+7(k+1) = 7+14+21+ ...+7k+7(k+1)

= 7k(k+1)
2 +7(k+1)

= 7k(k+1)
2 + 14(k+1)

2 = 7k(k+1)+14(k+1)
2

= 7(k+1)[k+2]
2

= 7(k+1)((k+1)+1)
2 .

By induction, we showed that 7+14+21+ ...+7n = 7n(n+1)
2 is true for every positive

integer.

2.6 Fundamental Solution

Here, we show the definition of a fundamental solution along with a theorem that

will be used in chapter 5.

Definition 2.4. (Mollin, 1997) If a j = x j + y j
p

D for j = 1,2 are primitive solutions

of the equation x2 �Dy2 = n, then they are said to be in the same class provided that
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there is a solution b = u+ v
p

D of the equation x2 �Dy2 = 1 such that a1b = a2. If

a1 and a 0
1 = x1�y1

p
D are in the same class, then the class is called ambiguous. In a

given class, let a0 = x0 + y0
p

D be a primitive solution with least possible positive y0.

If the class is ambiguous, then we require that x0 � 0. Also, | x0 | is the least possible

value for any x with x+ y
p

D in its class, and so a0 is uniquely determined. We call

a0 the fundamental solution in its class.

Theorem 2.3. (Sica, 2010) The bound for the fundamental solution (u,v) for the equa-

tion u2 �Dv2 = N is

0  v  y1p
2(x1 +1)

p
N,

0 | u |
r

1
2
(x1 +1)N,

where N is positive integer with (x1,y1) is the fundamental solution of equation x2 �

Dy2 = 1 and D is natural number which is not a perfect square.

2.7 Previous Results

The following are some lemmas that will be used in this study.

Lemma 2.1. (Sroysang, 2013d) The Diophantine equation 7x + 1 = z2 has no non-

negative integer solution where x and z are non-negative integers.

Lemma 2.2. (Peker and Cenberci, 2012) (7,1,129) is a unique solution (k,y,z) for the

Diophantine equation 4k +257y = z2, where k,y and z are non-negative integers.

Lemma 2.3. (Ivorra, 2003) The Diophantine equation 2x +257y = z2 has no solution

where x,y and z are non-negative integers with x � 2 and y � 3.
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Lemma 2.4. (Yu and Li, 2014) The Diophantine equation 2x +by = cz admits a solu-

tion for x > 1, y = 1 and 2x < b
50
13 .

Lemma 2.5. (Qi and Li, 2015) If p ⌘ ⌥3 ( mod 8), then the Diophantine equation

8x + py = z2 has no positive integer solutions.

In the next chapter, we will focus on some Diophantine equations of the form

ax �by = z2, namely 16x �7y = z2, also the Diophantine equations 16x � py = z2 and

64x � py = z2 will be investigated. In addition, we will determine the solutions to the

Diophantine equation (4n)x � py = z2.
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CHAPTER 3

ON THE DIOPHANTINE EQUATION (4n)x � py = z2

In this chapter, the Diophantine equation (4n)x � py = z2 where p is an odd prime,

n 2 Z+ and x,y,z are non-negative integers, will be investigated to show that the solu-

tions are given by

(x,y,z, p) = (k,1,2nk �1,2nk+1 �1) or (x,y,z, p) = (0,0,0, p).

We will go through some equations that will prepare and structure our way to reach

the main theorem. We will start by focusing on the Diophantine equation 16x�7y = z2

to find all the possible solutions.

3.1 The Diophantine equation 16x �7y = z2

Theorem 3.1. The Diophantine equation

16x �7y = z2, (3.1)

has only two solutions (x,y,z), (the trivial solution) (0,0,0), and (1,1,3).

Proof: Evidently, the case when z = 0 will give us (x,y,z) = (0,0,0). For z > 0,

one can consider the cases below.

Case 1. x = 0. This case is trivial.
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Case 2. y = 0. If y = 0, then we have (2x)4� z2 = 1 which is impossible according

to Mihailescu’s theorem.

Case 3. x,y > 0. For this case we have ((2x)4 � z2) = ((2x)2 + z)((2x)2 � z) = 7y.

It follows that ((2x)2 + z) + ((2x)2 � z) = 22x+1 = 7a + 7b for some a < b , where

a +b = y. Hence, 22x+1 = 7a(7b�a + 1). Thus, a = 0 and 22x+1 � 7b = 1, which

is true when x = 1 and y = 1 since a +b = y and we have a = 0 and b = 1. These

give us the value z = 3. Therefore, (1,1,3) is a solution of 16x � 7y = z2. Now, if

we assume y > 1, then we get 22x+1 � 7b = 1 which has no solution according to

Mihailescu’s theorem. Therefore, (0,0,0) and (1,1,3) are the only solutions for the

equation 16x �7y = z2.

Next, the Diophantine equation 16x � py = z2 will be investigated to find all of the

non-negative integer solutions.

3.2 The Diophantine equation 16x � py = z2

Theorem 3.2. All non-negative integer solutions of the Diophantine equation

16x � py = z2, (3.2)

are given as the following:

(x,y,z, p) = (k,1,22k �1,22k+1 �1) or (x,y,z, p) = (0,0,0, p)

where k,x,y,z are non-negative integers and p is an odd prime.
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Proof: One can consider the following cases

Case 1. x = 0. In this case, we have z2 + py = 1 which implies that z = 0, y = 0

and p any prime number.

Case 2. y = 0. If y = 0, then we have 16x � 1 = z2. From Mihailescu’s theorem,

one can consider the following four subcases:

Subcase 2.1. x = 0, we get 1� z2 = 1, hence (x,z) = (0,0).

Subcase 2.2. x = 1, we get 16� z2 = 1, hence z2 = 15, which is impossible.

Subcase 2.3. z = 0, we get 16x = 1, therefore, (x,z) = (0,0).

Subcase 2.4. z = 1, we get 16x �1 = 1, hence 16x = 2, which is impossible.

One can see that 16x � z2 = 1 has only the solution (x,y,z) = (0,0,0).

Case 3. x,y > 0. For this case we have 16x � py = z2 which is equivalent to

(22x + z)+ (22x � z) = py. It follows that 22x+1 = pa(pb�a � 1) for some integers a

and b where a +b = y. Thus, a = 0 and 22x+1 � py = 1 which has no solution when

x,y > 1. From Mihailescu’s theorem, we have four subcases:

Subcase 3.1. x = 0, we get 2� py = 1, hence, py = 1, therefore, the solution of

the equation 16x � py = z2 is (x,y,z, p) = (0,0,0, p).

Subcase 3.2. x = 1, we get 8� py = 1, hence py = 7, therefore, the solution of the

equation 16x � py = z2 is (x,y,z, p) = (1,1,3,7).
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Subcase 3.3. y = 0, we get 22x+1 � 1 = 1, therefore, the solution of the equation

16x � py = z2 is (x,y,z, p) = (0,0,0, p).

Subcase 3.4. y = 1, we get 22x+1 � p = 1, hence p = 22x+1 �1. One can see that

22x+1 �1 is a prime if and only if 2x+1 is also a prime, therefore, we get a family of

solutions to the equation 16x � py = z2 given by (x,y,z, p) = (k,1,22k �1,22k+1 �1).

In the following, the Diophantine equation 64x � py = z2 will be solved, as a final

step of generalizing the results.

3.3 The Diophantine equation 64x � py = z2

Theorem 3.3. For k,x,y,z are non-negative integers and p is an odd prime, the solu-

tions of the Diophantine equation

64x � py = z2 (3.3)

are given by

(x,y,z, p) = (k,1,23k �1,23k+1 �1) or (x,y,z, p) = (0,0,0, p)

Proof: We consider the following cases:

Case 1. x = 0. In this case, we have z2 + py = 1 which implies that z = 0, y = 0

and p any prime number.
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Case 2. y = 0. If y = 0, then we have 64x � 1 = z2. From Mihailescu’s theorem,

one can consider the following four subcases:

Subcase 2.1. x = 0, we get 1� z2 = 1, hence (x,z) = (0,0).

Subcase 2.2. x = 1, we get 64� z2 = 1, hence z2 = 63, which is impossible.

Subcase 2.3. z = 0, we get 64x = 1, therefore, (x,z) = (0,0).

Subcase 2.4. z = 1, we get 64z �1 = 1, hence 64x = 2, which is impossible.

One can see that 64x � z2 = 1 has only the solution (x,y,z) = (0,0,0).

Case 3. x,y > 0. For this case we have 64x � py = z2 which is equivalent to

(23x + z)+ (23x � z) = py. It follows that 23x+1 = pa(pb�a � 1) for some integers a

and b where a +b = y. Thus, a = 0 and 23x+1 � py = 1 which has no solution when

x,y > 1 according to Mihailescu’s theorem. For x,y < 1, we have four subcases:

Subcase 3.1. x = 0, we get 2� py = 1, hence, py = 1, therefore, the solution of

the equation 64x � py = z2 is (x,y,z, p) = (0,0,0, p).

Subcase 3.2. x = 1, we get 16� py = 1, hence py = 15 which is impossible.

Subcase 3.3. y = 0, we get 23x+1 � 1 = 1, therefore, the solution of the equation

64x � py = z2 is (x,y,z, p) = (0,0,0, p).

Subcase 3.4. y = 1, we get 23x+1 � p = 1, hence p = 23x+1 �1. One can see that

23x+1 �1 is a prime if and only if 3x+1 is also a prime, therefore, we get a family of
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solutions to the equation 64x � py = z2 given by (x,y,z, p) = (k,1,23k �1,23k+1 �1).

In the next section, we will present the main theorem of this chapter, where the

previous equations will be generalized where we focus on finding the solutions to the

Diophantine equation (4n)x � py = z2.

3.4 The Diophantine equation (4n)x � py = z2

The generalization of the previous Diophantine equations is given in the following

theorem.

Theorem 3.4. The solutions of Diophantine equation

(4n)x � py = z2 (3.4)

are given by

(x,y,z, p) = (k,1,2nk �1,2nk+1 �1)

where x,y,z are non-negative integers, k is a positive integer, and 2nk+1 �1 is a prime.

Proof: To solve this equation we will consider three cases where y = 0, y = 1, and

y � 2.

For y = 0, the equation (3.4) becomes 4nx � 1 = z2. If x > 0, then we have �1 ⌘

z2 (mod 4), which is impossible, because squares are always ⌘ 0 or ⌘ 1 (mod 4).

Therefore x = 0 and the equation becomes 0 = z2, so z = 0. Also p is arbitrary. This is
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the trivial solution.

The cases y = 1 and y � 2 are similar to each other. We can use some divisibility

observations here.

From (3.4) we have

py = (2nx � z)(2nx + z).

The two factors on the right cannot both be divisible by p, because their sum is 2nx+1

which is not divisible by p. But they are both powers of p, so the smaller one is

2nx � z = 1 and the larger one is 2nx + z = py. Solving this system of two equations we

obtain

py = 2nx+1 �1, (3.5)

z = 2nx �1.

If y � 2, we have that the equation (3.5) is impossible by Mihailescu’s theorem,

because both exponents are greater than or equal to 2 and it is not the one permissible

case 32 �23 = 1.

If y = 1, from (3.5), we have p = 2nx+1 �1, thus all combinations of this form are

solutions. That is, if k is a positive integer and 2nk+1 �1 is prime, then

(x,y,z, p) = (k,1,2nk �1,2nk+1 �1)
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is a solution of (3.4), because we have

z2 = (2nk �1)2 = 22nk �2nk+1 +1 = (4n)k � p1.

This completes the proof of the Main Theorem

3.5 Summary

In this chapter, we showed that the Diophantine equation 16x�7y = z2 has only two

solutions (x,y,z), (the trivial solution) (0,0,0), and (1,1,3), where x,y, and z are non-

negative integers. Also the Diophantine equations 16x� py = z2 and 64x� py = z2 have

been solved to move to the main part of the chapter where we proved a generalization

of the previous results, by investigating the Diophantine equation (4n)x� py = z2 where

x,y,z are non-negative integers. We proved that the solutions are given by

(x,y,z, p) = (k,1,2nk �1,2nk+1 �1) or (x,y,z, p) = (0,0,0, p).

And we noticed that some of the solutions contain parts that similar to Mersenne prime,

which is a prime number of the form 2p �1 where p is a prime.
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