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ALGORITMA EVOLUSI PELBAGAI OBJEKTIF BERDASARKAN 

PENGURAIAN UNTUK PENGOPTIMUMAN SELANJAR MENGGUNAKAN 

TEKNIK FUNGSI LANGKAH 

ABSTRAK 

Pengoptimuman pelbagai objektif merupakan satu bidang kajian yang 

menyelesaikan masalah kompleks dunia sebenar melibatkan dua atau tiga objektif. 

Algoritma Evolusi Pelbagai Objektif Berdasarkan Penguraian (MOEA/D) adalah salah 

satu algoritma menggunakan konsep penguraian dan kejiranan untuk menyelesaikan 

masalah pelbagai objektif. Salah satu algorithm MOEA/D yang terkini, iaitu Constant-

distance based Neighbours for MOEA/D with Dynamic Weight Vector Adjustment 

(MOEA/D-AWACD), mengintegrasikan konsep kejiranan berdasarkan jarak malar 

dan reka bentuk vektor berat dinamik. Gabungan ini membolehkan kejiranan fleksibel 

yang dapat menyesuaikan diri dengan perubahan vektor berat. Namun, prestasi 

MOEA/D-AWACD bergantung pada satu parameter jarak tetap, 𝛿, yang melaraskan 

saiz kejiranan. Untuk mendapatkan nilai parameter 𝛿 yang sesuai, algoritma perlu 

dilaksanakan beberapa kali secara berasingan. Situasi ini mengusulkan 𝛿MOEA/D-

AWACD, yang menggunakan satu fungsi-langkah yang mengawal parameter 𝛿 secara 

deterministik dalam sesuatu pelaksanaan. 𝛿MOEA/D-AWACD  mengatasi MOEA/D, 

MOEA/D-AWACD, MOEA/D with Adaptive Weight Adjustment (MOEA/D-AWA), 

dan Non-dominated Sorting Genetic Algorithm II (NSGA-II). Algoritma ini juga 

setanding dengan NSGA-III and Strength Pareto Evolutionary Algorithm 2 (SPEA2). 

Selain itu, MOEA/D sering dilengkapi dengan mekanisme peruntukan sumber 

pengiraan dan strategi pemilihan. Salah satu jurang penyelidikan adalah kekurangan 

satu kajian yang menyeluruh berkenaan dengan gabungan mekanisme peruntukan 



xiv 

sumber pengiraan dan strategi pemilihan. Oleh itu,  sifat penumpuan (iaitu kelajuan 

penumpuan dan penumpuan pra-matang) dan prestasi empat strategi pemilihan yang 

berbeza (iaitu Pemilihan Kejohanan, Pemilihan Berkadar Kecergasan, Pemilihan 

Pemeringkatan Linear dan Pemilihan Pemeringkatan Eksponen) terhadap lapan 

mekanisme peruntukan sumber berbeza dalam 𝛿MOEA/D-AWACD telah dikaji. 

Keputusan-keputusan eksperimen menunjukkan 𝛿MOEA/D-AWACD dengan 

peruntukan sumber dinamik dan pemilihan kejohanan mengatasi gabungan lain. 

Pemilihan kejohanan menunjukkan fenomena penumpuan perlahan apabila ia 

dilaksanakan dengan menggunakan masalah-masalah ujian ZDT (iaitu ZDT1, ZDT2, 

ZDT3, ZDT4, dan ZDT6) dalam gabungan dengan peruntukan sumber dinamik. 

Walau bagaimanapun, dalam kebanyakan kes, gabungan pemilihan johan dengan 

peruntukan sumber dinamik menunjukkan prestasi yang lebih baik daripada strategi 

pemilihan lain. Sebaliknya, pemilihan berkadar kecergasan, pemilihan pemeringkatan 

linear dan pemilihan pemeringkatan eksponen mengalami penumpuan pra-matang 

dalam masalah ZDT2 apabila mereka digunakan bersama dengan mekanisme 

peruntukan sumber dinamik. Satu kes kajian dunia sebenar mengenai masalah 

fotovoltaik solar pelbagai objektif juga dijalankan. 𝛿MOEA/DAWACD memperoleh 

nilai objektif yang jauh lebih baik (p-value = 0.0001) untuk ketiga-tiga objektif 

merentasi semua jenis modul fotovoltaik solar di Bandar Sungai Long, Bangi dan 

Bayan Lepas berbanding dengan NSGA-II. 
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A MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM BASED ON 

DECOMPOSITION FOR CONTINUOUS OPTIMIZATION USING A STEP-

FUNCTION TECHNIQUE 

ABSTRACT 

Multi-objective optimization is an area of study which solves complex real-

world problem that involves two or three objectives. Multi-objective Evolutionary 

Algorithm based on Decomposition (MOEA/D) is one of the algorithms that utilize 

the concepts of decomposition and neighbourhood to solve multi-objective problems. 

One of the recent MOEA/D algorithms, i.e., Constant-distance based Neighbours for 

MOEA/D with Dynamic Weight Vector Adjustment (MOEA/D-AWACD), integrates 

the concept of a constant-distance neighbourhood and a dynamic weight vector design. 

This combination creates a flexible neighbourhood that can adapt to the weight vectors 

changes. However, MOEA/D-AWACD’s performance is dependent on a constant-

distance parameter, 𝛿, that adjusts the neighbourhood size.  To obtain an appropriate 

value of parameter 𝛿, multiple and separate algorithm executions are required. This 

leads to a proposal of 𝛿MOEA/D-AWACD, which employs a step-function to 

deterministically control the parameter 𝛿 within a single algorithm execution. The 

proposed 𝛿MOEA/D-AWACD was tested on 18 continuous optimization benchmark 

problems, and it statistically outperforms MOEA/D, MOEA/D-AWACD, MOEA/D 

with Adaptive Weight Adjustment (MOEA/D-AWA), and Non-dominated Sorting 

Genetic Algorithm II (NSGA-II). It is also on par with NSGA-III and Strength Pareto 

Evolutionary Algorithm 2 (SPEA2). On the other hand, MOEA/D is often equipped 

with a computational resource allocation mechanism and a selection strategy. One of 

the research gaps is the lack of a detailed study on the combination of a computational 



xvi 

resource allocation mechanism and a selection strategy. Thus, the convergence 

properties (i.e., convergence speed and premature convergence) and performance of 

four different selection strategies (i.e., Tournament Selection, Fitness Proportionate 

Selection, Linear Ranking Selection, and Exponential Ranking Selection) on eight 

different resource allocation mechanisms in 𝛿MOEA/D-AWACD is explored. The 

experimental results show that 𝛿MOEA/D-AWACD with dynamic resource allocation 

and tournament selection outperforms other combinations. Tournament selection 

shows a slow convergence phenomenon on the ZDT test problems (i.e., ZDT1, ZDT2, 

ZDT3, ZDT4, and ZDT6) when it is bundled with dynamic resource allocation. 

However, this combination can significantly perform better than other selection 

strategies in most cases. On the other hand, fitness proportionate selection, linear 

ranking selection, and exponential ranking selection experience premature 

convergence in the ZDT2 test problem when they are used in conjunction with the 

dynamic resource allocation mechanism. A real-world study case on a multi-objective 

solar photovoltaic problem is also conducted. 𝛿MOEA/DAWACD obtains 

significantly better (p-value = 0.0001) objective values for all three objectives across 

all the types of solar photovoltaic modules in Bandar Sungai Long, Bangi and Bayan 

Lepas compared to NSGA-II. 
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CHAPTER 1  
 

INTRODUCTION 

1.1 Introduction 

Optimization is a method that aims to identify optimal solution(s) from a finite 

set of solutions (Choong et al., 2019). The optimal solution(s) is identified using an 

objective function. Optimization can be categorized into two different categories, i.e., 

continuous optimization and discrete optimization. Continuous optimization mainly 

deals with continuous variables which they are allowed to take on any value within a 

range of values (i.e., usually real numbers). In applied mathematics, a set of test 

functions for continuous optimization are available such as the Rosenbrock function, 

Ackley function and Sphere function. On the contrary, discrete optimization work with 

a permutation set of discrete variables (e.g., integers). Optimization can be used to 

solve problems that involve more than one objective.  

Multi-objective optimization problems (MOPs) are problems that involve two 

or three objectives. When more than three objectives are involved, it is known as 

many-objectives optimization problems (MaOPs) (Su et al., 2019). When an objective 

is improved, other objectives will be degraded. For instance, when someone is buying 

a car, she/he wishes to get a car with a low accident rate and low monetary cost. 

Assuming the accident rate decreases with the increment of monetary cost, a car with 

a low accident rate and low monetary cost will not be available. Thus, compromises 

will need to be made by considering other options. These options are called trade-off 

solutions. However, the number of trade-off solutions can be huge. As such, multi-

objective optimization (MOO) can be utilized to obtain a set of trade-off solutions. In 

MOO, a single solution that simultaneously optimizes each objective does not exist. 

Instead, a set of Pareto-optimal solutions are generated to provide a range of choices 
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for decision-makers. Generally, MOO focuses on progressing towards the Pareto-

optimal set with a widely spread distribution of solutions. It is one of the challenges in 

MOO to ensure convergence to the true Pareto-optimal solutions with a wide diversity 

among the solutions. Pareto-optimal solutions are also known as non-dominated 

solutions in MOP. The key background of Pareto dominance is described as follows: 

• A solution is said to dominate another solution if it is not inferior to 

another solution in all objectives and the solution is strictly better than 

another solution in at least one objective. 

• If a solution dominates another solution, it is better than another 

solution. 

Figure 1.1 shows an example of optimization of two objectives, f1 and f2, i.e., 

maximization of f1 and minimization of f2. Based on the concept of Pareto dominance, 

3 and 5 are the non-dominated solutions while 1, 2, and 4 are dominated solutions. 

 

Figure 1.1 Non-Domination Sorting Concept (Deb, 2001) 

 

These non-dominated solutions (i.e., 3 and 5) are also known as Pareto-optimal 

solutions and form a Pareto front. The concept of Pareto-optimality originates from 

Vilfredo Pareto (Pareto, 1935). It represents the state of allocation of resources 
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whereby it is not possible to improve one objective without making another objective 

worse off (Deb, 2001).  

In MOO, a decision-maker plays an important role. The MOO methods can be 

generally classified into three methods (i.e., a priori, a posteriori, and interactive) based 

on decision making approaches (Purshouse et al., 2014). If a decision-maker knows 

the weightage of each objective before the optimization process, a priori methods such 

as the weighted sum method (Marler & Arora, 2010) and goal programming (Zhuang 

& Hocine, 2018) can be employed to obtain a single optimum solution. If a decision-

maker desires to select a solution from a list of solutions, a posteriori methods such as 

Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D) (Zhang 

et al., 2009), Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 

2002), and Strength Pareto Evolutionary Algorithm 2 (SPEA2) (Zitzler et al., 2001) 

can be utilized. In a posteriori MOO, diversity and convergence of the solutions set 

are important. However, most of the time, it is a challenge to obtain highly diverse and 

highly converged solutions due to the conflicting relationship between exploration and 

exploitation in an optimization algorithm. The third method is the interactive method, 

where a decision-maker can continuously provide feedback on the optimization to 

obtain desirable solutions. For instance, the NIMBUS method (Miettinen & Mäkelä, 

2000) is categorized as an interactive method. 

One of the a posteriori methods is the Multi-objective Evolutionary Algorithm 

(MOEA). Recent advances in MOEA include Non-dominated Sorting Genetic 

Algorithm III (NSGA III) (Deb & Jain, 2014), Multi-objective Evolutionary 

Algorithms based on Decomposition (MOEA/D) (Zhang & Li, 2007), and 

Hypervolume-Based Many-Objective Optimization Algorithm (HypE) (Bader & 

Zitzler, 2011). Among these variants, MOEA/D is one of the widely studied algorithms 
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that utilize the concept of decomposition and neighbourhood to solve MOPs. 

MOEA/D is a population-based metaheuristic that utilizes a number of individuals in 

its optimization mechanism. It divides a MOP into several subproblems using a 

scalarization technique based on evenly spaced weight vectors. The weight vectors act 

as the weightage for each objective. As a result of scalarization, each subproblem is a 

single objective problem. Each subproblem is assigned with a distinct weight vector 

set. Each subproblem is also associated with each individual in the population of 

MOEA/D. In other words, subproblem, weight vector and individual refer to the same 

entity in MOEA/D. Each individual has its own neighbourhood. The neighbourhood 

is made up of the nearest k number of individuals. The distance between the individuals 

is calculated based on Euclidean distance. Moreover, parents are selected from the 

neighbourhood during reproduction to create new individuals for each subproblem. 

After a new individual is produced, it is then broadcast within the neighbourhood and 

replaces other individuals in the neighbourhood if the new individual is better. In 

recent years, various strategies (e.g., decomposition approaches, weight vector design, 

neighbourhood design, mating and replacement, computational resource allocation 

and reproduction operations) have been proposed to enhance MOEA/D (Trivedi et al., 

2016; Ooi, 2019). 

1.2 Problem Statement 

MOEA/D divides the search space using weight vectors as the guide for each 

subproblem (Zhang & Li, 2007). These weight vectors are generated using a simplex 

lattice design and spread out uniformly across the search space. The way of defining 

the guide (i.e., the weight vectors) is suitable for MOPs with convex shapes MOP. 

However, in the case of non-convex Pareto shape MOP such as disconnected shape 
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Pareto front MOP, large gaps can be observed along the Pareto front. Thus, the 

predefined and uniform weight vectors are no longer suitable to act as the guide for 

the search process. This problem is addressed by MOEA/D with Adaptive Weight 

Adjustment (MOEA/D-AWA) (Qi et al., 2014), which adaptively alters the weight 

vector by considering the sparsity level. Sparsity level measures are based on the 

number of individuals in close proximity to a chosen individual. The lower the sparsity 

level, the larger the number of individuals in close proximity with a chosen individual. 

MOEA/D-AWA removes the individual with a low sparsity level and adds a new 

individual with a high sparsity level. This allows MOEA/D-AWA to obtain good 

performance in non-convex Pareto MOP. However, when the weight vector changes, 

the neighbourhood size in MOEA/D-AWA remains constant. In MOEA/D-AWA, the 

neighbourhood is created based on the weight vector only once during the 

initialization. Thus, if the weight vector changes during the optimization process, the 

existing neighbourhood becomes not suitable for the new weight vectors. This issue is 

handled by constant-distance based neighbours for multi-objective evolutionary based 

on decomposition with dynamic weight vector adjustment (MOEA/D-AWACD) (Ooi, 

2019). The algorithm integrates the constant-distance concept from Improved 

MOEA/D with g-Tournament Selection (improved MOEA/D-gTS) (Sato, 2015) into 

MOEA/D-AWA. Hence, it enables the neighbourhood size to change accordingly 

when the adaptive weight adjustment from MOEA/D-AWA changes the weight 

vectors throughout an algorithm execution. However, the performance of MOEA/D-

AWACD relies on a parameter, 𝛿 = √2
ℎ

𝐻
, which is used as a threshold to control the 

neighbourhood size. h is the range of [0, H] and H is a user defined parameter to adjust 

the number of subproblems. When the value of 𝛿 is small, the neighbourhood size is 

also small. In order to obtain a suitable 𝛿 setting, MOEA/D-AWACD requires multiple 
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and separate executions, which is time consuming. For example, when MOEA/D-

AWACD is used to solve a MOP that involves two objectives with a user-defined 

parameter H = 99, there will be 100 sets of experiments with different 𝛿 values to be 

separately executed.  

Apart from this, it is noticed that in the area of MOEA/D, a comprehensive 

study about the bundling effect of a selection strategy and a computational resource 

allocation mechanism is lacking. The computational resource allocation mechanism 

mainly works with a utility function to compute a series of values for each individual. 

These series of values are used as fitness in the mating selection phase of MOEA/D. 

From here, it can be observed that the computational resource allocation mechanism 

tightly connects with a selection strategy since the output values of the utility function 

act as the input of the selection strategy. There are papers that describe the 

computational resource allocation mechanism in MOEA/D. For instance, MOEA/D 

with Dynamic Resource Allocation (MOEA/D-DRA) includes dynamic resource 

allocation and tournament selection (Zhang et al., 2009). Another instance is MOEA/D 

with Generalized Resource Allocation (MOEA/D-GRA) which includes a set of 

generalized resource allocation mechanisms and fitness proportionate selection (Zhou 

& Zhang, 2015). In these papers, the effect of bundling a resource allocation 

mechanism with a selection strategy is not investigated in detail. It is believed that the 

use of different selection strategies combined with different computational resource 

allocation mechanisms will affect the convergence of MOEA/D. With a careless 

combination of a selection strategy and a resource allocation mechanism, premature 

convergence and slow convergence may occur. Premature convergence occurs when 

an algorithm converges fast at the beginning of an algorithm execution and becomes 

significantly worse than other algorithms at the end of algorithm execution. On the 
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other hand, slow convergence happens when an algorithm converges slower than other 

algorithms at the beginning of an algorithm execution and does not show any 

significant difference at the end of algorithm execution. 

 

1.3 Research Questions 

The research questions of this research can be summarized as s follow: 

1. How to minimize the number of runs for MOEA/D-AWACD to obtain an 

appropriate setting of δ? 

2. What are the influence and convergence properties of various selection 

strategies on the computational resource allocation mechanism of the 

proposed algorithm?  

3. How does the proposed algorithm perform in a real-world problem? 
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1.4 Research Objectives 

Based on the research questions stated in Section 1.3, the research objectives 

are formed as follows: 

1. To propose a modified MOEA/D-AWACD that can control the setting of 

the constant-distance parameter, δ. 

2. To investigate the performance and convergence properties of various 

selection strategies combined with different computational resource 

allocation mechanisms.  

3. To evaluate the practicality of the proposed algorithm using a real-world 

multi-objective optimization problem. 

1.5 Research Methodology 

The research methodology of this thesis consists of two main phases namely: 

algorithm design & development and experiment design & evaluation as shown in 

Figure 1.2.  

 

Figure 1.2 Research Methodology 

 

• Draft the pseudo-code of δMOEA/D-AWACD

• Implement the pseudo-code using MATLAB Programming 
language

• Investigate the bundling effect of selection strategies and resource 
allocation mechanism on δMOEA/D-AWACD

• Application of δMOEA/D-AWACD on solar photovoltaic problem

Algorithm Design & 
Development

• Prepare multi-objective benchmark data set

• Determine the parameter setting for each experiment 

• Execute experiment on the benchmark data

• Analyze and compare the result using statistical test

• Perform convergence analysis based on benchmark data set
Experiment Design & 

Evaluation



9 

In the algorithm design & development phase, a modified MOEA/D-AWACD 

is proposed to solve a research problem related to parameter tuning as described in 

Section 1.2. The proposed algorithm is named Delta Constant-distance based 

Neighbourhoods for Multi-objective Evolutionary Algorithm based on Decomposition 

with Dynamic Weight Vector Adjustment (δMOEA/D-AWACD). The proposed 

δMOEA/D-AWACD utilizes a step function deterministic parameter control to 

deterministically adjust the δ settings, which is used to define the constant-distance 

neighbourhood. Besides this, the bundling effect of computational resource allocation 

and selection strategy is also investigated during this phase. The convergence 

properties (i.e., premature convergence and convergence speed) are also studied based 

on experiments that involve various selection strategies on different computational 

resource allocation mechanisms. After that, the proposed algorithm is applied to solve 

a real-world case study, i.e., the solar photovoltaic problem. 

In the experiment design & evaluation phase, a total of 18 continuous test 

problems are gathered. The test problems are from the ZDT, UF, and DTLZ test suites, 

which can be accessed from the Platform for Evolutionary Multi-Objective 

Optimization, PlatEMO (Tian et al., 2017). A comparison study is then carried out to 

benchmark the proposed algorithm with existing multi-objective algorithms in 

continuous optimization. Wilcoxon rank-sum test with a significance level of 5% is 

utilized to support the quantitative decision in assessing the performance of the 

proposed algorithm against the benchmark algorithms (Wilcoxon et al., 1970).  In the 

real-world case study, the best set of objectives is selected with respect to the best first 

objective value (i.e., power conversion efficiency) and then benchmark against 

MmGA and NSGA-II results (Seera et al., 2021). The results were compared using a 

sign test (Derrac et al., 2011) with a significance level of 5%. 
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1.6 Research Scope 

This study focuses on modifying the MOEA/D-AWACD algorithm to 

deterministically control the setting of the δ parameter. In the comparison study, a set 

of continuous optimization problems with two objectives from ZDT, UF, and DTLZ 

test suites are employed. The aim is to cover different types of Pareto fronts such as 

the front with convex, concave, linear, and disconnected patterns. The decision 

variables of all the selected problems are bounded to a specific range of values (Refer 

to Appendix Table A.1). This serves as the constraints considered in this research.  

Besides, in the study on the influence of selection strategy on computational 

resource allocation, four selection strategies and eight computational resource 

allocation mechanisms are studied. The selection strategies are tournament selection, 

fitness proportionate selection, linear ranking, and exponential ranking, respectively. 

The computational resource allocation mechanism covers dynamic resource allocation 

and seven different combinations of utility functions based on generalized resource 

allocation. A study of convergence performance based on the selection strategy is also 

discussed. The study of convergence properties of the proposed algorithm comprises 

two aspects, namely: premature convergence and convergence speed.  

Furthermore, this research also tests the practical applicability of the proposed 

algorithm to a solar photovoltaic problem. The proposed algorithm is benchmarked 

against the original work (Seera et al., 2021). 
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1.7 Research Contributions 

There are three research contributions in this research. First, this research 

introduces a step function deterministic parameter control mechanism in MOEA/D-

AWACD. The modified MOEA/D-AWACD is denoted by δMOEA/D-AWACD. The 

aim of the step function deterministic parameter control mechanism is to 

deterministically control the settings of δ within one algorithm execution. The 

advantage of this parameter control mechanism is to eliminate the tedious step of 

tuning δ via multiple and separate algorithm executions. Besides, the proposed 

δMOEA/D-AWACD inherits a dynamic neighbourhood design that adapts to the 

changes in weight vectors. This mechanism ensures that neighbourhood size will be 

dynamically changed throughout an algorithm execution. This allows the search 

process to be more flexible by reacting to the changes in the search environment.  

The second research contribution is to provide a study related to the bundling 

effect of different selection strategies on different computational resource allocation 

mechanisms. In the proposed δMOEA/D-AWACD, the computational resource 

allocation mechanism is tightly bundled with a selection strategy since the output from 

the computational resource allocation mechanism will act as the input of the selection 

strategy. In order to study the bundling effect between these two, four selection 

strategies on eight different computational resource allocation mechanisms are 

employed. A total of 32 different combinations of selection strategy and computational 

resource allocation mechanism are presented in Chapter 5. The performance of the 

combination of four selection strategies on eight different computational resource 

allocation mechanisms is presented. The convergence properties (i.e., premature 

convergence and convergence speed) are discussed.  
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Lastly, the third research contribution is to provide an application of the 

proposed algorithm to solve real-world problems, i.e., solar photovoltaic problems. 

The solar photovoltaic problem comprises of maximization of power conversion 

efficiency, minimization of photovoltaic panel weight per output power, and 

photovoltaic panel area per output power. The performance of the proposed algorithm 

as presented in Chapter 6 indicates that it is feasible to solve real-world problems and 

also outperforms the algorithm in the previous work (Seera et al., 2021).  

1.8 Thesis Organization 

This thesis comprises seven chapters. The first chapter introduces the research 

by discussing the problem statement, objectives, scope, and research contribution of 

this research. 

Chapter 2 reviews the related background study of this research. The 

techniques and advancement of multi-objective optimization are discussed. In this 

chapter, the research also studies MOEA/D in six different components by reviewing 

the current state-of-the-art and its limitation. At the end of the chapter, the research 

gap is discussed. 

Chapter 3 discusses the research methodology used in this study. Three main 

methodological procedures are used to perform the research study namely, problem 

analysis, algorithm design and development, and experiment design and evaluation. 

Chapter 4 presents the proposed algorithm δ MOEA/D-AWACD. The 

neighbourhood design of the proposed algorithm and the pseudocode is explained. In 

this chapter, comparison studies with benchmark algorithms are also presented. 

Chapter 5 describes the influence of various selection strategies on 

computational resource allocation of δ MOEA/D-AWACD. The convergence 
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performance of different selection strategies is discussed and the comparison studies 

among the different combinations of selection strategies and computational resource 

allocation are analyzed. 

Chapter 6 discusses the application of the proposed algorithm to a real-world 

study case, i.e., a solar photovoltaic problem. The proposed algorithm is also 

benchmarked against MmGA and NSGA-II of the previous work. 

Chapter 7 concludes this research. The findings in this research are summarized 

and potential future direction is discussed. 
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CHAPTER 2  
 

LITERATURE REVIEW 

This section presents related concepts, existing techniques, and the current state 

of art in detail. The flow of the literature review is as shown in Figure 2.1. First, multi-

objective optimization (MOO) is explored. The technique and categorization of MOO 

are explained. After that, the parameter control mechanism is reviewed. Consecutively, 

the real-world application of MOO is discussed. Next, multi-objective algorithms based 

on decomposition (MOEA/D) are analyzed based on its six components. Finally, a 

summary of the gap analysis is carried out to discuss the direction of this research. 

 

 

Figure 2.1 Flow of Literature Review 
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2.1 Multi-Objective Optimization (MOO) 

Multi-objective optimization is commonly used to find a set of suitable solutions 

when there are multiple objectives during the decision-making process (Deb, 2001).   

Problems that involve two and three objectives are commonly known as multi-objective 

problems (MOPs). Multi-objective optimization approaches typically revolve around 

decision making preferences.  It can be classified into three categories based on 

decision-making preferences (Purshouse et al., 2014) as shown in Table 2.1. Although 

there are three methods of decision-making preferences in multi-objective optimization, 

each of them comes with its benefits and issues. 

A priori methods require decision-makers to define the weightage for each 

objective before optimization to generate a solution that is desired. Despite this 

advantage, a priori methods will be difficult if the decision-maker does not have any 

understanding of his preferences, relationships and dependencies of the objectives or 

feasible objective values. Examples of the algorithm in this category are the 

lexicographic method (Stanimirovic, 2012), goal programming (Zhuang & Hocine, 

2018) and weighted sum (Marler & Arora, 2010). 

A posteriori method allows decision making after the optimization process. This 

method category is studied extensively to find a set of Pareto-optimal solutions.  This 

method is more complex than the A Priori method as it needs to balance convergence 

and diversity in its solution to provide a wide range of solutions. Most of the algorithm 

in this category is based on Evolutionary Algorithm (EA) such as Vector Evaluated 

Genetic Algorithm (VEGA) (Mao et al., 2012), Strength Pareto Evolutionary Algorithm 

2 (SPEA2) (He et al., 2017), Multi-objective Evolutionary Algorithm Based on 

Decomposition (MOEA/D) (Zhang et al., 2020), Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) (Cai et al., 2019), and NSGA-III (Cui et al., 2019). 
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On the other hand, interactive methods allow decision-makers to tweak the 

objective values in several iterations of optimization to scope down to the desired 

solutions. The performance of interactive methods is hard to compute as it involves the 

decision maker’s interference from time to time. Examples of the algorithm in this 

category include the NIMBUS method (Saini et al., 2020) and the GUESS method 

(Zhou-Kangas et al., 2017).  

Table 2.1 Multi-Objective Optimization Approaches Based on Decision Making. 

Methods Decision Maker 
Characteristics 

Examples 

A Priori The decision-maker 

defines the preferences 

parameter before 

optimization 

• Lexicographic Method (Stanimirovic, 2012) 

• Goal Programming (Zhuang & Hocine, 

2018) 

• Weighted Sum (Marler & Arora, 2010) 

 

A Posteriori The decision-maker 

decide on a set of 

solutions after 

optimization 

• VEGA (Schaffer, 1985) (Mao et al., 2012) 

• MOEA/D (Zhang & Li, 2007; Li et al., 

2019; Zhang et al., 2020) 

• SPEA2 (Zitzler et al., 2001; He et al., 2017) 

• NSGA-II (Deb et al., 2002; Cai et al., 2019) 

• NSGA-III (Deb & Jain, 2014; Cui et al., 

2019) 

 

Interactive 

Method 

The decision-maker can 

define parameters 

before and after 

optimization iteratively 

until the obtained 

solution is desirable. 

• NIMBUS Method (Miettinen & Mäkelä, 

1995; Zhou-Kangas et al., 2017)  

• GUESS Method (Buchanan, 1997; Saini et 

al., 2020) 

 

Multi-objective Evolutionary Algorithm (MOEA) in the a posteriori category is 

one of the most widely studied research. This is reviewed in detail in Section 2.1.1. 
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2.1.1 Multi-Objective Evolutionary Algorithm (MOEAs) 

A multi-objective evolutionary algorithm is built upon EA. EA is a population-

based stochastic optimization algorithm (Zitzler et al., 2004). It mimics the reproduction 

mechanism of biological evolution at the chromosome level. The population in EA 

contains a set of individuals and each individual indicates a potential solution by the 

end of the optimization process. The population are usually randomly generated at the 

beginning and each of the individuals in the population is assigned a fitness function to 

determine its survival probability. The optimization process then utilizes mating 

selection, and population management mechanisms such as mutation and crossover to 

select a new set of individuals as the potential solution. The process is repeated until the 

stopping criterion is met. The pseudocode is as shown in Algorithm 1. 

Algorithm 1 Evolutionary Algorithm (Zitzler et al., 2004) 

Evolutionary Algorithm (EA) 
Input: Population Size 

Output: Set of Individuals Initialize population 

while stopping condition are not met do 
Evaluate individual fitness  

Select mating individuals 

Apply Population Management Mechanism  

• Crossover 

• Mutation 

Replace old population 

end while 
 

Examples of evolutionary algorithms are genetic algorithm (GA), evolutionary 

programming (EP) and evolution strategy (ES). All of them share the same concept of 

EA with some small differences. For example, GA usually represents the solution in 

binary and applies recombination and mutation mechanism in the searching process 

whereas ES usually works with real number vectors and the mutation mechanism is 

usually emphasized. Similarly, EP follows the concept of EA but does not use any 

crossover mechanism.  
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MOEAs inherit the reproduction mechanism from EA and changes are made to 

the fitness assignment to allow the consideration of multiple objectives. Additionally, 

some MOEAs also utilize preservation mechanisms or elitism to keep the non-

dominated solution from being lost (Deb, 2001). A list of MOEA based algorithms is 

reviewed and classified in the next section. 

2.1.2 Techniques and Categorization of MOEA-based algorithm  

In the early stage of MOEA development, the techniques proposed focused more 

on the way to enable multi-objective solutions. For example, VEGA is the first MOEA 

that uses subpopulations to evaluate different objectives equally (Schaffer, 1985). The 

population in VEGA is partitioned into two smaller groups of individuals (i.e., 

subpopulation). The first subpopulation computes fitness values based on objective one 

while the second subpopulation computes the fitness values based on objective two. 

 Later, the diversity problem was discovered as the VEGA solutions often 

converge around one champion solution. It is vital to provide a diverse range of 

solutions to the decision-makers in MOO. Thus, an algorithm such as Multiple 

Objective Genetic Algorithm (MOGA) (Fonseca et al., 1993), Niched Pareto Genetic 

Algorithm (NPGA) (Horn et al., 1994) and Non-dominated Sorting Genetic Algorithm 

(NSGA) (Srinivas & Deb, 1994) emerged and diversity become an important aspect in 

multi-objective optimization. In MOGA, Pareto dominance-based ranking is used in 

fitness assignment and use niching method for fitness sharing. Similarly, NSGA also 

proposed the usage of non-dominated sorting to assign fitness and use the same niching 

mechanism. On the contrary, NPGA implements tournament-based ranking in the 

selection process and niching fitness sharing. This is deemed more efficient as it only 

uses Pareto ranking on selected individuals.  
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At the end of the 1990s, a new concept called elitism was introduced. Elitism 

allows the best-found individuals (i.e., elites) to be carried over to the next generations. 

This technique is widely implemented in MOEA to enable faster solution convergences. 

Some notable examples are Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler & 

Thiele, 1998), Non-dominated Genetic Algorithm 2 (NSGA-II) (Deb et al., 2002) and 

Pareto Archived Evolution Strategy (PAES) (Corne et al., 2000). These three algorithms 

use an external population that stores the best-found individuals. The external 

population, also known as the archive, is another population created separately from the 

main population to store elite solutions. There is a limit imposed on the size of the 

external populations. Initially, if the offspring generated after reproduction is better than 

its parent, it is added to the external population until the maximum size of the population 

is reached. If a solution dominates the solutions in the external population, the solutions 

that are being dominated will be removed from the external population. If the external 

population is full, then a density comparison will be made to decide which solution will 

stay in the external population.  In SPEA, a clustering strategy is employed to manage 

the external population. The clustering strategy aims to reduce the size of the external 

population by grouping the solutions in the external population into several clusters. 

Then only one solution is chosen from each cluster. Similarly, PAES also utilizes elitism 

but uses a different density comparison that utilizes cells. The search space is divided 

into several cells. Some cells will contain more solutions than others. As such, they are 

known as crowded solutions, and it is less favourable to store a crowded cell of solutions 

in the external archive. On the other hand, NSGA-II utilizes fast non-dominated sorting 

and crowding functions to eliminate the dominated and closely aligned individuals and 

store the non-dominated individuals in the external population. 
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Later, indicator-based MOEA are proposed. The examples are Indicator-Based 

Evolutionary Algorithm (IBEA) (Zitzler & Künzli, 2004), S-Metric Selection MOEA 

(SMS-MOEA) (Beume et al., 2007), An Algorithm for Fast Hypervolume-Based Many- 

Objective Optimization (HypE) (Bader & Zitzler, 2011), Inverse generational 

Distance+ Multi-objective Evolutionary Algorithm(IGD+ MOEA) (Lopez & Coello, 

2016) and Two-stage R2 Indicator based Evolutionary Algorithm (TS-R2EA) (Li et al., 

2018). This type of MOEA includes performance evaluation such as hypervolume in 

HypE algorithm, IGD+ indicator in IGD+MOEA and R2 indicator in TS-R2EA as a 

utility function during the evolutionary process to assess the fitness of individuals.  

Recently, the focus of MOEA is shifting towards many-objective optimization 

which considers more than three objectives. Examples of the many-objective algorithm 

are Non-dominated Sorting Genetic Algorithm 3 (NSGA-III) (Deb & Jain, 2014) and 

clustering-ranking Evolutionary Algorithm (crEA) (Cai et al., 2015). NSGA-III utilizes 

a set of reference points to guide the search to produce more diversified solutions for 

many-objective optimization and crEA employs a clustering technique to promote 

diversity and a ranking technique to promote convergence in solving many-objective 

optimization problems. 

As the number of objectives increases, the diversity and convergence of the 

solutions become harder to balance. Thus, decomposition-based MOEA is becoming 

more popular. The core concept of decomposition is to divide a MOP into several 

subproblems to solve. Besides this, decomposition-based MOEA allows the search to 

be more uniform to obtain more diverse solutions when solving a MOP.  Examples of 

decomposition-based MOEA are Multi-objective Evolutionary Algorithm Based on 

Decomposition (MOEA/D) (Zhang & Li, 2007) and Improved MOEA/D (I-MOEA/D) 

(Zheng et al., 2018), An improved MOEA/D algorithm with Adaptive Evolution 
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Strategy (AES-MOEA/D) (Wang et al., 2020) and MOEA/D with Random Partial 

Update Strategy (MOEA/D-PS) (Lavinas et al., 2020). This category of algorithm is 

discussed in detail in Section 2.2 as it is the focus of this research.  

Table 2.2 summarizes the existing techniques of MOEAs and categorization. 

The techniques of MOEAs are categorized into five different categories (i.e., elitism, 

non-elitism, indicator-based, many-objectives, and decomposition-based). Elitism is a 

mechanic introduced in the late 1990s to preserve elites in a population by allowing 

them to be carried over to the next generation. Earlier version of MOEAs is categorized 

as non-elitism. Besides, as MOEA are evaluated using performance indicators, several 

MOEAs utilized indicators in the search process. Hence, these types of algorithms are 

categorized as indicator-based. Later, MOEAs are also employed to solve many-

objectives problem, the MOEA that build its mechanic to suit the complex searching 

environment of many-objectives are categorized as many-objectives based. The last 

category is decomposition-based where the MOEAs divides the multi-objectives 

problem into several single-objective problems and solves them simultaneously. 
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Table 2.2 MOEAs Techniques and Categorization 

Year Author Algorithm Category 
1985 Schaffer Vector Evaluated Genetic Algorithm (VEGA) Non-Elitism 

1993 Fonseca et 

al. 

Multiple Objective Genetic Algorithm 

(MOGA) 

Non-Elitism 

1994 Srinivas & 

Deb 

Non-dominated Sorting Genetic Algorithm 

(NSGA) 

Non-Elitism 

1994 Horn et al. Niched Pareto Genetic Algorithm (NPGA) Non-Elitism 

1998 Zitzler & 

Thiele 

Strength Pareto Evolutionary Algorithm 

(SPEA) 

Elitism 

1999 Knowles 

and Corne 

Pareto Archived Evolution Strategy (PAES) Elitism 

2000 Corne et al. Pareto Envelope-based Selection Algorithm 

(PESA) 

Elitism 

2001 Zitzler et al. Strength Pareto Evolutionary Algorithm 2 

(SPEA2) 

Elitism 

2002 Deb et al. Non-dominated Genetic Algorithm II 

(NSGA-II) 

Elitism 

2004 Zitzler & 

Künzli 

Indicator-Based Evolutionary Algorithm 

(IBEA) 

Indicator-based 

2007 Beume et al. S-Metric Selection MOEA (SMS- MOEA) Indicator-based 

2007 Zhang & Li Multi-objective Evolutionary Algorithm 

Based on Decomposition (MOEA/D) 

Decomposition-

based 

2011 Bader & 

Zitzler 

An Algorithm for Fast Hypervolume-Based 

Many- Objective Optimization (HypE) 

Indicator-based 

2014 Deb & Jain Non-dominated Sorting Genetic Algorithm III 

(NSGA-III) 

Many-objectives 

 

2015 Cai et al. clustering-ranking Evolutionary Algorithm 

(crEA) 

Many-objectives 

 

2016 Lopez & 

Coello 

Inverse generational Distance+ Multi-

objective Evolutionary Algorithm 

(IGD+ MOEA) 

Indicator-based  

2018 Li & Cheng Two-stage R2 Indicator based Evolutionary 

Algorithm (TS-R2EA) 

Indicator-based  

2018 Zheng et al. Improved MOEA/D (I-MOEA/D) Decomposition-

based  

2019 Wang et al. An Improved MOEA/D algorithm with 

Adaptive Evolution Strategy (AES-MOEA/D) 

Decomposition-

based  

2020 Lavinas et 

al. 

MOEA/D with Random Partial Update 

Strategy (MOEA/D-PS) 

Decomposition-

based  
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2.1.3 Parameter Control in Multi-objective Optimization  

Parameter plays an important in ensuring the good performance of a 

metaheuristic for MOP. There are two different types of parameter settings. The first 

type of parameter setting is parameter tuning, which sets the parameter before the 

optimization. The second type of parameter setting is parameter control. In parameter 

control, the parameters are set during the optimization. Parameter control can be 

classified into three different categories as shown in Figure 2.2 (Eiben et al., 2007). A 

list of multi-objective algorithms that utilize these parameter controls is shown in Table 

2.3. 

 

Figure 2.2 Type of Parameter Control 

 

 

Table 2.3 Parameter Control in MOEAs 

Parameter 
Control 

Author Algorithm  

Deterministic 

Tan et al. (2006) AMO+PAES, PESA, NSGA-II, SPEA2, 

IMOEA 

Tan et al. (2009) AVO+NSGA-II, SPEA2 

Fan et al. (2016) MOEA/D-IEpsilon 

Yang et al. (2017) MOEA/D-PBI + APS, SPS 

 

Adaptive 

Lin et al. (2017) AMOEA 

Li et al. (2011) Adap-MODE 

 

Self-Adaptive Oliver et al. (2017) MOOEA 

 

 

Deterministic parameter control is a parameter control technique that is 

activated at a specified interval. It does not provide any feedback from the search. For 

instance, a time-varying schedule in the form of a step function can be a form of 

Parameter 
Control

Deterministic Adaptive Self-Adaptive
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deterministic parameter control. Tan et al. (2006) designed the adaptive mutation 

operator (AMO) using deterministic parameter control. In the parameter control, the 

mutation is initialized with a high value to promote exploration during the early stage 

of the search process, the mutation is decreased over time to focus on exploitation (Tan 

et al., 2006). This parameter control is also used in adaptive variation operators (AVO) 

(Tan et al., 2009). It is also designed to focus on exploration at the beginning and 

exploitation towards to end of algorithm execution. Besides this, MOEA/D-IEpsilon 

lowers the parameter level, ε (used in epsilon constraint handling) when the generation 

counter reaches the control generation (Fan et al., 2016).  The parameter, ε is obtained 

via a four-rule step function to control the search between infeasible and feasible search 

space. The first rule defines when the value of ε is equal to zero, it will prevent the 

algorithm from exploring the infeasible search space.  The second rule will guide the 

algorithm to search feasible regions and the third rule explores the infeasible region. 

The fourth rule exerts the highest guidance towards the feasible region. On the other 

hand, Yang et al. incorporate the Adaptive Penalty Scheme (APS) to control the setting 

of a parameter, θ by focusing on convergence at the early search stage and diversity at 

the late search stage (Yang et al., 2017). The parameter, θ is a crucial factor to balance 

convergence and diversity whereby a small value of θ will move the search towards 

convergence while a large value of θ will favour diversity. 

The second parameter control technique is adaptive parameter control. It utilizes 

the feedback from search to serve as the input for a mechanism that determines the 

change.  Li et al. integrate adaptive parameter control which changes the values of 

Differential Evolution (DE) crossover rate, CR and mutation scaling factor, F according 

to the recent success rate (Li et al., 2011).  Similarly, Lin et al. proposed an adaptive 

parameter control on the DE parameters, µFi and µCRi by dynamically updating them 




