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MODEL HIBRID BAGI MERAKAM MEMORI JANGKA PANJANG  

DAN KEMERUAPAN DATA HARGA MINYAK MENTAH BRENT  

 

ABSTRAK 

 

Indeks harga minyak mentah Brent biasanya bertingkah laku tidak linear, tidak 

pegun, dan tidak normal dengan ingatan panjang dan heteroskedastisiti yang tinggi; 

oleh itu, menghurai dan mengawal perubahannya adalah sukar. Seterusnya, fenomena 

ini melemahkan kesahan dan ketepatan hasil kaedah ramalan. Oleh itu, kajian ini 

memfokuskan pada kaedah hibridisasi untuk menangkap tingkah laku ingatan panjang 

dan heteroskedastisiti dalam set data dan meningkatkan ketepatan ramalan harga 

minyak mentah Brent. Kebelakangan ini, kaedah hibridisasi untuk model autoregresi 

purata bergerak pecahan bersepadu (ARFIMA) telah diperkenalkan sebagai teknik 

yang berkesan untuk mengatasi tingkah laku tidak linear, tidak pegun, dan tidak 

normal dengan heteroskedastisiti tinggi dalam set data siri masa. Kaedah hibridisasi 

ARFIMA menunjukkan beberapa ciri yang tidak dimiliki oleh kaedah tradisional lain. 

Maka tesis ini mencadangkan tiga model baharu dan 12 teknik yang berbeza 

berdasarkan gabungan dan hibridisasi model ARFIMA dengan teknik ramalan 

tradisional untuk meramalkan harga minyak mentah Brent. Ketiga-tiga model baharu 

tersebut adalah ARFIMA dengan autoregresi bersyarat heteroskedastisiti kuasa 

asimetri (ARFIMA-APARCH), ARFIMA dengan autoregresi bersyarat 

heteroskedastisiti teritlak Glosten, Jagannathan dan Runkle (ARFIMA-GJRGARCH) 

dan ARFIMA dengan GARCH komponen terpiawai (ARFIMA-csGARCH) telah 

dicadangkan. Cadangan ini bertujuan untuk mendapatkan hasil ramalan yang lebih 

baik dan menyelesaikan masalah ketidaktepatan ramalan dalam siri harga minyak. Di 



xx 

 

samping itu, dengan menggunakan set data yang sama, 15 teknik yang berbeza ini 

dibandingkan dengan dua kaedah ramalan individu tradisional. Perbandingan ini 

didasarkan pada satu fungsi pengukuran ralat (iaitu, ralat purata punca kuasa dua 

[RMSE]) dan satu ujian linear (iaitu, ujian Ljung-Box) untuk menilai hasil kaedah 

ramalan yang dicadangkan. Dapatan menunjukkan bahawa menggunakan kaedah 

pemodelan yang berbeza dalam satu model hibrid berdasarkan model ARFIMA 

mengintegrasikan kekuatan model masing-masing dan menghasilkan model hibrid 

yang lebih tepat dan efisien untuk meramalkan harga minyak mentah Brent. Kajian ini 

menunjukkan bahawa model ARFIMA simetri (2,0.3589,2) -IGARCH (1,1) di bawah 

taburan normal dapat digunakan untuk memodelkan dan meramalkan turun naik harga 

minyak mentah Brent dalam jangka pendek. Tambahan pula, model hibrid ini adalah 

yang terbaik di antara 15 model yang dicadangkan berdasarkan nilai RMSE, ARCH-

LM, dan ujian reja Ljung-Box untuk masalah pemodelan taburan reja tidak normal. 

Oleh itu tiga kaedah yang telah dicadangkan adalah sumbangan penting dalam literatur 

kajian tidak linear, tidak pegun, kelakuan tidak normal dengan ingatan panjang dan 

heteroskedastisiti tinggi dalam siri harga minyak mentah Brent. 
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HYBRIDIZATION MODEL FOR CAPTURING LONG MEMORY 

AND VOLATILITY OF BRENT CRUDE OIL PRICE DATA 

 

ABSTRACT 

 

The Brent crude oil price indices are typically nonlinear, nonstationary, and 

non-normal behavior with a long memory and high heteroscedasticity; hence, 

capturing the controlling properties of their changes is difficult. Subsequently, these 

phenomena weaken the validity and the accuracy of the result of the forecasting 

methods. Therefore, this study focuses on the hybridization method to capture long 

memory behavior and heteroscedasticity in the dataset and improve Brent crude oil 

price forecasting accuracy. Recently, the hybridization method for the autoregressive 

fractionally integrated moving average (ARFIMA) model has been introduced as an 

effective technique for overcoming the nonlinear, nonstationary, and non-normal 

behavior with high heteroscedasticity in a time series dataset. ARFIMA hybridization 

method presents several characteristics that other traditional methods do not have. 

Thus, this thesis proposed three new models and employed 12 different techniques 

based on combining and hybridizing the ARFIMA model with traditional forecasting 

techniques to forecast the Brent crude oil price. The three new models, namely, 

ARFIMA with the asymmetric power autoregressive conditional heteroscedasticity 

(ARFIMA-APARCH), ARFIMA  with the Glosten, Jagannathan, and Runkle 

generalized autoregressive conditional heteroscedasticity  (ARFIMA-GJRGARCH), 

and ARFIMA  with the component standard GARCH (ARFIMA-csGARCH) are 

proposed. This proposal aims to obtain improved forecasting results and solve the 

forecasting inaccuracy problem in oil price series. Moreover, using the same dataset, 
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these 15 different techniques are compared with two traditional individual forecasting 

methods. This comparison is based on one error measurement function (namely, root-

mean-square error [RMSE]) and one linear test (namely, Ljung-Box test) to evaluate 

the results of those proposed and employed forecasting methods. The results 

demonstrate that using different modeling methods in one hybrid model based on the 

ARFIMA model integrates the strength of the individual models and produces a more 

accurate and efficient hybrid model for forecasting the Brent crude oil price. This study 

indicates that the symmetric ARFIMA(2,0.3589,2)-IGARCH(1,1) model under 

normal distribution can be used to model and forecast Brent crude oil price volatility 

in the short term. Furthermore, this hybrid model is the best one among all the 15 

considered models based on the RMSE value, the ARCH-LM, and the Ljung-Box tests 

of the residuals for modeling the problem of non-normal residual distribution. 

Therefore, those three proposed techniques are the main contribution to the literature 

of studying the nonlinear, nonstationary, and non-normal behavior with a long memory 

and high heteroscedasticity in the Brent crude oil price data set.   
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CHAPTER 1 

INTRODUCTION 

 

1.1 General Introduction  

          A time series is a collection of numerical observations arranged in regular order. 

These observations are associated with a particular instant or interval of time (i.e., taken 

at either discrete or continuous times) whose observations change over time 

(Bloomfield, 2000). The analysis of time series data is currently an essential topic in 

various research fields, such as economics, agricultural economics, econometrics, 

business, psychology, engineering, and social sciences, especially in forecasting. Time 

series forecasting is vital in developing and extending a model and describing the 

primary relationship of a dataset to study its future movement. Although modeling is a 

useful and important approach when the general sequence and pattern of the dataset are 

unknown, it cannot describe the current and future patterns. Nevertheless, in recent 

decades, numerous attempts have been made to develop and improve time series 

forecasting models in numerous fields and describe data through illustrative, 

satisfactory, and accurate mathematical rules by describing current and future patterns.  

         The use of forecasts in the economic and financial fields is hugely significant at 

all levels, particularly at the national, regional, and international levels. This is because 

forecasts can help investors reduce financial risks and increase profits despite the global 

economic volatility, especially in crude oil prices. Consequently, oil prices and its 

volatility have remained an important study for researchers in economic trends because 

of their importance in managing risk and increasing investment in financial and 

industrial markets. Therefore, an untraditional and accurate statistical technique must be 

used to describe the changes in these prices in terms of increasing and decreasing trends. 
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Besides volatility, the long memory is another feature the getting attention from 

researchers of oil prices.  

         In recent year, researchers in finance and economic literature realized the 

importance of long memory in analyzing time series data (Mostafaei and Sakhabakhsh, 

2012). In modeling long memory behavior for any time series, the operation can usually 

be performed accurately by relying on autoregressive fractionally integrated moving 

average (ARFIMA) models compared with ARIMA models. Thus, the ARFIMA is long 

memory models mostly used in time series research (Karia et al., 2013). Meanwhile, 

volatility is an important consideration for any time series. Volatility can exist in some 

time series, especially in crude oil prices (Lee and Huh, 2017). Therefore, studying 

volatility is necessary.  

         Different methods and approaches have been applied to improve modeling and 

forecasting. Furthermore, modeling and forecasting methods are being increasingly 

used by researchers. Common examples of these methods include the ARIMA, 

ARFIMA, the generalized autoregressive conditional heteroscedasticity (GARCH), 

artificial neural network (ANN), Kalman filter (KF), and Holt-Winters (HW) methods. 

The individual model is also a standard forecasting method and a common approach 

used in several previous studies. An additional strategy for obtaining accurate forecasts 

is using a hybrid method (i.e., based on more than one model) to obtain future data 

forecasts and overcome the disadvantages of individual models, such as those that 

manage non-normal residuals. These hybrid methods can help solve problems with 

linear and nonlinear structures.  

         Based on the above, ARIMA (p,d,q) models are a popular method in modeling 

time series data by assuming the differencing parameter (d) as an integer value. In the 
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event that this model is extended, assuming the differential parameter (d) value has a 

fractional value between −0.5 < d < 0.5, this kind of model with long memory behavior 

can be classified as an ARFIMA (p,d,q) model. ARFIMA models are linear time series 

models, but they are unsuitable for time series containing nonlinear structures. The 

ARFIMA model has been used and implemented in different areas, such as in prices. 

This model is also used to fit time series data to understand data or forecast the future. 

The GARCH-type models are considered the most prominent tools to capture the 

mentioned changes (Arachchi, 2018) in terms of symmetric and asymmetric effects. 

         Meanwhile, ANNs have been applied to various disciplines, such as system 

identification and control, decision making, pattern recognition, medical diagnosis, 

finance, data mining, and visualization, among others (Chen et al., 2018). These models 

can model any time series regardless of the structure of the series, and they are known 

to yield good forecasting results. Another method, KF, can be used to obtain optimal 

and high-accuracy forecasts (Xu et al., 2017). The HW method is a simple, fast, and 

inexpensive procedure that is widely used in forecasting as it can cope with trends and 

seasonal variations (Chatfield, 1978; Gamberini et al., 2010; Tratar, 2013). All the above 

mention methods have contributed a lot to the forecasting field.  

         As such, this present study focuses on employing ARFIMA to aid in forecasting 

Brent crude oil prices by integrating ARFIMA with existing forecasting methods. 

Subsequently, 15 forecasting models are employed. The experimental results of the 15 

models show that each has had its own strengths and weaknesses in terms of accuracy 

forecasting measure and test, as will be discussed in later sections. Furthermore, 

ARFIMA has attracted researchers attention, especially when hybridizing nonstationary 

and nonnormality time series in several fields. 



4 

 

 

1.2 Problem Statement 

         Time series forecasting methods have effectively solved most of the forecasting 

problems in various fields, especially in the financial and economic time series. 

However, four major problems related to Brent crude oil prices dataset currently exist, 

which include the following: 

1. The first problem is that it assumes the normality of the dataset and the normal 

distribution for the residuals in the modeling phase. The studied forecasting 

methods assumed that a normal relationship exists between the time series 

observations and the residuals. Thus, the normality assumption in real-life 

time series data (such as Brent crude oil prices data) is not always right.  

2. The second problem of time series dataset forecasting methods is that it 

assumes the stationary on the dataset. In another meaning, the existed 

forecasting methods assumed that the properties of the time series (i.e., mean, 

variance, and autocorrelation) do not depend on the time where the time series 

is observed. Therefore, the studied methods used the transformation between 

data to overcome this problem. Nonstationary problem was confirmed by 

Ismail and Awajan, 2017; Xu et al., 2017.  

3. The third problem of the time series forecasting methods is that it assumes 

the linearity of the dataset. The studied forecasting methods assumed that a 

linear relationship exists between the time series observations. Thus, the 

linearity assumption in real time series data (such as Brent crude oil prices 

data) is not always right. This problem was also reported by Zhang, 2003; 
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Ebrahim et al., 2013; Montgomery et al., 2015; Ismail and Awajan, 2017; 

Tadesse and Dinka, 2017; Al-Gounmeein and Ismail, 2020. 

4. The Brent crude oil prices dataset does not follow statistical time series 

assumptions, such as data stability. Moreover, the changes in financial and 

economic market conditions, such as the supply, demand, and industry 

environment, can cause significant volatilities that mainly affect financial 

market data and stock exchange. Subsequently, volatility is an essential 

consideration in any time series, especially that of oil prices, given that the 

modality of these data grows exponentially, nonstationary, and are volatile. 

Moreover, Brent crude oil prices expectations remain highly important for 

investors and researchers. They pose a challenging problem to them due to 

the unique characteristics of these prices and their remarkable impact on 

various economic global sectors, particularly in the current COVID-19 

pandemic. The volatility problem was also notified by Ebrahim et al., 2013; 

Jibrin et al., 2015; Lee and Huh, 2017; Ambach and Ambach, 2018; Bukhari 

et al., 2020; Dhliwayo et al., 2020. 

         These problems motivated this study to develop three new forecasting 

hybridization models and compare 15 forecasting methods, including individual and 

hybrid methods, which are highly efficient. The 15 forecasting methods in this study 

will overcome the problems of existing forecasting models (i.e., the non normality, the 

non stationarity, the nonlinearity, and the heteroscedasticity in time series dataset).  
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1.3    Research Questions 

         Based on the problems previously discussed, the research questions of this thesis 

can be derived as follows: 

1.    What are the necessary conditions to ensure the effectiveness and accuracy of 

an individual or hybrid ARFIMA models when modeling real time series 

dataset, especially Brent crude oil prices dataset?  

2.  Can we find the best solutions and the best ways in spite of the existing 

problems? 

3.   Despite the numerous studies on the volatility of Brent crude oil prices, this 

question remains unanswered: which volatility GARCH-type model 

(symmetric or asymmetric type) is most appropriate for modeling the problem 

of non-normal residual distribution for the individual ARFIMA model?  

4.   What is the best methodology for ANN as an alternative to the GARCH and 

ARCH models when dealing with the hybridization approaches in the 

ARFIMA models? 

5.    Despite the numerous studies on Brent crude oil prices, the following question 

remains unanswered: which hybridization approach is the most appropriate 

for modeling the problem of non-normal residual distribution for the 

individual ARFIMA model? 

To answer these questions, 15 prediction methods have been considered in this study. 

 

1.4    Research Hypothesis 

         Based on the sections above, the following hypothesis has been formulated: the 

model with the best Akaike information criterion (AIC) value does not necessarily 
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produce the most outstanding forecast model for the dataset. Thus, this study dealt with 

the three models that have the smallest value for this criterion and compared them with 

one another to test this hypothesis. 

         This hypothesis proposed in this section is unique, given the nature of the studies 

results obtained and the methods used, which relates to this thesis, as will be discussed 

in Chapter 5. 

 

1.5    Research Objectives 

         To answer these research questions and the research hypothesis, the thesis is 

centered on the forecasting performance of nonlinear, nonstationary, and non-normal 

Brent crude oil prices data with high heteroscedasticity based on the ARFIMA method 

with the following objectives: 

1. to verify the presence of long memory feature in the real dataset by using 

numerous different methods. 

2. to determine the best appropriate hybridization approach for modeling the 

problem of non-normal residual distribution for the individual ARFIMA 

models and to subject the model to various statistical testings. 

3. to identify all conditions that necessary to ensure the effectiveness and 

accuracy of an individual or hybrid ARFIMA models when modeling the real 

dataset. 

4. to compare all models based on AIC value to test the effectiveness of this 

criterion. 

5. to close the gap in the literature by solving the problems for the individual 

ARFIMA models (i.e., the nonnormality, the nonstationarity, the 
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nonlinearity, and the heteroscedasticity in the time series dataset) by using the 

hybrid technique.  

 

1.6    Scope of the Study 

         This thesis focuses on solving the problem of forecasting accuracy in the 

nonlinear, nonstationary, and non-normal Brent crude oil prices series data with high 

heteroscedasticity by considering 15 forecasting models based on ARFIMA. It also 

focuses on using hybrid models to overcome the disadvantages of individual models, 

such as those that manage non-normal residuals. The monthly Brent crude oil prices 

series data are used in this study, as will be discussed in Section 4.1. 

 

1.7    Significance of the Study 

         The forecasting accuracy of the Brent crude oil prices is important and must be 

studied by researchers, investors, economists, stock market regulators, decision makers 

worldwide. Brent crude oil price data are nonlinear, nonstationary, and non-normal 

behavior with high heteroscedasticity; hence, capturing the controlling properties of 

their changes is difficult. Subsequently, these phenomena weaken the forecasting 

execution of most time series forecasting methods. This study intends to address these 

problems by employing new three techniques and compared with 12 traditional 

forecasting methods on the basis of the combination and hybridization of ARFIMA, 

which is an efficient technique in dealing with nonlinear, nonstationary, and non-normal 

time series data, and several traditional models. The three new models combine 

ARFIMA with APARCH, GJRGARCH, and csGARCH, respectively. The remaining 

12 models combine ARFIMA with sGARCH, fGARCH, EGARCH, TGARCH, 
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IGARCH, AVGARCH, NGARCH, NAGARCH, APARCH, GJRGARCH, csGARCH, 

MLP, KF, MHW, and AHW, respectively. This study proves that the forecasting of the 

Brent crude oil prices series by the 15 proposed and employed models have their own 

strengths and weaknesses based on accuracy forecasting measure and test. In addition, 

this thesis used better methods than the traditional methods in obtaining forecasting 

results with more accuracy, which will be discussed in Chapter 5. Thus, these results 

contribute to the body of knowledge on time series analysis in terms of forecasting 

economic and financial time series data. 

 

1.8    Thesis Organization  

         The remaining structure of the thesis is organized as follows: Chapter 2 presents a 

review of related literature and the background of ARFIMA and introduces the long 

memory in literature with the forecasting methods that are used in this study. Chapter 3 

presents the proposed and the employed forecasting methods (i.e., hybrid of ARFIMA-

sGARCH, ARFIMA-fGARCH, ARFIMA-EGARCH, ARFIMA-TGARCH, ARFIMA-

IGARCH, ARFIMA-AVGARCH, ARFIMA-NGARCH, ARFIMA-NAGARCH, 

ARFIMA-APARCH, ARFIMA-GJRGARCH, ARFIMA-csGARCH, ARFIMA-MLP, 

ARFIMA-KF, ARFIMA-MHW, and ARFIMA-AHW methods). The statistical 

information criteria, the root mean square error (RMSE), and time series testings are 

also presented in Chapter 3. Chapter 4 presents an analysis of the monthly Brent crude 

oil prices data used in this study. Chapter 5 discusses the results obtained from the 

application of the proposed methodologies. Finally, Chapter 6 concludes the research 

work by summarizing the findings and future work. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1    Introduction 

         This chapter contains fifteen sections. The second section presents a brief 

description of heteroscedasticity definition. The third section reports nonstationary 

time series properties. The fourth section describes the nonnormality in the time series 

and how to deal with it. The fifth section discusses the existence of nonlinear behavior 

in any time series. The sixth section describes and explains the various time series 

volatility techniques that are either used or compared with the forecasting methods 

employed in this thesis, which are GARCH-type models in terms of symmetric and 

asymmetric effects. The seventh section provides a brief theoretical explanation of 

several graphs and statistical tests that are used to verify the long memory feature in 

time series and some methods and functions that are used to estimate the long memory 

parameter. This section also presents the ARFIMA model. The eighth section discusses 

ANN, particularly MLP, as explained in the literature. The ninth section reviews a 

description of the KF technique and explains SS modeling. The tenth section describes 

two types of the HW method, namely, AHW and MHW, as presented in the literature. 

The eleventh section discusses the employed hybrid method. The twelfth section 

provides an overview of developments in the field of ARFIMA methodology and its 

application in different areas. The thirteenth section lists recent studies that applied 

ARFIMA to forecasting time series. An overview of oil price changes and their 

volatility is discussed in the fourteenth section. The last section summarizes this 

chapter.  
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2.2    Heteroscedasticity 

         In statistics, heteroscedasticity (also known as heteroskedasticity) occurs when 

the variance or any other statistical dispersion measure (deviation or variation) of a 

variable in the time series dataset is nonconstant. Conditional heteroskedasticity 

identifies the nonconstant volatility related to prior periods of volatility (e.g., daily or 

monthly), which means that any new values depend on others. Another definition for 

this concept is as follows: if heteroscedasticity exists, then the model residuals cannot 

be independent. Thus, a good model yields residuals similar to a white noise process, 

and it requires the following: mean zero, constant variance, and no autocorrelation (i.e., 

independent residuals). Meanwhile, the opposite of heteroscedasticity is 

homoscedasticity (also known as homoskedasticity). Homoscedasticity refers to a 

condition in which the residuals variance is constant, which is one of the assumptions 

of linear regression modeling. Moreover, heteroscedasticity can be tested using the 

Lagrange multiplier test (David et al., 2016), as will be discussed in Section 3.4.4. 

 

2.3    Non Stationarity 

         A time series is a strictly stationary time series if its statistical properties are not 

affected by a change in time. It is often characterized as a constant probability 

distribution in time (Montgomery et al., 2015). Stationary time series implies a type of 

statistical stability in the data in terms of the mean, variance, and covariance, as 

reported by Montgomery et al. (2015) as follows: 

i. The expected value of the time series 𝑥𝑡 is fixed, finite, and does not depend on 

time 𝑡, which is defined as: 𝜇𝑥 = E(𝑥𝑡). 

Consequently, the time series has a constant mean. 
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ii. The variance of the time series 𝑥𝑡 is fixed and finite and does not depend on 

time 𝑡, which is defined as follows: 𝜎𝑥
2 = 𝑉𝑎𝑟(𝑥) = 𝐸(𝑥2) − 𝜇2. 

Consequently, the time series has constant variance. 

iii. The autocovariance function defined as 𝐶𝑜𝑣(𝑥𝑡 , 𝑥𝑡+𝑘) for any lag(𝑘) is 

dependent only on a function of 𝑘 (where 𝑘 is the number of periods) and not 

dependent on time 𝑡, which is defined as follows: 𝐶𝑜𝑣(𝑥𝑡 , 𝑥𝑡+𝑘) =

𝐸[(𝑥𝑡 − 𝜇)( 𝑥𝑡+𝑘 − 𝜇)] = 𝛾𝑘.  

         The MA(q) process (Section 2.7.4) is always stationary regardless of the values 

of the weights. Based on the above, these features are the characteristics of the 

stationary time series. Otherwise, the time series is nonstationary, as will be discussed 

in Section 3.4.1. 

 

2.4    Non Normality 

         In all fields of time series, it is necessary to apply statistical methods in a correct 

way. The most commonly used between them is the normal assumption. The statistical 

framework is based on the assumption of normality in the time series and if this 

assumption is violated, the inference breaks down (Das and Imon, 2016). In that case, 

outliers can be dealt with by transforming the dataset to correct the nonnormality 

problems (Field, 2009). So, it is essential to test this assumption before any statistical 

analysis of the dataset (Das and Imon, 2016). In statistics, the normality assumption 

can be checked by graphical and statistical tests (Öztuna et al., 2006), as will be 

discussed in Section 3.4.2. 

 



13 

 

 

2.5    Nonlinearity 

         The time series 𝑥(𝑡) is a nonlinear time series if it cannot be modeled by the 

linear model, and a nonlinear structure cannot be found in linear systems (Theiler et 

al., 1992; Zhang, 2003). Suppose the errors are normally distributed, as is commonly 

assumed, then a linear model results in a normally distributed process. In that case, 

meanwhile, the predictive distributions of nonlinear models are generally non-normal 

and often difficult (Cryer and Chan, 2008). Accordingly, the residuals of the models 

always provide information about the existence of linearity or not. Thus, several tests 

have been proposed to test the linearity characteristic when analyzing time series data 

in the literature, as will be discussed in Section 3.4.3. 

 

2.6    Volatility 

          Interest in modeling the volatility of time series has remained high in recent 

years. Volatility is an essential consideration in any time series, as evidenced by various 

studies related to finance, economics, tourism, and other areas where data are widely 

scattered (Tendai and Chikobvu, 2017; Akter and Nobi, 2018). Apparent volatilities 

can appear in several time series types, particularly that of crude oil prices (Lee and 

Huh, 2017). Consequently, volatilities should be examined to avoid inaccuracies in 

developing plans and strategies, either for critical current decisions or future forecasts. 

Moreover, the impact of volatilities when forecasting should be determined to avoid 

financial risks that may cause losses to investors considering that the forecasting of 

financial time series data is only one of the challenging tasks caused by nonstationarity 

and nonlinearity (Ismail and Awajan, 2017). These phenomena are popular features of 
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different data. Ramzan et al. (2012) reported that GARCH-type models had been 

confirmed successful in forecasting volatility in many cases. GARCH-type models are 

currently considered the most prominent tools for capturing the previously mentioned 

changes (Arachchi, 2018). Thus, our thesis intends to explain many GARCH-type 

models in terms of symmetric and asymmetric effects, as discussed in the next sections. 

         Bollerslev (1986) expanded the ARCH model with order 𝑞, which was previously 

developed by Engle (1982) as the GARCH model with order (𝑝, 𝑞) (Francq and 

Zakoian, 2019). The first model was dependent on uncorrelated random error 𝜀𝑡 values, 

but the GARCH model relies on conditional variation 𝜎𝑡   
2 . Hence, the general form of 

the 𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) model was specified by Francq and Zakoian (2019) as follows: 

                            𝜀𝑡 = 𝜂𝑡𝜎𝑡     ,                  𝑤𝑖𝑡ℎ     𝜂𝑡  𝑁(0,1)~
𝑖𝑖𝑑                                   (2.1) 

                            𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2𝑞
𝑖=1 + ∑ 𝛽𝑗

𝑝
𝑗=1 𝜎𝑡−𝑗   

2  ,                                       (2.2) 

where 𝜔 > 0, 𝛽𝑗 ≥ 0, and 𝛼𝑖 ≥ 0 are constants;  𝑖 = 1,2, … 𝑞;  𝑗 = 1,2, … 𝑝; and 𝑡 ∈

ℤ. If  𝛽𝑗 = 0, then Equation (2.2) is called 𝐴𝑅𝐶𝐻(𝑞). If 𝑝 = 𝑞 = 0, then Equation (2.2) 

is a white noise. If the conditional variance of the process is unknown, then the 

asymptotic quasi-likelihood (AQL) method, which integrates the kernel procedure, is 

used to estimate the parameter of the GARCH model (Alzghool, 2017). Accordingly, 

some symmetric (i.e., univariate models) and asymmetric (i.e., nonlinear models) 

GARCH-type models are described. The specific extensions of the GARCH model are 

elucidated in the succeeding sections. 
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2.6.1   Symmetric Generalized Autoregressive Conditional Heteroscedasticity 

(GARCH)-type Models  

2.6.1(a) Standard GARCH (sGARCH) 

              The conditional variance 𝜎𝑡
2 at time 𝑡 is expressed by the symmetric effects of 

the sGARCH model (Singh et al., 2016). The formula of this model is similar to that 

of Equation (2.2), in which 𝜀𝑡 is considered the residual returns of Equation (2.1), as 

mentioned earlier (Miah and Rahman, 2016). 

 

2.6.1(b) Integrated GARCH (IGARCH) 

              The IGARCH model is a unit root GARCH model (Tsay, 2010). That is, the 

IGARCH (p, q) formula is given by ∑ 𝛼𝑖
𝑞
𝑖=1 + ∑ 𝛽𝑗

𝑝
𝑗=1 = 1 (Francq and Zakoian, 

2019). Singh et al. (2016) stated that the IGARCH model belongs to the family of 

symmetric GARCH models. 

 

2.6.1(c) Component Standard GARCH (csGARCH) 

              Ding and Granger (1996) introduced the csGARCH model. Engle and Lee 

(1999) subsequently developed this model and concluded that volatilities exhibit long-

term and short-term movements. The specific formula of the csGARCH (1,1) model 

given by Engle and Lee (1999) is as follows: 

            𝜎𝑡
2 = 𝑞𝑡 + 𝛼1(𝜀𝑡−1

2 − 𝑞𝑡−1) + 𝛽1(𝜎𝑡−1
2 − 𝑞𝑡−1) ,                                          (2.3) 

where      

            𝑞𝑡 = 𝜔 + ρ𝑞𝑡−1 + ϕ(𝜀𝑡−1
2 − 𝜎𝑡−1

2 ) ,                                                                 (2.4) 
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where 𝜔 > 0,  𝛼1 ≥ 0, 𝛽1 ≥ 0, and ϕ ≥ 0. If ρ < 1 and 𝛼1 + 𝛽1 < 1, then weak 

stationarity holds (Chu et al., 2017). The general formula of the csGARCH (p,q) model 

in accordance with Hemanth and Patil (2017) is presented as follows: 

    𝜎𝑡
2 = 𝑞𝑡 + ∑ 𝛼𝑖

𝑞
𝑖=1 (𝜀𝑡−𝑖

2 − 𝑞𝑡−𝑖) + ∑ 𝛽𝑗
𝑝
𝑗=1 (𝜎𝑡−𝑗

2 − 𝑞𝑡−𝑗) ,                                 (2.5) 

where        

             𝑞𝑡 = 𝜔 + ρ𝑞𝑡−1 + ϕ(𝜀𝑡−1
2 − 𝜎𝑡−1

2 ) .                                                                (2.6) 

              The aforementioned authors indicated that this model can also analyze 

conditional variance as two components: permanent component of volatility 𝑞𝑡 and 

transitory component of volatility (𝜎𝑡−𝑗
2 − 𝑞𝑡−𝑗). In addition, Zhang et al. (2018) 

explained that the 𝑞𝑡 component can measure systematic risk, where ρ is utilized as a 

coefficient to measure the persistence of the permanent component. The term (𝜀𝑡−1
2 −

𝜎𝑡−1
2 ) is the prediction error that renders the long-term volatility variant, and the term 

(𝜎𝑡−𝑗
2 − 𝑞𝑡−𝑗) measures non-systematic risk. These authors also mentioned that 

coefficients ϕ and 𝛼𝑖 can measure the short-term external shock effects of the 

permanent and transitory components, respectively. 

 

2.6.2    Asymmetric Generalized Autoregressive Conditional Heteroscedasticity 

(GARCH)-type Models  

2.6.2(a) Functional GARCH (fGARCH) 

              Considering the urgent need to describe the high-frequency volatilities that 

abound in financial data, an appropriate rational description of the problem may be 

considered for the function (Francq and Zakoian, 2019). Hörmann et al. (2013) 

previously suggested the functional approach of the ARCH model. Then, Aue et al. 
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(2017) expanded the approach as discussed in Francq and Zakoian (2019). In particular, 

Aue et al. (2017) focused on the fGARCH (1,1) model and defined it as follows: 

                              𝜎𝑖
2 = 𝛿 + α𝜀𝑖−1

2 + β𝜎𝑖−1
2    ,                                                             (2.7)  

where 𝜀𝑡 is a sequence of random functions that satisfy Equation (2.1), i.e., 𝛿 ≥ 0, 𝛼 ≥

0,   𝛽 ≥ 0, and  𝑖 ∈ ℤ. Furthermore, 𝑡 ∈ [0,1] and 𝑥 are arbitrary elements of the 

Hilbert space ℋ = 𝐿2[0,1], and the integral operators α  and  β are defined by (𝛼𝑥)𝑡 =

∫ 𝛼(𝑡, 𝑠)𝑥(𝑠)𝑑𝑠
1

0
 and (𝛽𝑥)𝑡 = ∫ 𝛽(𝑡, 𝑠)𝑥(𝑠)𝑑𝑠

1

0
, respectively. In addition, the integral 

kernel functions α(𝑡, 𝑠) and β(𝑡, 𝑠) are elements of 𝐿2[0,1]2. Researchers naturally 

question how the asymmetric fGARCH models are created and their relationship and 

respective differences with classic asymmetric GARCH-type models (Sun and Yu, 

2019). As mentioned previously, the method depends on a daily division of data 

(Francq and Zakoian, 2019), with the possibility of using other time units (Aue et al., 

2017), e.g., monthly.  

 

2.6.2(b) Exponential GARCH (EGARCH) 

              Nelson (1991) proposed that the asymmetric EGARCH model can solve 

various defects, such as nonnegative constraints and leverage effects, caused by the 

ARCH and GARCH models (Arachchi, 2018). Black (1976) studied the leverage 

effect, which includes the asymmetric effect of past positive and negative values on the 

recent volatility (Francq and Zakoian, 2019). The description of the 𝐸𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) 

model provided by Francq and Zakoian (2019) is as follows: 

                            𝜀𝑡 = 𝜂𝑡𝜎𝑡  ,                  𝑤𝑖𝑡ℎ        𝜂𝑡  𝑁(0,1)~
𝑖𝑖𝑑                                   (2.8) 

                       𝑙𝑛𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖

𝑞
𝑖=1 g(𝜂𝑡−𝑖) + ∑ 𝛽𝑗

𝑝
𝑗=1 𝑙𝑛𝜎𝑡−𝑗   

2 ,                              (2.9) 
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where  

                        g(𝜂𝑡−𝑖) = 𝜃𝜂𝑡−𝑖 + 𝜉(|𝜂𝑡−𝑖| − 𝐸|𝜂𝑡−𝑖|) ,                                            (2.10) 

where 𝜔, 𝛼𝑖 , 𝛽𝑗, θ, and 𝜉 are real numbers; and 𝜎𝑡 > 0. 

 

2.6.2(c) Threshold GARCH (TGARCH) 

              Another volatility model that is typically applied to address the leverage effect 

is the TGARCH model, as proposed by Glosten et al. (Tsay, 2010). The TGARCH 

model focuses on the asymmetric effects of good or bad news (Arachchi, 2018). The 

formula of the TGARCH (p, q) model provided by Tsay (2010) is as follows: 

                             𝜎𝑡
2 = 𝜔 + ∑ (𝛼𝑖+𝛾𝑖𝑁𝑡−𝑖)𝜀𝑡−𝑖

2𝑞
𝑖=1 + ∑ 𝛽𝑗

𝑝
𝑗=1 𝜎𝑡−𝑗   

2 ,                     (2.11) 

where  

                            𝑁𝑡−𝑖 = {
 1      𝑖𝑓   𝜀𝑡−𝑖 < 0 
0     𝑖𝑓   𝜀𝑡−𝑖 ≥ 0 

} ,                                                          (2.12) 

where 𝜔 > 0, 𝛼𝑖 ≥ 0, 𝛾𝑖 ≥ 0, and 𝛽𝑗 ≥ 0. In Equation (2.11), 𝜀𝑡−𝑖 ≥ 0 indicates that 

bad news contributes 𝛼𝑖𝜀𝑡−𝑖
2  to 𝜎𝑡

2. By contrast, 𝜀𝑡−𝑖 < 0 indicates that good news 

entails considerably more substantial impact (𝛼𝑖+𝛾𝑖)𝜀𝑡−𝑖
2  with 𝛾𝑖 ≥ 0 (Tsay, 2010; 

Arachchi, 2018). 

 

2.6.2(d) Absolute Value GARCH (AVGARCH) 

              Taylor (1986) and Schwert (1989) introduced the AVGARCH model, as 

reported by Francq and Zakoian (2019). This asymmetric model describes the 

conditional standard deviation as a linear combination of the absolute value of the 
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shock and the lagged conditional standard deviation (Hentschel, 1995). The formula of 

the asymmetric AVGARCH (p, q) model is given by Zhang et al. (2017) as follows: 

  𝜎𝑡 = 𝜔 + ∑ 𝛼𝑖𝜎𝑡−𝑖[|𝜀𝑡−𝑖 − 𝑏| − 𝑐(𝜀𝑡−𝑖 − 𝑏)]
𝑞
𝑖=1 + ∑ 𝛽𝑗

𝑝
𝑗=1 𝜎𝑡−𝑗  ,                       (2.13) 

where 𝜔 > 0, 𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0, and |𝑐| ≤ 1. Moreover, parameters b and c are called the 

shift factor and rotation factor, respectively, which impose shift and rotation properties 

into the 𝜀𝑡−𝑖 − ( |𝜀𝑡−𝑖 − 𝑏| − 𝑐(𝜀𝑡−𝑖 − 𝑏)) space, as detailed in Zhang et al. (2017). 

 

2.6.2(e) Nonlinear GARCH (NGARCH) 

              The NGARCH model (Higgins and Bera, 1992; Hsieh and Ritchken, 2005; 

Duan et al., 2006) is a symmetric-type model (Rezitis and Stavropoulos, 2010), and it 

exhibits the leverage effect. This model demonstrates the desirable feature of stock 

return (Emenogu et al., 2018). The formula of the NGARCH (p, q) model in accordance 

with Emenogu et al. (2018) is as follows: 

            𝜎𝑡 = 𝜔 + ∑ 𝛼𝑖
𝑞
𝑖=1 𝜀𝑡−𝑖

2 + ∑ 𝛾𝑖
𝑞
𝑖=1 𝜀𝑡−𝑖 + ∑ 𝛽𝑗

𝑝
𝑗=1 𝜎𝑡−𝑗 ,                                 (2.14) 

where all the parameters in Equation (2.14) satisfy the requirements of the GARCH 

model. 

 

2.6.2(f) Nonlinear Asymmetric GARCH (NAGARCH) 

              The NAGARCH model was suggested by Engle and Ng (1993). The 

NAGARCH (p, q) model determines the shocks and volatilities of the past period. Its 

general equation provided by Rezitis and Stavropoulos (2010) is as follows: 

            𝜎𝑡 = 𝜔 + ∑ 𝛼𝑖
𝑞
𝑖=1 (𝜀𝑡−𝑖 + ν √𝜎𝑡−𝑖)

2 + ∑ 𝛽𝑗
𝑝
𝑗=1 𝜎𝑡−𝑗 .                                  (2.15) 
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              The parameters in Equation (2.15) satisfy the aforementioned requirements. 

In this formula, ν is called the asymmetry parameter. If ν ≠ 0, then asymmetry occurs 

(Rezitis and Stavropoulos, 2010). 

 

2.6.2(g) Asymmetric Power ARCH (APARCH) 

              The generalized version of the ARCH model as proposed by Ding et al. (1993) 

is known as the APARCH(p, q) model, and the following formula represents it: 

            𝜎𝑡
𝛿 = 𝜔 + ∑ 𝛼𝑖

𝑞
𝑖=1 (|𝜀𝑡−𝑖| − 𝛾𝑖 𝜀𝑡−𝑖)

𝛿 + ∑ 𝛽𝑗
𝑝
𝑗=1 𝜎𝑡−𝑗

𝛿  ,                                (2.16) 

where 𝜔 > 0, 𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0, δ ≥ 0, and |𝛾𝑖| < 1. Hentschel (1995) proposed the 

family of GARCH models as a comprehensive model that combines a variety of other 

popular symmetric and asymmetric GARCH models, including the APARCH model. 

Moreover, the APARCH model also belongs to the family of asymmetric GARCH 

models (Singh et al., 2016). Notably, the apARCH model is a variance model in the 

rugarch package of R software. By contrast, the APARCH model is a submodel of the 

fGARCH model in the same package. 

 

2.6.2(h) Glosten, Jagannathan, and Runkle GARCH (GJRGARCH) 

              Another extension of the GARCH model is the GJRGARCH model proposed 

by Glosten et al. (1993). This model exhibits an asymmetric effect (Engle and Ng, 

1993). It also assumes a particular parametric form for conditional heteroscedasticity 

in a zero-mean white noise series (Emenogu et al., 2018). The GJRGARCH (p, q) model 

is given by the following general formula (Rezitis and Stavropoulos, 2010; Emenogu 

et al., 2018; Francq and Zakoian, 2019):  
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             𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖

𝑞
𝑖=1 𝜀𝑡−𝑖

2 + ∑ 𝛾𝑖
𝑞
𝑖=1 𝑆𝑡−𝑖

+  𝜀𝑡−𝑖
2 + ∑ 𝛽𝑗

𝑝
𝑗=1 𝜎𝑡−𝑗

2   ,                      (2.17) 

where          

          𝑆𝑡−𝑖
+ = {

 1      𝑖𝑓   𝜀𝑡−𝑖 > 0 
0     𝑖𝑓   𝜀𝑡−𝑖 ≤ 0 

} ,                                                                (2.18) 

where 𝜔 > 0, 𝛼𝑖 ≥ 0,  𝛽𝑗 ≥ 0, and ∑𝛼𝑖 + ∑𝛽𝑗 < 1; while |𝛾𝑖| ≤ 1 (Emenogu et al., 

2018) is called an asymmetry parameter. If 𝛾𝑖 ≠ 0, then asymmetry occurs; if 0 < 𝛾𝑖 ≤

1, then a positive shock causes more volatility than a negative shock of the same size 

(Rezitis and Stavropoulos, 2010). Notably, the gjrGARCH model corresponds to the 

variance model in the rugarch package of R software. By contrast, the GJRGARCH 

model is a submodel of the fGARCH model in the same package. 

 

2.7    Long Memory 

         Long memory is a phenomenon that can be observed in a time series; it manifests 

when the distance between two points is increased (Bahar et al., 2017), and it 

considerably affects the financial field in term of various transformations of stock index 

returns under the sub-categories; credit quantity aggregates, price indexes, stock prices, 

exchange rates and interest rates (Bhardwaj and Swanson, 2006). Experimental 

research on long memory processes dates back to Hurst (1951), who studied the 

hydrological properties of the Nile Basin. However, interest in using long memory 

models for economic data series was elicited when Granger and Joyeux (1980) 

observed that many such series are nonstationary in terms of the mean value. 

         Here, we explain the concept of long memory in a time series as presented by 

Palma (2007) and Hassler (2019). Suppose that 𝜌(ℎ) is the autocovariance function at 

lag(ℎ) of a stationary process 𝑦𝑡: 𝑡 ∈ ℤ. Then, 𝑦𝑡 exhibits long memory if the 
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autocorrelation sequence decays extremely slowly such that it is not absolutely 

summable, as follows: 

∑ |𝜌(ℎ)|

∞

ℎ=−∞

= ∞ ,                                                                          (2.19) 

where                     𝜌(ℎ) = E(𝑦𝑡, 𝑦𝑡+ℎ) .                                                                             (2.20) 

Otherwise, 𝑦𝑡 exhibits short memory if the following formula is verified: 

∑ |𝜌(ℎ)|

∞

ℎ=−∞

< ∞ .                                                                        (2.21) 

However, several graphs and statistical tests are used to verify the long memory feature. 

These graphs and tests are as follows. 

 

2.7.1      Verifying the Long memory Feature by Using Graphs 

              Many graphs provide an indication of the existence of the long memory 

feature. They include the autocorrelation function (ACF), range over the standard 

deviation (R/S), variance, variogram, spectral density function, and Higuchi plots. 

 

2.7.1(a) Autocorrelation Function Plot 

              A long memory phenomenon can be specified when ACF decays more slowly 

than exponential decay (Bahar et al., 2017), as reported by Palma (2007), in accordance 

with the following formula: 

                                𝜌(ℎ) =
Γ(1−𝑑) Γ(h+d)

Γ(𝑑) Γ(1+ℎ−𝑑)
 .                                                          (2.22) 
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It can also be written using another formula, as follows: 

                           𝜌(ℎ) ∼
Γ(1−𝑑) 

Γ(𝑑)
 ℎ2𝑑−1,                                                                (2.23) 

where −0.5 < 𝑑 < 0.5 and ℎ → ∞. 

              ACF shows the correlation between observations for different periods. In 

applied work, an ACF diagram is frequently used as a primary diagnostic tool when 

studying time series. It is considerably important in highlighting some of the important 

characteristics of a time series, particularly in verifying the presence of long memory 

in a time series. We select this type of graphics for the discussion and analysis chapters 

of this thesis because it is more commonly used. 

 

2.7.1(b) R/S Plot  

              The R/S graph was described by Beran (1994) to have the following steps. 

i. Q = R/S is calculated for all possible values of time t and lag(k). 

ii. Log(Q) versus log(k) is plotted. 

iii. A straight line y = a ± b log(k) that corresponds to the ultimate behavior 

of the data is drawn. Coefficients a and b can be estimated, e.g., via the 

least squares method. 

              The slope of this straight line is considered a measure for distinguishing 

between short and long memory processes. In particular, the slope of this straight line 

is greater than 0.5 for operations involving long memory and tends to be 0.5 for most 

short memory operations. 
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2.7.1(c) Variance Plot 

              The variance of the sample mean of a long memory process based on m 

observations was explained by Palma (2007) by calculating the following formula:     

                        𝑉𝑎𝑟(�̅�𝑚) ∼ 𝑐  𝑚
2𝑑−1 ,                                                                           (2.24) 

where             𝑉𝑎𝑟(�̅�𝑚) =
1

𝑚
 [ 2 ∑ (1 −

𝑗

𝑚
)  𝛾(𝑗) + 𝛾(0) ]𝑚−1

𝑗=1  ,                                (2.25) 

and 𝑐 is a positive constant. Consequently, by dividing a sample with size 𝑛 into k 

blocks with size 𝑚, we obtain 

                        log  ( 𝑉𝑎𝑟(�̅�𝑗) ) ∼ 𝑐 + (2d − 1) log ( j )                                          (2.26) 

for  j = 1, 2, … , k; and (�̅�𝑗) is the mean of the jth block. That is, 

�̅�𝑗 =
1

𝑚
∑ 𝑦𝑡

𝑗×𝑚

𝑡=(𝑗−1)×𝑚+1

 .                                                                        (2.27) 

              Thus, for a long memory process, the slope of the line described by Equation 

(2.26) should be greater than −1. By contrast, the slope of the line should be −1 for a 

short memory process. 

2.7.1(d) Variogram Plot 

              Journel and Huijbregts (1976) defined the variogram for the lag distance k 

formula as follows: 

                        𝑉(𝑘) =
1

2
 𝐸[(𝑋𝑡 − 𝑋𝑡−𝑘)

2] ,                                                                 (2.28) 

where t denotes all possible locations. 

Thus, the presence of long memory in data can be inferred through the behavior of the 

variogram in terms of the slow ascent and non-zigzagging of the plot in accordance 




