BIOCOMPATIBILITY AND TOXICITY STUDIES ON HETEROGENEOUS TIO₂-ZNO POLYMER NANOCOMPOSITE WITH ENHANCED BACTERIAL ACTIVITY

NOR HAZLIANA BINTI HARUN

UNIVERSITI SAINS MALAYSIA

BIOCOMPATIBILITY AND TOXICITY STUDIES ON HETEROGENEOUS TIO₂-ZNO POLYMER NANOCOMPOSITE WITH ENHANCED BACTERIAL ACTIVITY

by

NOR HAZLIANA BINTI HARUN

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

July 2022

ACKNOWLEDGEMENT

In the name of Allah S.W.T., the Most Gracious, the Most Merciful. All praises and gratitude belongs to Allah, the sources of my strength in completing the thesis throughout this semester despite Covid-19 challenges. First and foremost, I wish to express my sincerest gratitude to my dedicated supervisor, Ts. Dr. Rabiatul Basria S.M.N. Mydin, for her continuous support, her patience and she consistently guide me in the right direction whenever she thought I needed it. I would also like to express my gratitude to my great co-supervisors, Prof Ir Dr Srimala Sreekantan and Prof. Madya Md Azman Seeni Mohamed for helping me especially in providing financial assistance and ideas despite their busy schedules. May Allah S.W.T. grants the best rewards for these great people. Besides, I would also like to take this opportunity to express my thanks to those people who have helped me throughout my research period, especially from Animal Research Complex (ARC) and Clinical Trial Complex (CTC), USM AMDI in providing services and facilities for this research to be well conducted. I will not also forget the help obtained from Dr. Siti Salmah Noordin, which without her, I may not be able to even perform blood collection for haemocompatibility testing. I would also like to extend my gratitude to intern students, juniors and seniors which involved in my research. Lastly, I would like to express my deepest gratitude to my beloved parents, family members, friends and colleagues for their unfailing support, prayers and encouragement through the process of researching and writing this thesis. Allhamdulillah 'ala kulli hal.

TABLE OF CONTENTS

ACK	NOWLED	GEMENT	ii
TABLE OF CONTENTS			iii
LIST	OF TABL	ES	viii
LIST	OF FIGU	RES	X
LIST	OF UNITS	S AND SYMBOLS	XX
LIST	OF ABBR	EVIATIONS	xxi
LIST	OF APPE	NDICES	XXV
ABST	ГRАК		xxvi
ABST	FRACT		xxviii
CHA	PTER 1	INTRODUCTION	1
1.1	Research	background	1
1.2	Research	objectives	3
	1.2.1	General objective	3
	1.2.2	Specific objectives	3
CHA	APTER 2	LITERATURE REVIEW	5
2.1	Biomedia	cal devices and healthcare associated infections	5
	2.1.1	Multidrug resistant and non-multidrug resistant HAIs pathogen issues	9
	2.1.2	Biofilm development issues related to medical devices	11
2.2	Present s	tatus of synthetic biomedical polymers	16
	2.2.1	Implementation of metal oxide nanoparticles in biomedical polymers	19
	2.2.2	Antibacterial potential of TiO ₂ and ZnO nanocomposites	23
2.3	Testing g	guidelines for polymer based nanocomposite	26

	2.3.1	Antibacterial profiles	26
	2.3.2	Biocompatibility profiles	29
	2.3.3	Haemocompatibility profiles	33
CHAI	PTER 3	METHODOLOGY	36
3.1	Introducti	ion	36
3.2	Materials	and chemicals	36
3.3	Synthesis	and preparation of materials	37
	3.3.1	Experimental workflow	38
3.4	Antibacte	rial profiles	39
	3.4.1	Bacterial strains and culture media	39
	3.4.2	Kirby-Bauer disk diffusion assay	39
	3.4.3	Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)	40
	3.4.4	Time-kill activity	41
	3.4.5	Assessment of biofilm formation	41
	3.4.6	ASTM E2149	42
3.5	In vitro c	ytotoxicity assay according to ISO 10993: Part 5	42
	3.5.1	Maintenance of cells in culture and cell counting	43
	3.5.2.	Cell viability assay	44
	3.5.3	Cell membrane integrity	45
	3.5.4	Colony formation assay	46
3.6	Biochemi	cal profiles	47
	3.6.1	Intracellular reactive oxygen species production	47
	3.6.2	Hoechst and Calcein-AM staining	48
	3.6.3	Metal ion release study	48
3.7	Gene exp	ression profiles by Real-Time PCR	50
	3.7.1	RNA extraction, quantification and quality check	50

	3.7.2	Reverse transcription reaction	51
	3.7.3	SYBR green-based Real-Time PCR system	52
3.8	Protein an	nalysis	54
	3.8.1	Protein extraction and quantification	54
	3.8.2	Protein separation and transferring from gel to PVDF membrane	54
	3.8.3	Immuno-blotting against the targeted protein	55
	3.8.4	Chemiluminescent imaging and data analysis	55
3.9	In vitro h	aemocompatibility testing according to ISO 10993: Part 4	56
	3.9.1	Blood collection and preparation of whole blood, red blood cells suspension and platelet poor plasma	56
	3.9.2	Full blood counts and coagulation assay	56
	3.9.3	Whole blood clotting kinetics	57
	3.9.4	In vitro haemolysis assessment	57
	3.9.5	Platelet adhesion study	58
3.10	Field Em	ission Scanning Electron Microscopy	59
	3.10.1	Bacterial cell adhesion	59
	3.10.2	Cell adhesion and attachment	59
	3.10.3	Whole blood and fibrin attachment	60
3.11	Functiona	al time frame of LLDPE nanocomposite films	60
	3.11.1	In vitro degradation assay	60
	3.11.2	Hydrolytic degradation assay	61
	3.11.3	Soil burial assay	62
CHAI	PTER 4	RESULTS	64
4.1	Introduct	ion	64
4.2	Descripti	on for study materials	64
4.3	Measurer	nent of antibacterial profiles	65
	4.3.1	Kirby-Bauer disk diffusion assay	66

	4.3.2	MIC/MBC and tolerance determination	66
	4.3.3	Time-kill activity	69
	4.3.4	Assessment of biofilm formation	69
	4.3.5	ASTM E2149	74
	4.3.6	Bacterial cell adhesion	77
4.4	Biocompa	atibility evaluation	80
	4.4.1	Cell viability and cell membrane integrity assay	80
	4.4.2	Cells adhesion and attachments	84
	4.4.3	Clonogenic survival assay	84
4.5	Biochemi	cal profiles	87
	4.5.1	Estimation of accumulation of intracellular ROS production	87
	4.5.2	Zinc, calcium and phosphorus ion release	89
	4.5.3	Hoechst and Calcein-AM staining	92
4.6	Gene exp	ression analysis by Real-Time PCR	94
	4.6.1	Evaluation of expression levels of stress response with NFE2L2, HMOX1 and GADD45a	94
	4.6.2	Evaluation of inflammation rate with IL-6 and IL-8	96
	4.6.3	Evaluation of apoptosis level with BAX and BCL-2	97
4.7	Protein ar	alysis for NF-kB (p65) expressions	97
4.8	Haemoco	mpatibility profiles	99
	4.8.1	Full blood count and coagulation analysis	100
	4.8.2	Haemolysis rate test	102
	4.8.3	Whole blood clotting kinetics	102
	4.8.4	Platelet adhesion	105
	4.8.5	Whole blood and fibrin attachment	105
4.9	Functiona	It ime frame of LLDPE nanocomposite films	109

	4.9.1	In vitro degradation in M9 broth	109
	4.9.2	In vitro hydrolytic degradation in PBS solution	113
	4.9.3	In situ soil burial assay	115
СНАР	TER 5	DISCUSSION	117
5.1	Bactericion nanocomp	all and bacteriostatic status of LLDPE/TiO ₂ -ZnO posite films	117
	5.1.1	Bacteriostatic activity of TiO ₂ -ZnO nanocomposites under static contact conditions antibacterial activity	117
	5.1.2	Bacteriostatic activity of LLDPE/TiO ₂ -ZnO nanocomposite films guided by ASTM E2149 under dynamic contact conditions antibacterial activity	119
	5.1.3	Antibacterial mechanisms of LLDPE/TiO ₂ -ZnO nanocomposite films	120
5.2	Bio-intera molecular	action of LLDPE/TiO ₂ -ZnO nanocomposite films at cellular, and protein levels	124
	5.2.1	Blood and fibroblast cells interaction with LLDPE/TiO ₂ -ZnO nanocomposite films at cellular level	124
	5.2.2	Blood and fibroblast cells interaction with LLDPE/TiO ₂ -ZnO nanocomposite films at genes and protein level	129
5.3	Human b films	lood cells interaction with LLDPE/TiO2-ZnO nanocomposite	134
5.4	Functiona	al time frame of LLDPE/TiO2-ZnO nanocomposite films	137
	5.4.1	Factors affecting the functionality of LLDPE/TiO ₂ -ZnO nanocomposite films at cellular level	142
СНАР	TER 6	CONCLUSION AND FUTURE STUDIES	145
6.1	Conclusio	on	145
6.2	Future stu	ıdies	148
REFE	RENCES		149
APPE	NDICES		

LIST OF TABLES

		Page
Table 2.1	The four main groups of HAIs and summary of pathogens	
	responsible for HAIs	8
Table 2.2	List of organisms commonly infecting medical implants and	
	developing biofilms	15
Table 2.3	Diverse application of synthetic polymer in biomedical	
	fields	16
Table 2.4	A comparison of four different types of polyethylene polymer.	
	Structures and common biomedical applications of different	
	polymer properties include differences in branch structure,	
	biomedical applications, density, and melting points. (Adapted	
	from McKeen, 2014)	18
Table 2.5	Overview of MNPs applications as antibacterial agent. The MNPs	
	embed with polymer nanocomposites as antibacterial agents for	
	biomedical purposes	21
Table 2.6	Standard guidelines used to investigate antibacterial activity of	
	tested materials in different forms purposely designated for	
	biomedical applications	27
Table 2.7	List of haemocompatibility testing. Its summarised of testing	
	available to evaluate the interactions of blood components with	
	biomaterial-based polymer nanocomposites	34
Table 3.1	Molar extinction coefficients for alamarBlue at different	
	wavelengths	45
Table 3.2	List of SBF reagents	49
Table 3.3	The RT reaction mixture	52
Table 3.4	The thermal cycler conditions	52
Table 3.5	Sequence of primers used for qPCR	53

Table 3.6	Fast thermal cycling conditions for fast plate run on a	
	StepOnePlus TM systems	53
Table 3.7	The coagulation, full blood, and differential counts parameters are	
	sent to BP Diagnostic Centre Sdn. Bhd	57
Table 4.1	The MIC (mg/mL), MBC (mg/mL) and tolerance level for MDR $% \left(M_{\rm M} \right)$	
	and non-MDR bacterial HAIs pathogens treated with TiO_2 -ZnO	
	nanocomposites in different molar ratio after 24 h treatment	
	periods	68
Table 4.2	List of blood parameters for treated LLDPE/TiO2-ZnO	
	nanocomposite films	101
Table 4.3	Percentage weight loss of the LLDPE/TiO2-ZnO nanocomposite	
	films after soil burial	115
Table 4.4	Biodegradable images of the LLDPE/TiO2-ZnO nanocomposite	
	films prior and after soil burial test	116

LIST OF FIGURES

Page

6

10

Figure 2.1	Illustration on HAIs cause significant incidence rates, mortality and
	excess length of hospital stays. Those outcomes lead to financial
	burdens for individuals and also for communities in handling HAIs
	cases (Adapted from Desgupta et al. 2015; Zainal Abidin et al.
	2020; Haque <i>et al</i> . 2018)

- Figure 2.2 Percentages of common Gram-positive and Gram-negative bacteria isolated in selected healthcare facilities in 2019. The figure summarises the common isolated bacteria that cause HAIs amongst patients in hospitals in Saudi Arabia (Adapted from Al Mutair *et al.*, 2021).....
- Figure 2.4 Schematic diagram of visible light induced photocatalytic of TiO₂-ZnO photonic nanocomposites. TiO₂/ZnO nanocomposites performed an excellent photocatalytic and antibacterial activities against both Gram-positive and Gram-negative pathogens (Adapted from Padmavathy and Vijayaraghavan 2008).....

Figure 3.1	Study workflow for the methodology used in this research. It been	
	divided into four major assays includes antibacterial,	
	cytocompatibility, biochemical, molecular, haemocompatibility	
	and functional time profiles	38
Figure 3.2	Hydrolytic degradation of LLDPE/TiO2-ZnO nanocomposite	
	films. Arrangement of bare LLDPE and LLDPE/25T75Z/5% thin	
	film in PBS solution for 15 weeks	62
Figure 3.3	Soil burial assay at the four different site in Malaysia. The photos	
	of four different site location for soil burial assay with GPS	
	coordinate	63
Figure 4.1	Antibacterial activity using disk diffusion assay for TiO2-ZnO	
	nanocomposites against S. aureus bacteria under (A) light and (B)	
	dark conditions. Graph of mean inhibition zone diameters from two	
	independent disk diffusion assays with four replicates in each	
	experiments (n=4) showing the antibacterial effect of	
	nanocomposites on the growth of <i>S. aureus</i>	67
Figure 4.2	Time-kill plots of TiO ₂ -ZnO nanocomposites against (A) S. aureus	
	and (B) MRSA at different molar ratio and time length. Plot of	
	mean log (CFU/mL) from two independent time-kill assays with	
	four replicates in each experiments (n=4) showing the antibacterial	
	effect of nanocomposites on the growth of gram positive	
	bacteria	70
Figure 4.3	Time-kill plots of TiO ₂ -ZnO nanocomposites against (A) E. coli	
	and (B) K. pneumoniae at different molar ratio and time length. Plot	
	of mean log (CFU/mL) from two independent time-kill assays with	
	four replicates in each experiments (n=4) showing the antibacterial	
	effect of nanocomposites on the growth of gram negative	
	bacteria	71

Figure 4.4 Total biofilm mass of (A) *S. aureus* and (B) MRSA obtained from crystal violet assay. Graph of mean biofilm mass of gram positive bacteria treated with TiO₂-ZnO nanocomposites versus untreated bacteria with three replicates in experiments (n=3) showing reduction in biofilm mass. Data represent mean \pm standard deviations with significant different (*** $p \le 0.01$).....

72

75

76

- Figure 4.6 Antibacterial efficiency of LLDPE/TiO₂-ZnO nanocomposites films with different molar ratios against A) *S. aureus* and B) *E. coli*. Graph of mean reduction percentage of bacteria treated with LLDPE/25T75Z (1,3,5,7 and 10%) nanocomposites films from two independent ASTM E2149 assay with three replicates in each experiments (n=3).....
- Figure 4.7 Antibacterial efficiency of LLDPE/25T75Z nanocomposites films with different weight percentages against A) *S. aureus* and B) *E. coli*. Graph of mean reduction percentage of bacteria treated with LLDPE/25T75Z (1,3,5,7 and 10%) nanocomposites films from two independent ASTM E2149 assay with three replicates in each experiments (n=3)....

xii

- Figure 4.9 FESEM images of bacterial attachments on sample surface after 24 h, 5 days and 7 days. Notes: (A1-A9) SEM morphologies for MRSA; (B1-B9) SEM morphologies for *K. pneumoniae*, respectively for bare and 25T75Z (5 and 10 wt.%) nanocomposites films after 24 h, 5 days and 7 days' incubation treatment....
- Figure 4.10 Cell viability assay (A) and the membrane integrity (B) of HDF cells exposed to LLDPE/TiO₂-ZnO nanocomposite films. Graph of mean cell viability percentage and LDH release of HDF cells treated with LLDPE/TiO₂-ZnO nanocomposites films from two independent assay with three replicates in each experiments (n=3). Results are expressed as mean \pm standard deviation with significant results compared with the control (bare) are marked with asterisks (* for $p \le 0.05$ and ** for $p \le 0.01$)....
- Figure 4.11 Cell viability assay (A) and the membrane integrity (B) of L929 cells exposed to LLDPE/TiO₂-ZnO nanocomposite films. Graph of mean cell viability percentage and LDH release of L929 cells treated with LLDPE/TiO₂-ZnO nanocomposites films from two independent assay with three replicates in each experiments (n=3). Results are expressed as mean \pm standard deviation with significant results compared with the control (bare) are marked with asterisks (* for $p \le 0.05$ and ** for $p \le 0.01$).....
- Figure 4.12 Cell viability assay (A) and the membrane integrity (B) of Kasumi-1 cells exposed to LLDPE/TiO₂-ZnO nanocomposite films. Graph of mean cell viability percentage and LDH release of Kasumi-1 cells treated with LLDPE/TiO₂-ZnO nanocomposites films from two independent assay with three replicates in each experiments (n=3). Results are expressed as mean \pm standard deviation with significant results compared with the control (bare) are marked with asterisks (* for $p \leq 0.05$ and ** for $p \leq$ 0.01)....

82

79

- Figure 4.13 Colony formation assay of L929 cells treated on LLDPE/TiO₂-ZnO nanocomposite films surface for eight days. Graph of mean colony-forming unit-fibroblast (CFU-F) treated with LLDPE/TiO₂-ZnO nanocomposites films from two independent assay. Results are expressed as mean \pm standard deviation with significant results compared with the control (untreated) are marked with asterisks (* for $p \le 0.05$ and ** for $p \le 0.01$)....

85

88

- Figure 4.15 Intracellular ROS detection after 48 h treated with LLDPE/TiO2-ZnO nanocomposite films. Graph of mean intracellular ROS production in (A) HDF and (B) Kasumi-1 cell lines exposed to LLDPE/TiO₂-ZnO nanocomposite films from two independent assay. Results are expressed as mean \pm standard deviation with significant results compared with the control (untreated) are marked with asterisks (* for $p \le 0.05$ and ** for $p \le 0.01$).....
- Figure 4.16 Zinc ion concentration in SBF solution after immersion periods within 28 days. Graph of mean zinc ion released in SBF solution exposed to LLDPE/TiO₂-ZnO nanocomposite films from two independent ICP-OES analysis. Results are expressed as mean \pm standard deviation with significant results compared with the control (untreated) are marked with asterisks (* for $p \le 0.05$ and ** for $p \le 0.01$)....
- Figure 4.17 Calcium ion concentration in SBF solution after immersion periods within 28 days. Graph of mean calcium ion released in SBF solution exposed to LLDPE/TiO₂-ZnO nanocomposite films from two independent ICP-OES analysis. Results are expressed as mean ± standard deviation with significant results compared with the

	control (untreated) are marked with asterisks (* for $p \le 0.05$ and **	
	for $p \le 0.01$)	90
Figure 4.18	Phosphorus ion concentration in SBF solution after immersion	
	periods within 28 days. Graph of mean phosphorus ion released in	
	SBF solution exposed to LLDPE/TiO2-ZnO nanocomposite films	
	from two independent ICP-OES analysis. Results are expressed as	
	mean \pm standard deviation with significant results compared with	
	the control (untreated) are marked with asterisks (* for $p \le 0.05$ and	
	** for $p \le 0.01$)	90
Figure 4.19	FESEM images of LLDPE/TiO ₂ -ZnO nanocomposite films after	
	being immersed in SBF solution for 28 days. The diagrams show	
	surface of LLDPE/100Z and LLDPE/25T75Z/5% after immersed	
	in SBF for 28 days	91
Figure 4.20	TiO ₂ -ZnO induces changes in calcein-AM (green images) and	
	Hoechst 33342 (blue staining) staining in fibroblasts cells after	
	being treated for 24 h. Arrows specify the nuclei with chromatin	
	condensation and fragmentation. Images were captured with	
	fluorescence microplate reader with scale bars, 200 μ m	92
Figure 4.21	Relative expression of genes involved in oxidative stress response	
	mechanism on Kasumi-1 and HDF cell lines. Graph of mean	
	relative expression of (A) Kasumi-1 and (B) HDF cell lines	
	exposed to bare LLDPE, LLDPE/25T75Z/5% and	
	LLDPE/25T75Z/10% from two independent qPCR runs with four	
	replicates in each assay. Results are expressed as mean \pm standard	
	deviation with significant results compared with the control	
	(untreated) are marked with asterisks (* for $p \le 0.05$ and ** for $p \le$	
	0.01)	95
Figure 4.22	Relative expression of genes involved in inflammation response	

mechanism on Kasumi-1 and HDF cell lines. Graph of mean relative expression of (A) Kasumi-1 and (B) HDF cell lines exposed to bare LLDPE, LLDPE/25T75Z/5% and LLDPE/25T75Z/10% from two independent qPCR runs with four replicates in each assay. Results are expressed as mean \pm standard deviation with significant results compared with the control (untreated) are marked with asterisks (* for $p \le 0.05$ and ** for $p \le 0.01$)....

96

- Figure 4.23 Relative expression of genes involved in apoptosis response mechanism on Kasumi-1 and HDF cell lines. Graph of mean relative expression of (A) Kasumi-1 and (B) HDF cell lines exposed to bare LLDPE, LLDPE/25T75Z/5% and LLDPE/25T75Z/10% from two independent qPCR runs with four replicates in each assay. Results are expressed as mean \pm standard deviation with significant results compared with the control (untreated) are marked with asterisks (*for $p \le 0.05$ and ** for $p \le$ 0.01)....
- Figure 4.24 Immunoblot analysis of selected proteins involved in inflammation and immune response. The studied protein samples were obtained from bare LLDPE, LLDPE/25T75Z/5% and LLDPE/25T75Z/10% in two independent assay. Differential protein expressions of NF- κB (p65) was expressed in Kasumi-1 and HDF cells grown on the study materials for 48 h. β-actin protein profile was used as a loading Only control. one representative result is 99 presented.....

- Figure 4.28 LLDPE/TiO₂-ZnO nanocomposite films effect on platelet adhesion. The nanocomposite films were stained with calcein AM for 30 min; (A) Bare LLDPE, (B) LLDPE/25T75Z/5% and (C) LLDPE/25T75Z/10% film. The adherent platelet treated on LLDPE nanocomposite films for 1 h surface was observed by Calcein AM staining; (A) Bare LLDPE, (B) LLDPE/25T75Z/5% and (C) LLDPE/25T75Z/10% film.
- Figure 4.29The effect of LLDPE/TiO2-ZnO nanocomposite films on washed
human RBCs. The effect of (A) bare LLDPE, (B)
LLDPE/25T75Z/5% and (C) LLDPE/25T75Z/10% nanocomposite
films on RBCs as observed with FESEM after 1 h exposure. In
LLDPE with TiO2-ZnO LLDPE nanocomposite films, singular
echinocytes (Yellow arrow) and stomatocytes (Red arrow) were
observed.107
- Figure 4.30 The effect of LLDPE/TiO₂-ZnO nanocomposite films on PRP. FESEM images of the platelet adhesion/activation and thrombus formation on LLDPE/TiO₂ZnO nanocomposite films for 1 h...... 108

- Figure 4.31 Optical density at 600 nm of *P. aeruginosa* bacterial suspension treated with bare LLDPE and LLDPE/25T75Z/5% nanocomposite films. Graph of *P. aeruginosa* bacterial growth after being treated with bare LLDPE and LLDPE/25T75Z/5% nanocomposite films for four weeks with addition of glucose in M9 broth in one independent trial.
- Figure 4.32 Optical density at 600 nm of *P. aeruginosa* bacterial suspension treated with bare LLDPE and LLDPE/25T75Z/5% nanocomposite films. Graph of *P. aeruginosa* bacterial growth after being treated with bare LLDPE and LLDPE/25T75Z/5% nanocomposite films for four weeks without addition of glucose in M9 broth in one independent trial.

Figure 4.36 FESEM images of LLDPE/TiO₂-ZnO nanocomposite films after being immersed in PBS solution for 15 weeks. Hydrolytic biodegradation activity of bare LLDPE and LLDPE/25T75Z/5% nanocomposites films in PBS solution.....

LIST OF UNITS AND SYMBOLS

°C	Degree Celsius
e-	Electrons
g	Gram
H_2O_2	Hydrogen peroxide
·OH	Hydroxyl radicals
h	Hour
h+	Hole
KV	Kilovolt
mL	Milliliter
μΜ	Micrometer
μL	Microliter
%	Percentage
rpm	Revolutions per minute
sec	Second
$O_2 \bullet^-$	Superoxide
Т	Titanium dioxide
V	Volt
Zn^{2+}	Zinc ions
Z	Zinc oxide

LIST OF ABBREVIATIONS

A. baumanii	Acinetobacter baumanii
AB	Alamar blue
AML	Acute myeloid leukaemia
APTT	Activated Partial Thromboplastin Time
ASTM	American Society for Testing and Materials
BAX	BCL2 Associated X, BAX- alpha
BCL-2	B-cell lymphoma 2
BSA	Bovine serum albumin
CAUTI	Catheter-associated urinary tract infections
cDNA	Complementary DNA
C. freundii	Citrobacter freundii
CLABSI	Central line-associated bloodstream infections
CLSI	Clinical and Laboratory Standard Institute
CM-H ₂ DCFDA	2, 7-dichlorodihydrofluoresce in diacetate acetyl ester
CV	Covalent band
CaCl ₂	Calcium chloride
DMEM/F-12	Dulbecco's Modified Eagle's Medium/Nutrient Mixture F-12
	Ham
DMSO	Dimethyl sulfoxide
E. coli	Escherichia coli
E. faecalis	Enterococcus faecalis
EDTA	Ethylenediaminetetraacetic acid
ELISA	Enzyme-linked immunosorbent assay
EPS	Extracellular polymer substances
FBS	Fetal bovine serum
FDA	American Food and Drug Administration
FPA	Fibrinopeptide A
FESEM	Field Emission Scanning Electron Microscope

GADD45A	Growth arrest and DNA damage-induced 45 A			
GAPDH	Glyceraldehyde 3-phosphate dehydrogenase			
GRAS	Generally Recognised as Safe			
HAIs	Healthcare-associated infections			
Hb	Hemoglobin			
HDF	Human dermal fibroblast			
HDPE	High-density polyethylene			
HEPES	N-2-hydroxyethylpiperazine-N-ethanesulfonic acid			
HMOX1	Heme Oxygenase 1			
ICP-OES	Inductively Coupled Plasma Optical Emission spectroscopy			
IL-6	Interleukin 6			
IL-8	Interleukin 8			
ISO	International Organisation for Standardisation			
K.pneumoniae	Klebsiella pneumonia			
KCL	Potassium chloride			
$K_2HPO_{4.}3H_2O$	Potassium phosphate dibasic trihydrate			
L929	Mouse fibroblast			
LB	Luria-bertani			
LDH	Lactate dehydrogenase			
LDPE	Low-density polyethylene			
LLDPE	Linear low density polyethylene			
LPS	Lipopolysaccharides			
M. morganii	Morganella morganii			
M9	M9 minimal medium			
MBC	Minimum bactericidal concentration			
MCH	Mean Corpuscular Hemoglobin			
MCHC	Mean Corpuscular Hemoglobin Concentration			
MCV	Mean Cell Volume			
MDR	Multi drug resistant			
MDPE	Medium-density polyethylene			
MIC	Minimum inhibitory concentration			

MNPs	Metal-oxide NPs			
MRSA	methicillin-resistant Staphylococcus aureus			
MSSA	methicillin-susceptible Staphylococcus aureus			
MgCl _{2.} 6H ₂ O	Magnesium chloride hexahydrate			
NF-kβ	Nuclear Factor kappa-light-chain-enhancer of activated B cells			
NFE2L2	Nuclear factor erythroid 2-related factor 2			
NO	Nitric oxide			
NPs	Nanoparticles			
NaCl ₂	Sodium chloride			
NaHCO ₃	Sodium bicarbonate			
Na_2SO_4	Sodium sulfate			
OD	Optical density			
OHP	Overall hemostasis potential			
P. aeruginosa	Pseudomonas aeruginosa			
P. mirabilis	Proteus mirabilis			
P. vulguris	Proteus vulguris			
P25	Pure titanium dioxide			
PANI	Polyaniline			
PBS	Phosphate buffer saline			
PCR	Polymerase chain reaction			
PEG	Polyethylene glycol			
PP	Polypropylene			
PPP	Platelet poor plasma			
PRP	Platelet rich plasma			
PT	Prothrombin time			
PVC	Packed cell volume			
PVC	Poly(vinyl chloride)			
qPCR	quantitative Polymerase Chain Reaction			
R. dentocariosa	Rothia dentocariosa			
RBC	Red blood cell			
RDW	Red Cell Distribution Width			

RIPA	Radioimmunoprecipitation assay				
RNA	Ribonucleic acid				
ROS	Reactive oxygen species				
RPMI	Roswell Park Memorial Institute				
S. aureus	Staphylococcus aureus				
S. epidermidis	Staphylococcus epidermidis				
S. maltophilia	Stenotrophomas maltophilia				
S. maresecens	Serratia maresecens				
S. mitis	Streptococcus mitis				
S. mucilaginous	Stomatococcus mucilaginous				
S. salivarius	Streptococcus salivarius				
S. sobrinus	Streptococcus sobrinus				
S. viridans	Streptococcus viridans				
SBF	Simulated body fluid				
SDS-PAGE	Sodium dodecyl sulfate-polyacrylamide gel electrophoresis				
SSI	Surgical site infections				
TAT	Thrombin–antithrombin complex				
TBST	Tris-Buffered Saline and Tween 20				
TTIP	Titanium isopropoxide				
VAP	Ventilator-associated pneumonia				
VB	Valence band				
WBC	White blood cell				
WHO	World Health Organisation				

LIST OF APPENDICES

- Appendix A Human ethic approval
- Appendix B List of publications
- Appendix C Academic award and intellectual property

KAJIAN KEBIOSERASIAN DAN KETOKSIKAN NANOKOMPOSIT POLIMER TIO₂–ZNO HETEROGENUS DENGAN AKTIVITI BAKTERISIDAL DIPERTINGKATKAN

ABSTRAK

Jangkitan berkaitan penjagaan kesihatan adalah isu keselamatan yang diberi perhatian utama sedunia sebagai penyumbang kepada kadar kematian dalam kalangan pesakit disebabkan oleh patogen yang berkait langsung dengan permukaan polimer bioperubatan yang tercemar dari alat perubatan yang tertempat atau implant. Polimer nanokomposit telah menjadi potensi penyelesaian bagi HAI disebabkan oleh cara tindakbalas spesies oksigen reaktif (ROS) dan radikal bebas. Dalam seksyen pertama, kajian ini menghuraikan potensi bakteriostatik dan bakterisidal lapisan-lapisan nipis polimer nanokomposit terhadap pathogen-patogen HAI, termasuklah strain-strain tahan pelbagai ubat (MDR) dan bukan MDR. Dalam seksyen kedua, analisis awal tindak balas biointeraksi in vitro pada model-model sel selanjar fibroblas dan darah menunjukkan tanda-tanda gangguan integriti membran sel, yang mungkin disebabkan oleh aktiviti radikal bebas seperti pembebasan intrasel ROS dan ion Zn (Zn^{2+}) ketika proses penyesuaian selular awal terhadap lapisan nipis polimer nanokomposit TiO₂–ZnO. Kajian tahap molekul terdahulu mendedahkan interaksi antara sel dan lapisan nipis polimer nanokomposit mungkin mencetuskan tekanan oksidatif dan mekanisma pro-radang melalui lata utama faktor nuklear-kB. Kajian lanjutan menemukan sel yang mampu mengekalkan potensi daya maju dan klonogenik serta terlibat dalam laluan anti-apoptosis. Dapatan kajian mencadangkan tindak balas tekanan oksidatif sementara oleh lapisan nipis

polimer nanokomposit terhadap sel yang dirawat serta tidak membahayakan sel. Tambahan pula, lapisan-lapisan nipis polimer nanokomposit ini didapati dapat menyebabkan hemokompatibliti yang baik dengan lekatan dan pengaktifan platelet yang minimum, sehingga mengurangkan pembentukan trombus mengikut garis panduan Bahagian 4-ISO 10993. Kesimpulannya, lapisan nipis polimer nanokomposit TiO₂–ZnO mampu menjadi polimer bioperubatan yang berpotensi terhadap HAI yang memaparkan sifat-sifat hemokompatibiliti dan aktiviti-aktiviti bakterisidal yang dipertingkat terutamanya strain-strain MDR. Kajian menyeluruh terhadap interaksi radikal bebas dan mekanisme homeostasis molekul adalah perlu untuk lebih memahami tindak balas tekanan oksidatif sementara oleh lapisan nipis polimer nanokomposit terhadap sistem manusia.

BIOCOMPATIBILITY AND TOXICITY STUDIES OF HETEROGENEOUS TIO2-ZNO POLYMER NANOCOMPOSITE WITH ENHANCED BACTERIAL ACTIVITY

ABSTRACT

Healthcare-associated infections (HAIs) are a major safety concern globally as they contribute to mortality rates amongst patients due to pathogens from direct contact with a contaminated biomedical polymer surface from the indwelling or implanted medical devices. Polymer nanocomposites have become a promising solution for HAIs owing to reactive oxygen species (ROS) and free radicals' mode of action. In the first section, this work revealed the bacteriostatic and bactericidal potentials of TiO₂-ZnO polymer nanocomposite films against HAI pathogens, including multidrug-resistant (MDR) and non-MDR strains. In the second section, the initial analysis of the *in vitro* bio-interaction responses on fibroblast and blood cell line models showed signs of cell membrane integrity disturbance, which might be due to free radicals' activities, such as the release of intracellular ROS and Zn ions (Zn^{2+}) during the initial cellular adaptation process on the TiO₂–ZnO polymer nanocomposite film. Molecular studies revealed that the cell-polymer nanocomposite film interaction possibly triggered the oxidative stress and pro-inflammatory mechanisms through the principal cascades of Nuclear Factor- κB . Further analysis found that cells could maintain the viability and clonogenic potential and were involved in the anti-apoptosis pathway. Findings suggested the transitory oxidative stress responses of polymer nanocomposite films towards treated cells and not harmful to the cells. Furthermore, these polymer nanocomposite films were found and could render good haemocompatibility with minimal platelet adhesion and activation, thereby reducing the thrombus formation according to the ISO 10993-Part 4 Guidelines. In conclusion, TiO₂–ZnO polymer nanocomposite films could present as a promising biomedical polymer against HAIs that displayed biocompatibility properties and enhanced bactericidal activities especially MDR strains. Comprehensive work on free radicals' interaction and molecular homeostasis mechanism is needed to further understand the transitory oxidative stress responses of polymer nanocomposite films towards human systems.

CHAPTER 1

INTRODUCTION

1.1 Research background

Hospital-associated infections (HAIs) or nosocomial infections is globally known as one of the leading complications related with indwelling medical devices. It is an infections acquired during health treatment (Monegro *et al.* 2020; Sikora and Zahra, 2020). HAIs manifest within 48 h or more after hospital admission and can also appear within 30 days after patient discharge (WHO 2021; Leaper and Edminston 2017; Revelas 2012). There are about 4% of patients in U.S. hospitals involved with HAIs in 2011 and most commonly are directly associated with prolonged hospitalisation and thus increase healthcare costs contributing to the financial burden.

Central line associated bloodstream infections (CLABSI) and catheter-related bloodstream infection (CRBSI) is the commonest cause of HAIs, which the complications arising due to the bacterial colonization of medical appliances such as peripheral intravascular (IV) and central venous catheters used in patients after certain periods. It is estimated that approximately 80,000 cases occurred per year in the United States of America (USA) (O'Grady *et al.* 2011). Also, the incidence of CRBSI alone in the hospitals shown to be 1.1 to 5.5 episodes per 1000 catheter days and mostly causes mortality among patients (Ravani *et al.* 2013). The significant incidence of such infection origin from the fact that the insertion into patients provide an ideal environment for bacterial attachment and growth leading to the biofilm formation (Danese, P.N., 2002).

Biomaterial is defined as any type of engineered material being used in medical fields which is pharmacologically inert and safe to be used in living systems (Park 2012). It also should reliable to be used in targeted period of applications to facilitate and improving current health systems. The used of biomaterial as indwelling or implanted devices has risen due to the greater incidences of cross contamination and the development of drug resistant bacterial strains on biomedical appliances. As the indwelling catheters been infected with bacterial biofilms, it makes the antibiotic therapies less effective. Thus, alternative strategies are urgently needed to overcome HAIs issues.

Recently, nanotechnological approaches, such as the incorporation of metal oxide nanoparticles (MNPs) into polymer matrix, have been used by scientist to develop efficient antibacterial agents against MDR and non-MDR pathogens. Deposition of MNPs such as Ag, Ti, TiO₂ and ZnO shown antibacterial potential by inhibit the bacterial adhesion on catheters has been reported in previous studies (Sánchez *et al.* 2021; Vaitkus *et al.* 2021; Zhang *et al.* 2019; Galiano *et al.* 2008; Samuel and Guggenbichler 2004). In recent decades, many attempts have been made by researchers to modify the catheter surface with the MNPs (Park *et al.* 2002; Srinivasan *et al.* 2006). However, there still no coated catheters that are effective for the treatments are commercially available. Previous study showed the silver-coated urinary catheter potentially to reduce HAIs infection however had insignificant effect after being used for longer periods due to the development of sticky mucoid biofilm (Verleyen *et al.* 1999; Thibon *et al.* 2000). The proposed strategy of adding two MNPs into polymer nanocomposites has greater potential application for antibacterial surfaces in biomedical devices compared with the use of individual MNPs to combat a wide range of bacteria involved in HAIs especially MDR pathogens. Although TiO₂–ZnO has great antibacterial activities, studies on the reactive oxygen species (ROS), free radical ions and metal ions released from TiO₂–ZnO embedded in polymer nanocomposites, especially their impact on human systems, are very limited. ROS have advantages in antibacterial therapy against most Gram-positive and Gram-negative organisms, including MDR pathogens. However, the overaccumulation of ROS in cells could disturb the equilibrium between ROS (Memar *et al.*, 2018; Lushchak, 2011). Uncontrolled ROS release is involved in cellular homeostatic imbalance and baneful implication to human systems (Snezhkina *et al.*, 2019). Therefore, the present study aimed to assess the antibacterial potential and safety of TiO₂–ZnO polymer nanocomposite on various cell lines.

1.2 Research objectives

1.2.1 General Objective

To determine the antibacterial, biocompatibility, haemocompatibility and toxicity studies of TiO_2 –ZnO polymer nanocomposite films for biomedical application.

1.2.2 Specific Objectives

1. To access the antibacterial profiles of the TiO_2 –ZnO polymer nanocomposite films against Gram-positive and Gram-negative bacteria panels by using comprehensive antibacterial studies.

- 2. To evaluate the biocompatibility profiles of TiO₂–ZnO polymer nanocomposite films involving cell viability assay, membrane integrity and clonogenic profiles.
- To analyse the biochemical activities and releasing of metal ion profiles in simulated body fluid (SBF) and ROS from TiO2–ZnO polymer nanocomposite films.
- 4. To investigate the haemocompatibility profiles of TiO_2 –ZnO polymer nanocomposite films using human blood guided by ISO 10993-4.
- 5. To understand the molecular interaction of TiO_2 –ZnO polymer nanocomposite films with human skin and blood cell lines.
- 6. To determine the functional time profiles of TiO_2 –ZnO polymer nanocomposite films under four analysis includes *in situ* functional time frame, *in vitro* biodegradation studies, hydrolytic degradation and leaching test in SBF solution.

CHAPTER 2

LITERATURE REVIEW

2.1 Biomedical devices and healthcare-associated infections

The burden of HAIs worldwide, especially in Asia, is unknown owing to the lack of surveillance systems. Approximately 25% of hospitalised patients have high HAI risk, which is about 2–20 times the HAI risk in developed Asia-Pacific countries (Ling *et al.* 2015). The prevalence of HAIs in Malaysia increased from 18% in 2016 to 19.8% in 2017 (Zainol Abidin *et al.* 2020). Other developed countries, such as the USA and Europe, have HAI incidence density between 13.0 and 20.3 cases amongst 1000 patients per day (Allegranzi *et al.* 2011). HAI is one of the top 10 causes of mortality amongst hospitalised patients in the US (AHRQ, 2021). HAIs are also associated with healthcare costs of \$28 billion to \$33 billion and ϵ 7 billion annually in the US and Europe (Sikora and Zahra, 2020).

Studies suggested increased mortality in patients with cardiac surgery, respiratory tract infections and ICU-acquired bloodstream infections, who are highly prone to be infected with MDR and non-MDR HAI organisms. Crude mortality for patients with HAIs who underwent surgery is remarkably higher (15.4%) compared with patients who did not develop HAIs (5.7%) (Massart *et al.* 2020). Other international study showed that older patients in the ICU have considerably high crude excess mortality (Rosenthal *et al.* 2010). HAIs shown increase in financial burden due to those factors illustrated in Figure 2.1.

Figure 2.1Illustration on HAIs cause significant incidence rates, mortality and excess length of hospital stays. Those outcomes
lead to financial burdens for individuals and also for communities in handling HAIs cases (Adapted from Desgupta *et al.*
2015; Zainal Abidin *et al.* 2020; Haque *et al.* 2018).

The two HAI transmission routes are by endogenous (self-infection) or exogenous (cross-infection) transmission from person to person or through the healthcare setting, such as ventilator, medical equipment or device contamination and food contamination (Soussan *et al.* 2019; Santajit *et al* 2016). HAIs related to device usage or equipment insertion contribute to the increase in mortality rates to 25%–38% (Mathur *et al.* 2021). HAIs also can be contracted by patients after direct contact with contaminated surface, undergoing surgeries or medical treatments or inhaling aerosol droplets from infected patients (Bonilla-Gameros *et al.* 2020; Khan *et al.* 2015).

HAIs can be divided into 13 groups with 50 different infections sites, specifically along the urinary tract, surgical and soft tissues, stomach and intestines and respiratory system (Raka *et al.* 2006). The National Healthcare Safety Network with Centre for Disease Control (CDC) surveillance has classified HAIs into four main groups: central line-associated bloodstream infections (CLABSI), catheter-associated urinary tract infections (CAUTI), surgical site infections (SSI) and ventilator-associated pneumonia (VAP). The responsible HAI pathogens for each group is summarised in Table 2.1. Most HAI pathogens are associated with the patients' endogenous flora; however, crossinfection via infected persons may worsen patient health.

Group	Microorganisms	References
Central line-	Gram positive:	Lin et al 2017
ossociated	Stanbulacoccus auraus Mathicillin resistant Stanbulacoccus auraus Entarococcus snn. Coopulase	
bloodstroom	pogotivo stankylococci	
info ations	negative staphytococci.	
Infections	Commenting.	
(CLABSI)	Gram negative:	
	Enterobacteriaceae, Citrobacter spp., Enterobacter spp., Escherichia coli, Klebsiella spp., Proteus	
	spp., Serratia marcescens	
Catheter-	Gram positive:	Zahran <i>et al</i> . 2019
associated urinary	Enterococcus faecalis, Vancomycin-resistant enterococci, Streptococcus.	
tract infections		
(CAUTI)	Gram negative:	
	E. coli, Pseudomonas spp., Proteus mirabilis, Enterobacter spp., Citrobacter spp., Klebsiella spp.,	
	Acinetobacter. E. faecalis	
Surgical site	Gram positive:	Mukagendaneza <i>et al.</i> 2019
infections (SSI)	S. aureus. Coagulase-negative stanhylococci. Streptococci. Enterococci	
	Si uni ens, Cougando noguni e singrigiococci, si epiceocci, zine ecocci	
	Gram negative:	
	Bacilli, Acinetobacter ssp., E. coli, Proteus, Klebsiella ssp.	
Ventilator-	Gram positive:	Thakuria <i>et al.</i> 2013
associated	MRSA, Coagulase-negative Staphylococci, S. aureus.	
nneumonia (VAP)		
phoundaille (1111)	Gram negative	
	Acinetobacter haumanii Pseudomonas aeruginosa Stenotrophomas maltophilia Klebsiella	
	neumonia Serratia maresecens Citrobacter freundii E coli Morganella morganii Protous	
	pheumonia, Serraia maresecens, Carobacier freunaii, E. Coli, Morganetia morganii, Proteus	
	vulguns.	

Table 2.1Summary of the four main groups of HAIs and the pathogens responsible for HAIs.

2.1.1 Multidrug resistant and non-multidrug resistant HAIs pathogen issues

According to Al Mutair *et al.* (2021), 29,393 types of pathogens isolated in the ICU (41.7%), wards (32.1%) and outpatient (26.2%) cause HAIs within 5 years (2015–2019). The Gram-positive and -negative bacteria that caused HAIs in 2019 are summarised in Figure 2.2. Gram-negative bacteria are frequently associated with HAIs (76.4%) compared with Gram-positive bacteria (20.2%). Another review reported that *Staphylococcus aureus* (*S. aureus*) (30.06%) is the most common pathogen isolated at the surgical site, followed by *Escherichia coli* (*E. coli*) (19.73%), *Klebsiella* species (17.27%) and coagulase-negative *Staphylococci* (CONS, 12.43%) (Birhanu and Endalamaw, 2020). Another study reported the same burden of bacterial pathogens, in which *S. aureus* (30.4%) has the highest percentage amongst other isolated pathogens, followed by CONS (11.7%), *E. coli* (9.4%), *Enterococcus faecalis* (*E. faecalis*) (5.9%), *Pseudomonas aeruginosa* (*P. aeruginosa*) (5.5%), *Enterobacter* species (4.0%) and *Klebsiella* species (4.0%) (WHO, 2016).

MDR pathogens are recognised as an important cause of HAIs, particularly amongst immune-compromised patients. Methicillin-resistant *S. aureus* (MRSA) infection is the most common contributor to Malaysia's HAI cases because of their resistance towards existing antibiotics (Zainol Abidin *et al.* 2020). According to Neubeiser *et al.* (2020), 31,052 patients suffer from HAIs per year and 6.87% of them die from HAIs. They also found that MRSA (51.3%) is the most common isolated pathogen in deceased patients in hospitals in Germany.

Figure 2.2 Percentages of common Gram-positive and Gram-negative bacteria isolated in selected healthcare facilities in 2019. The figure summarises the common isolated bacteria that cause HAIs amongst patients in hospitals in Saudi Arabia (Adapted from Al Mutair *et al.*, 2021).

Antibiotic resistance is the capability of Gram-positive and Gram-negative bacteria to resist specific antibiotics that were previously used in treatments. MDR pathogens develop antibiotic resistance within 90 days after the intravenous administration of antibiotics (Kalil *et al.* 2019). Several factors, such as patients' lack of discipline to follow the given prescription and take the correct dosage at the specified time, may also lead to antibiotic resistance. Doctors need to increase antibiotic usage when new resistance mechanisms develop from MDR pathogens. Therefore, the effectiveness of existing HAI treatments weakens and results in limited treatment alternatives, prolonged hospitalisation and increased healthcare resour[p;l.,ce use (Sehmi *et al.* 2016).

These factors will increase the development of resistant bacterial strains and the risk of death amongst patients. Several preventive measures are performed in healthcare settings to minimise HAI risks. The CDC (Centers for Disease Control and Prevention) has issued guidelines for practises, such as conscientious hygiene procedures, rigorous cleaning, sterilisation and disinfection, and designed organisational and administrative measures (Aljamali *et al.* 2020; Percival *et al.*, 2014; Mehta *et al.* 2014). Yet, the control measures for HAI transmission is still weak, especially in the environmental aspect.

Abundant sterilisation and disinfection techniques, such as the use of bleach, quaternary ammonium compounds, UV light and hydrogen peroxide vapour, are available. However, these strategies still have their own limitations. The sensitivity of bacteria to disinfectant, the lengthy time required for sterilisation procedures, and expensive costs limit the frequency of usage of these strategies in most hospitals. Time and training are required to instil the importance of keeping a clean environment to patients and cleaning staff, who are the frontline of environment disinfection (Shafer and Cox, 2014). Therefore, engineering polymer-based nanocomposites on the surface of biomedical devices can enhance material properties to reduce bacterial contamination and HAI risks.

2.1.2 Biofilm development issues related to medical devices

The major concerns for the failure of indwelling and implant devices are bacterial biofilm formation and colonisation (Mirzaei *et al.* 2020; Veerachamy *et al.*, 2014). The management of biofilm colonisation for the prevention of device-associated infections and HAIs is a critical issue because antibiotic therapy is ineffective against MDR HAI pathogens. Biofilms contribute about 65% of HAIs (Malheiro and Simões, 2017).

The three common aetiological agents of HAIs that form biofilms include *Staphylococci* species (*S. aureus* and *Staphylococcus epidermidis* (*S. epidermidis*)), *E. coli* and *P. aeruginosa* (Kranjec *et al.* 2021). Previous study indicated *S. aureus* cause a remarkable increase in the mortality rates amongst patients with coinfections, especially those infected with CAUTIs (Todd and Peter, 2019). Most hospitalised patients (15%–25%) are inserted with indwelling urinary catheters. The prolonged use of catheters for more than 30 days' results in 100% bacterial colonisation on catheters (Delcaru *et al.* 2016). Other indwelling medical devices, such as heart devices and orthopaedic implants, are also prone to biofilm colonisation (Verderosa *et al.* 2019).

A biofilm is an organised multimicrobial sessile community that grows in a matrix of extracellular polymer substances (EPSs) produced by bacteria as a protective barrier from antibacterial agent molecules and host immune responses (Vestby *et al.* 2020; Bjarnsholt, 2011). The three main stages of biofilm formation are adhesion, colonisation and maturation (Pintucci *et al.* 2010). Bacterial cells irreversibly adhere to each other, which results in a rapid alteration in the expression of several genes responsible for EPS and the formation of biofilm layers on device surfaces (Gupta *et al.* 2016; Irie *et al.* 2012; Flemming and Wingender 2010).

EPS is consist of a complex biochemical mixture of biomolecules, such as polysaccharides, proteins, glycopeptides, lipids and nucleic acids. Moreover, EPS exhibits viscoelastic behaviour, which allows biofilms to resist mechanical stress in its surrounding and become stable (Kostakioti *et al.* 2013). The third maturation stage, which leads to the development of antibiotic resistance, starts as the biofilm thickness increases.

Once the biofilm matures, plankton microorganisms disperse into the surrounding environments. The detached cells will disseminate to new target surfaces and start to produce new sessile populations on devices.Ramasamy and Lee (2016) and Taylor *et al.* (2012) found that the effectiveness of antibiotics is reduced and inactivated by multiple binding to biomolecule components in EPS and by nutrients in biofilm. Treating biofilms is challenging because of the lack of biomarkers, and the bacteria that cause biofilm formation are difficult to identify upon entry into the body (Paharik *et al.* 2016).

HAIs are usually initiated by medical devices implanted in the body, such as catheters, as shown in Figure 2.3. HAIs can also occur because of other reasons, such as contaminated disinfectants; infections from the surgical theatre, surgical equipment, surgeon or clinical staff or other patients in the hospital and distant local infections (Veerachamy *et al.* 2014; Francolini and Donelli, 2010). Gram-positive and Gramnegative bacteria can develop biofilms on medical devices as tabulated in Table 2.2. Discovering alternative ways to inhibit and eliminate bacterial biofilm growth on medical devices is urgently needed. One of the promising strategies is applying nanotechnology in antibacterial polymer materials, as it directly contacts the bacterial cell wall and destroys bacterial compartments.

Figure 2.3 Catheter insertion for fluid administration (medication, blood withdrawal or nutritional solutions). Cross-contamination may create possible routes for HAI-causing organisms from the skin microflora of patients or from exogenous microflora from other sources. These organisms directly attach and develop biofilms on catheters, cause HAIs and worsen patient health (Adapted from Crnich, C.J. and Maki, D.G., 2002).

Medical implants	Gram positive	Gram negative
Artificial voice prostheses	Streptococcus mitis (S. mitis), Streptococcus	Not recorded
	salivarius (S. salivarius), Rothia dentocariosa	
	(R. dentocariosa), Streptococcus sobrinus (S.	
	sobrinus), Staphylococcus epidermidis (S.	
	epidermidis), Stomatococcus mucilaginous (S.	
	mucilaginous)	
Artificial hip prosthesis	Coagulase-negative Staphylococci, β -hemolytic	P. mirabilis, Bacteroides species, E. coli, P.
	Streptococci, Enterococci, S. aureus,	aeruginosa
	Streptococcus	
Replacement joints	S. aureus and S. epidermidis	Not recorded
Prosthetic heart valves	Streptococcus viridans (S. viridans), Coagulase-	Not recorded
	negative Staphylococci, Enterococci, S. aureus	
Cardiac pace makers	S. aureus	Not recorded
CSF shunts	S. aureus, S. epidermidis, Enterococcus	Not recorded
Endotracheal tubes	S. aureus, S. epidermidis	P. aeruginosa
Urinary catheters	S. epidermidis, E. faecalis	K. pneumoniae, P. mirabilis
Peritoneal dialysis catheters	Streptococci, Staphylococci	None
Central venous catheters	S. epidermidis, S. aureus, E. faecalis	K. pneumoniae, P. aeruginosa
Contact lenses	Gram-positive cocci	P. aeruginosa
Dental implants	Acidogenic Gram-positive cocci (e.g.	Gram-negative anaerobic oral bacteria
	Streptococcus)	
Implanted prosthetic devices for	S. aureus, S. epidermidis	Not recorded
erectile dysfunction		
Intrauterine contraceptive	Micrococcus sp., Enterococcus sp., Group B	Not recorded
devices	Streptococci	
Orthopedic implants	Hemolytic streptococci, Enterococci	P. aeruginosa, E. coli, P. mirabilis, Bacteroides
		sp.
Breast implants	S. aureus, Enterococcus, S. epidermidis	Not recorded

Table 2.2List of common organisms that infect medical implants and develop biofilms.

2.2 Present status of synthetic biomedical polymers

The most widely used synthetic polymers to date are polyvinyl chloride, polyethylene (PE), polystyrene, polypropylene, polyurethane and polytetrafluoroethylene. Synthetic polymeric materials have gained much interest amongst researchers for medical applications from drug delivery systems, cardiovascular stents, blood bags, sutures, dialysis membrane, catheter, blood clot removal devices and orthodontic therapy (Maitz 2015; Serrano and Ameer 2012; Lendlein *et al.* 2010). The diverse applications of synthetic polymers with specialised characteristics for medical purposes are summarised in Table 2.3 (Sastri 2013; Wang *et al.* 2011; Cheng *et al.* 2006).

Synthetic polymer	Applications
Polyvinyl chloride (PVC)	• Catheters
	Medical packaging
	 MRI fixtures and receiving coils
Polyethylene (PE)	Medical packaging
	Tubing
	• IV fluid bottles
	• Drug delivery systems,
	Arthroscopy sutures
	Acetabular joint
	• Sutures
	Heart valves
Polystyrene (PS)	Catheter trays
	Suction canisters
	Medical packaging
	Medical and diagnostic devices
Polypropylene (PP)	Medical packaging
	 Drapes and gowns
	Sutures and syringes
Polyurethane (PU)	• Pacemaker
	• Catheter and catheter balloons
	• Feeding tubes
Polytetrafluoroethylene (PTFE)	• Catheters
	Coating stem prostheses
	Aneurysm clips
	• Endoscope sheaths
Polyethylene glycol (PEG)	Drug carrier

Table 2.3Diverse applications of synthetic polymer in biomedical fields.

Synthetic polymeric biomaterial devices are a promising alternative to biomedical devices with reduced immunological and inflammatory responses. Amongst all the listed synthetic polymers, PE is the most common thermoplastic produced globally because of its excellent mechanical properties, chemical inertness, low-cost production and ease of manufacturing process (Su *et al.* 2020; Khanam and Al Maadeed, 2015). PE is a group of monomer ethane and produced through several ways of polymerisation, such as radical, anionic and cationic polymerisation, which result in different types of PE (Malpass, 2010). Other studies proved that PE has high versatility and excellent biocompatibility. Both properties contribute to the application of PE in a wide range of implants and in cardiovascular therapy (Paxton *et al.* 2019).

PE has a density between 0.88 and 0.97 g per cm³, different melting points and a branching structure. Different branching structures affect the crystallinity of PE, because a high branching degree of PE backbone will reduce the size of crystalline regions and crystallinity weight, which give the elastomeric and ductile mechanical properties of PE for a wide range of industrial applications (Koerner and Koerner, 2018). PE is classified into several types as shown in Table 2.4 as defined by the American Society for Testing and Materials (ASTM D1249, D883 and F412; ASTM, 2017).

Table 2.4A comparison of four different types of polyethylene polymer. Structures and common biomedical applications of
different polymer properties include differences in branch structure, biomedical applications, density, and melting
points. (Adapted from McKeen, 2014).

Branching structure	Density and melting points	Properties	Biomedical applications	Ref
	HDPE Density = 0.94-0.97 g/cm3 Melting point = 128-136 °C	 Lowest degree of branching with carbon and hydrogen elements in its polymer backbone It has a more rigid surface and susceptible to stress cracking. 	 OMNIPORE® Craniofacial reconstruction Balloon catheters MEDPOR® HDPE Orthopedic prostheses and implants. 	Paxton <i>et al.</i> 2019
╨┬└╶┰└┶╓└╴	Linear low-density PE (LLDPE) Density = 0.90-0.93 g/cm3 Melting point = 100-130 °C	 It is substantially linear form of LDPE and has relatively more short branches on its backbone produced by copolymerization of ethylene and higher olefins. These short branches had increased their tensile strength, flexibility, better stress cracking adjustment and resistance against penetration and chemical. 	Dilators and sheathsImplants	Tharayil <i>et al.</i> 2019
ᆊᆘᆋ	Low-density PE (LDPE) Density = 0.92-0.94 g/cm3 Melting point = 105-115 °C	• Has high degree of short and irregular long branching in its molecular chain which reduce the ability to form crystallinity contents. Thus, reduce the strength of intermolecular and interaction in London dispersion forces.	 Medical packaging Meshes Urinary catheters Artificial joints 	Thome et al. 2012; Raad et al. 2008; Freytag et al. 2003 2003
┵┰┸┰┸┲┺	MDPE Density = 0.93-0.94 g/cm3 Melting point = 120-130 °C	 It has a slightly lower density, lower hardness and rigidity and more branches than HDPE. It has an excellent structure to resist chemical reaction, shock resistance and stable at room temperature 	• Not reported	Klyosov, 2007; Vasile and Pascu, 2005

2.2.1 Implementation of metal oxide nanocomposites in biomedical polymers

Nanocomposite is a term used for nanomaterials, such as nanoparticles, nanofibres and nanoclays, which are composed of several phases in nanometre size. Metal oxide nanocomposites is composed of two or more solid materials incorporated together purposely to improve surface per volume ratio, as well as mechanical and optical properties (Omanović-Mikličanin *et al.* 2019). The incorporation of MNPs into polymer matrices is one way to increase the applications of nanoparticles and enhance their physicochemical properties. Many researchers demonstrated the application of MNP polymer nanocomposites in biomedical products, especially as antibacterial agents (Sánchez-López *et al.* 2020; Shabatina *et al.* 2020; Nikolova *et al.* 2020; Zare and Shabani, 2016).

An antibacterial polymer is consisted of two essential components: a polymer matrix and an antibacterial agent. Antibacterial polymers can be categorised into two types based on its antibacterial mechanism: passive (repelling) or active (killing) action (Huang *et al.* 2016). Passive antibacterial polymers prevent bacterial attachments on their surface through hydrophilic or hydrophobic and electrostatic repulsions and the low surface free energy of the matrix. Several polymers, such as polyethylene glycol, poly(2-methyl-2-oxazoline) and poly (sulfobetaine methacrylate), prevent bacterial adhesion through neutral polymer brush systems and the dual function of the antimicrobial surface of poly(L-lysine)-graft-poly(2-methyl-2-oxazoline) quaternary ammonium on polymer surface (Yu *et al.* 2014; Pidhatika and Rakhmatullina 2014).

In comparison, active antibacterial polymers kill bacteria through electrostatic and biocidal interactions. Active antibacterial agents, such as quaternary ammonium, are functionalised within the polymer matrix to kill bacteria by adhering to the bacterial cell wall through electrostatic interaction, entering the cytoplasmic membrane and destroying bacterial intracellular membrane to lead to cell death (Xue *et al.* 2015). Individual MNPs tend to aggregate. MNPs with low selectivity and weak mechanical strength are improved by functionalisation with polymers before implementation in real-life applications (Sarkar *et al.* 2012). Moreover, efficacy in antibacterial actions could be enhanced through polymerisation to prolong the lifetime of antibacterial materials (Kenawy *et al.* 2007).

Both elements can be synthesised *ex situ* or *in situ*. In top-down *ex situ* synthesis, MNPs are synthesised individually prior to intercalation with a polymer. MNPs are embedded into polymer via physical entrapment through casting and solvent evaporation, chemical polymerisation and co-precipitation. This process will further form polymer membrane or crosslinking between each element to develop a 3D framework after sonication to ensure that the MNPs are dispersed evenly within the polymer matrix (Guo *et al.* 2014). *In situ* synthesis is a one-step fabrication method that allows MNP synthesis within a pre-formed polymer matrix (Sarkar *et al.* 2012). The applications of MNPs as antibacterial filler in polymer matrix are summarised in Table 2.5.

Synthetic Polymers used	MNPs	Antibacterial testing	Findings	Ref
PEG	Zinc oxide		A shorter reaction time of PEG capped ZnO NPs have higher antibacterial activity. Discrete antibacterial mechanisms via the generation of ROS and hydrogen peroxide from ZnO NPs.	Meshram et al. (2018)
	Copper oxide	MIC and disc diffusion	CuO:PEG showed lower MIC concentration. Generation of ROS via deposition of CuO NPs on the surface of bacteria were purpose responsible for antibacterial activity.	Hemalatha and Akilandeswari, (2016).
Ecoflex	Zinc oxide	Agar diffusion tests Time-kill assay	The lesser inhibition average halo values for the E. coli (0.67 cm) compared with S. aureus (1.13 cm) due to the structure membrane's difference after being treated with ZnO NPs. Polymer ZnO NPs (1%) did show great reduction (0.5% of survived S.aureus colonies) after be treated for 24 hours.	Capelezzo <i>et al</i> . (2018)
Linear low- density PE (LLDPE)	Titanium and zinc oxide	ASTM E2149	LLDPE nanocomposites with a higher ratio of ZnO NPs did show remarkable efficacy against both pathogens. Two primary mechanisms played a significant role in the bacteriostatic effect; generation of ROS and zinc ions release.	Saharudin <i>et al.</i> (2018)
	Cuprous oxide	Broth dilution	Composite demonstrated the highest antibacterial activity against both pathogens through thermal adhesion to the polymer with zero copper leaching. The bactericidal activity was purpose due to direct contact with a polymer surface.	Gurianov <i>et al.</i> (2019)
Low-density PE (LDPE)	Lithium- Titanate/	ASTM E2149	Reduction in crystallinity and enhancement in the LDPE matrix's polarity and hygroscopic properties did improve an excellent water uptake for ROS and metal ion release. Therefore, it helps the inactivation of <i>S. aureus</i> .	Basiron <i>et al</i> . 2019
LDPE and EVA	Silver oxide and Titanium dioxide	CFU counts	A higher % of Ag-TiO ₂ nanocomposites in polymer having the most reduction in <i>E. coli</i> bacterial colony. It showed the bacteriostatic ability of Ag-TiO ₂ to interact with an outer complex of LPS, phospholipids and lipopolyproteins.	da Olyveira <i>et al</i> . 2011

Table 2.5Overview of MNPs applications as antibacterial agent. MNPs are embedded with polymer nanocomposites as
antibacterial agents for biomedical purposes.

Table 2.5Overview of MNPs applications as antibacterial agent. MNPs are embedded with polymer
nanocomposites as antibacterial agents for biomedical purposes (continued)

Synthet	tic	MNPs	Antibacterial testing	Findings	Ref
Polyme used	ers				
LDPE EVA	and	Silver oxide and Titanium dioxide	CFU counts	A higher % of Ag-TiO ₂ nanocomposites in polymer having the most reduction in <i>E. coli</i> bacterial colony. It showed the bacteriostatic ability of Ag-TiO ₂ to interact with an outer complex of LPS, phospholipids and lipopolyproteins.	da Olyveira et al. 2011
РР		Copper oxide	CFU counts	Direct contact of PP composites with CuO NPs fillers surfaces able to kill Gram-negative <i>E. coli</i> strains within 4 hours of treatment periods.	Delgado et al. 2011
		Zinc oxide	CFU counts	The release of Zn^{2+} from the PP/ZnO nanocomposites destroy the cell walls of <i>E. coli</i> due to direct contact with the surface. Besides, the generation of ROS (HO, H ₂ O ₂ , O ²⁻) under light irradiation also damages the bacterial cell membranes.	Prasert et al. 2020
PVC		Zinc oxide, Titanium dioxide and ferrix oxide	CFU counts	The 10 wt.% of Fe ₂ O ₃ , ZnO, and TiO ₂ NPs embedded into PVC exhibit significant inhibition of Gram-positive and Gram- negative bacteria compared with 15 wt.%. It showed ZnO and Fe ₂ O ₃ NPs had much better antibacterial activity against Gram positive bacterial strains. Whereas, TiO ₂ had better antibacterial activity against Gram-negative bacteria. The size of NPs did influences the efficacy of antibacterial activity.	Sadek <i>et al</i> . 2020
PU		Silver and zinc oxide	OD and CFU counts	It revealed an excellent bactericidal and bacteriostatic activity of PUZnAg composite nanofibers against Gram positive (<i>S. aureus</i> and <i>B. subtilis</i>) and Gram negative (<i>E. coli</i>) strains. Enhancement in antibacterial activity been observed when both nanocomposites were combined within PU.	Jatoi <i>et al</i> . 2020

2.2.2 Antibacterial potential of TiO₂ and ZnO nanocomposites

Amongst the metal oxide antibacterial agents listed, TiO₂ and ZnO are the most valuable semiconducting oxide nanoparticles and considered "generally recognised as safe (GRAS)" by the American Food and Drug Administration to be used in all industries (FDA, 2016). Safety is an essential factor that needs to be considered in developing antibacterial polymer nanocomposites for human applications. The nanocomposite needs to be nontoxic and must not react with the polymer. Both semiconductors are activated and react with H₂O or hydroxide ions adsorbed on the surface upon UV light excitement to generate highly active ROS, including hydroxyl radicals (\cdot OH), superoxide (O₂•⁻) and hydrogen peroxide (H₂O₂) (Jaskova *et al.*, 2013). In this case, \cdot OH and O₂•⁻ will attach on the cell surface and H₂O₂ will penetrate into bacterial cells to kill the bacteria as shown in Figure 2.4.

Figure 2.4 Schematic diagram of visible light induced photocatalytic of TiO₂/ZnO photonic nanocomposites. TiO₂/ZnO nanocomposites performed an excellent photocatalytic and antibacterial activities against both Grampositive and Gram-negative pathogens (Adapted from Padmavathy and Vijayaraghavan 2008).

Toxic ions from ZnO and oxidative stress induced by ROS generation also cause cell death. TiO₂ is thermally stable, whereas ZnO has an amphoteric nature and can react with acids and alkali. The antibacterial properties of ZnO depend on high surface area per volume ratio and the release of Zn²⁺. ZnO generates free Zn²⁺ ions when immersed in solution and immediately binds to biomolecules, such as proteins, carbohydrates, lipids and nucleic acid. The released Zn²⁺ ions spontaneously attach to the bacterial surface because of electrostatic forces and react with the bacterial respiratory enzymes' thiol group. Zn²⁺ ions increase ROS production and develop oxidative stress in cells (Siddiqi *et al.* 2018). The accumulation of Zn²⁺ ions and oxidative stress generation disrupt several targets, such as bacterial membrane, carbohydrates, nucleic acids, amino acids, protein, lipid and DNA (Du *et al.* 2004; Agarwal *et al.* 2018). Biocidal effects are caused by the disruption of metabolic pathway and protein synthesis (Sirelkhatim *et al.* 2015).

The wide band gaps at ~3.2 eV for TiO₂ and 3.37 eV for ZnO nanoparticles, the high recombination of photogenerated electron–hole pairs, low light harvesting efficiency, weak photoresponse, inefficient charge transport and separation hinder the complete bacterial inhibition caused by single metal oxide nanoparticles (Mondal 2017; Kudo and Miseki 2009). These drawbacks render both semiconductors photocatalytically inactive at higher wavelengths of the electromagnetic spectrum. Alternative strategies, such as metal or metal oxide doping, co-doping and coupling with other semiconductors, can be applied to solve these limitations and extend the photoresponse in the visible light region (Cai *et al.* 2014; Vallejo *et al.* 2020).