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SINTESIS DAN PENCIRIAN ANOD OKSIDA LOGAM GRAFENA 

BERASASKAN BIOJISIM DALAM APLIKASI SEL BAHAN BAKAR 

MIKROB (MFCs) 

 

ABSTRAK  

Sel bahan bakar mikrob (MFCs) merupakan antara pendekatan bioelektrokimia 

yang paling menjanjikan untuk menjana tenaga di samping menyingkirkan bahan 

pencemar daripada air buangan, namun prestasinya yang agak lemah, telah 

mengehadkan usaha pengkomersialannya. Pembuatan bahan elektrod canggih bagi 

MFC adalah topik yang paling berpotensi pada masa ini untuk mengatasi masalah 

kadar pemindahan elektron yang rendah dalam operasi MFC. Dalam kajian ini, 

nanopartikel logam oksida (ZnO dan TiO2) yang disintesis secara hijau telah 

diperkenalkan kepada oksida grafena (GO) yang berasal daripada lignoselulosa untuk 

dijadikan anod nanokomposit. Anod nanokomposit GO/logam oksida memberi 

pemindahan tenaga dan penyingkiran ion logam yang cekap. Beberapa logam toksik 

seperti plumbum, kadmium, kromium, nikel, kobalt, dan merkuri dijadikan sasaran 

dalam kajian ini. Kajian menyeluruh dilakukan terhadap penyingkiran logam tunggal 

yang disasarkan menggunakan MFCs serta logam dalam bentuk pukal di dalam sampel 

air kolam yang tercemar. Elektrod anod daripada grafit komersial berfungsi sebagai 

elektrod kawalan terhadap rekaan terbaharu anod yang berasal daripada biojisim (GO, 

nanokomposit GO/ZnO dan nanokomposit GO/TiO2). Dalam suatu siri eksperimen, 

setiap anod telah memberikan kecekapan tenaga dan kecekapan penyingkiran logam 

yang berbeza. Hal ini menunjukkan bahawa sifat sesuatu logam mempengaruhi 

keseluruhan prestasi MFCs. Penyingkiran ion merkuri didapati sehingga 80% bagi 

anod nanokomposit GO/ZnO. Seterusnya, dapatan hasil kajian menunjukkan bahawa 
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elektrod komersial memberikan nilai kepadatan arus (CD) sebanyak 17.543 mA/m2 

dan nilai ketumpatan kuasa (PD) sebanyak 0.0588 mW/m2 bagi kes ion logam 

berbentuk pukal di dalam sampel air kolam yang tercemar. Sementara itu, GO 

berasaskan biojisim menunjukkan nilai CD dan PD yang masing-masing 1.7 dan 3.3 

kali lebih tinggi berbanding dengan  grafit komersial. GO/ZnO menunjukkan nilai CD 

6 kali lebih tinggi (105.263 mA / m2) dan nilai PD 34.3 kali lebih tinggi (2.021 mW/m2) 

daripada anod grafit komersial. Begitu juga dengan anod GO/TiO2 yang memberikan 

nilai CD sebanyak 3.9 kali lebih tinggi (68.421 mA/m2) dan PD 17.17 kali lebih tinggi 

(1.01 mW/m2) daripada anod grafit komersial. Di samping itu, kecekapan 

penyingkiran semua logam didapati lebih tinggi pada anod nanokomposit GO/ZnO 

berbanding dengan yang lain. Susunan mengikut kecekapan penyingkiran logam 

adalah nanokomposit GO/ZnO> nanokomposit GO/TiO2> GO> grafit komersial. 

Kajian ini telah membuktikan bahawa penambahan nanopartikel oksida logam yang 

disintesis secara hijau (ZnO dan TiO2) dapat meningkatkan kekonduksian sesuatu 

elektrod. Beberapa kajian elektrokimia, pencirian bahan dan analisis biologi telah 

dijalankan untuk membuktikan kecekapan anod yang terubahsuai daripada biojisim 

dalam operasi MFCs.  
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SYNTHESIS AND CHARACTERIZATIONS OF BIOMASS-BASED 

GRAPHENE METAL OXIDE ANODES IN MICROBIAL FUEL CELLS 

(MFCs) APPLICATIONS 

 

ABSTRACT 

Microbial fuel cells (MFCs) ranked among the most promising 

bioelectrochemical approaches for generating electrical energy while removing 

pollutants from wastewater, however, their relatively poor performance, has limited 

their commercial viability. The fabrication of advanced electrode material for MFCs 

is the most potential topic at present to address the issue of low electron transfer rates 

in the MFCs operation.  In the present work, green synthesized metal oxides (ZnO and 

TiO2) nanoparticles (NPs) were introduced to biomass-derived graphene oxide (GO) 

as nanocomposite anodes. The GO/metal oxide nanocomposite anodes provide 

efficient energy transfer and metal ions remediation. Several toxic metals such as lead, 

cadmium, chromium, nickel, cobalt, and mercury were targeted in the current study. 

Thorough investigations were conducted on targeted single metal remediation using 

MFCs as well as metals in bulk form in the polluted pond water samples. A commercial 

graphite anode electrode served as a control against the newly fabricated biomass-

derived anodes (GO, GO/ZnO nanocomposite and GO/TiO2 nanocomposite). In a 

series of experiments, each anode delivered different energy efficiency and metal 

remediation efficiency. It indicated that the nature of metal affects the overall 

performance of the MFCs. The mercury ions remediation was up to 80 % for the 

GO/ZnO nanocomposite anode. Further, the results indicated that the commercial 

electrode delivered 17.543 mA/m2 CD (current density) with 0.0588 mW/m2 PD 

(power density) in the presence of a bulk form of metal ions in the polluted pond water 
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sample. The biomass-derived GO showed 1.7 and 3.3-times higher CD and PD, 

respectively than the commercial graphite. The GO/ZnO nanocomposite anode 

showed 6-times higher CD (105.263 mA/m2) and 34.3-times higher PD (2.021 

mW/m2) than the commercial graphite anode. Similarly, the GO/TiO2 nanocomposite 

anode delivered 3.9-times higher CD (68.421 mA/m2) and 17.17-times higher PD 

(1.01 mW/m2) than the commercial graphite anode.  The remediation efficiency of all 

metals was found the highest in the GO/ZnO nanocomposite anode as compared to 

others. The sequence of remediation efficiency order is GO/ZnO nanocomposite > 

GO/TiO2 nanocomposite > GO > commercial graphite. The study proved that the 

addition of green synthesized metal oxide nanoparticles (ZnO and TiO2) enhanced the 

conductivity of the electrodes. Several electrochemical studies, material 

characterizations, and biological analyses were carried out to prove the efficiency of 

the biomass-derived modified anodes in the MFCs operation. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background of the Study 

Two of today’s most alarming environmental issues are water pollution and 

energy crisis and they stand at the crux of wastewater treatment. Despite several types 

of biological, chemical and physical approaches to treat pollutants in wastewater 

resources, they all pose various drawbacks including high energy requirements as well 

as high operating costs, the huge consumption of chemicals and the generation of waste 

as by-products [1]. Among those said disadvantages, the high amount of energy needed 

to treat wastewater coincides with the worldwide energy crisis that we are facing now. 

As a result, much effort has gone into developing cost-effective and low-energy 

methods of removing toxic pollutants from wastewater [2]. Owing to their sustainable 

nature, microbial fuel cells (MFCs) have been recognized as a viable technology for 

producing energy and simultaneously remediating toxic pollutants from wastewater. 

Its emergence as a promising approach to convert chemical energy into electricity in 

the presence of biocatalysts and at the same time remediating toxic pollutants from 

water [3]. The electroactive bacteria species degraded the organic waste and the 

released electrons from the degradation process were passed from organic waste to 

electrode for energy generation. The MFCs have proton exchange membranes (PEMs). 

Along with the PEMs, MFCs consist of two electrodes—an anode and a cathode—

where the former is responsible for providing sufficient space for bacterial growth and 

respiration to oxidize organic matter in the wastewater. Protons and electrons will then 

be generated out from the reduction and oxidation reactions taken place in the MFCs 

cells. Despite of that, MFCs have lacked commercial viability due to their low 
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efficiency [4-6]. Several parameters directly affect the performance of MFCs such as 

their scale and design, the PEM’s efficiency, cell resistance, organic substrate and the 

materials used as the electrodes. 

Of those said parameters, the material of the anode is critically affecting the 

performances of MFCs. This is because anode facilitates microbial adhesion on its 

surface and therefore improve the transferability of electrons [7]. To date, several types 

of electrode materials have been investigated, including carbon (e.g., cloth, rod, sheet, 

foam, carbon nanotubes and sponges), graphite (e.g., rod, sheet, and cloth), metal-

based electrodes and graphene-derived electrodes. In addition, several type of carbon 

nanomaterials such as carbon nanotubes (CNTs), carbon black and graphene 

derivatives were explored to improve the electrical conductivity of the anodes. Further, 

in literature there are several materials reported which were used to prepare the anodes 

such as natural biomass resource, conventional carbon-based, metal/metal oxides as 

well as conducting polymer composites [8-10]. A conventional carbon-based anode 

was commonly used as the anode but still fail to transport electrons effectively [11]. 

On the other hand, metal-based or polymeric composites showed good electric 

conductivity, but metal corrosion issue, toxicity and hazard of polymer shedding 

decreased the durability of the electrodes. Although all the above said materials have 

drawbacks (high cost, low conductivity and limited biocompatibility), graphene 

derivatives have demonstrated excellent properties, including large surface area, high 

electron mobility, robust mechanical strength, high thermal stability, and good 

chemical stability with reasonable electrical conductivity [12]. Moreover, by 

minimizing their limitations such as electrical conductivity and preparation cost, 

graphene-derived electrodes can be promising idea for commercial scale applications. 

Modifications on the waste-derived material are needed to provide effective a platform 
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for bacterial growth and thus will improve the transportation of electrons from bacteria 

cell to anode. In this study, lignin (as a starting material to produce graphene oxide 

(GO)) was extracted from oil palm (Elaeis quineensis) empty fruit bunches (EFB), as 

palm oil industry is the main generator of biomass in Malaysia [13]. In addition, oil 

palm biomass was also used as an organic substrate since oil palm trunk sap is a perfect 

diet for bacterial species [14]. Considering all the above, composite-based electrodes 

may enhance the performance of anodes, improve the electrical conductivity of MFCs, 

and thus make their industrial-scale use viable.   

Whereas metal-based materials also demonstrate properties beneficial to 

anodes, their corrodibility curtails the performances as anodes [15]. Metal oxide-based 

nanoparticles (NPs) such as cobalt oxide, iron oxide, zinc/cobalt oxides etc. were 

recently used as modifiers for anode electrodes in MFCs [16, 17]. As compared with 

metal oxide and carbon-based materials, pure NPs metal showed lower 

biocompatibility and corrosion resistance, which hampered the durability of the 

electrode [18]. Hence, it is essential to prepare a highly durable, stable, and low-cost 

anode for improving the electron transportation and bacterial biofilm formation on the 

surface of anode. Therefore, a graphene–metal oxide composite seemed to be a novel 

and bioinspired material suitable for these purposes. Added to the fact that graphene 

cost can be reduced by using waste material to prepare GO. Indeed, this approach has 

recently attracted considerable attention from various fields. Thus far, several waste 

materials have been used as electrodes, including compressed milling residue, loofah 

sponges, coconut shells, corn straw, mushrooms, silk cocoons, onion peels, cocklebur 

fruit, and even pinecones [19-20]. Additionally, to improve the conductivity of waste-

derived GO, the metal oxides as a modifier is an ideal option. Among all metal oxides, 

zinc oxide (ZnO), and titanium oxide (TiO2) are considered as promising materials due 
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to their unique electrical, high electrocatalytic ability, semiconductor, and optical 

activities [17,21]. These metal oxides are synthesized by using the waste material 

through green synthesis method. The GO-green synthesized metal oxide composite 

improved the biocompatibility of the anode electrode. The green synthesis method 

promoted the compatibility toward the bacterial species. For example, Shakeel et 

al.[22] studied the green synthesis of ZnO on polyindole functionalized multi-walled 

CNTs and its usage as anode for biofuel cell. Furthermore, the authors highlighted the 

enhancement about the biocompatibility, chemical stability, high electron 

transportation and high surface area of the green synthesized ZnO based composite. 

Therefore, the utilization of ZnO can be helpful to increase the electrocatalytic 

activities and electron transportation rate. Furthermore, several other studies also 

reported that ZnO showed significant activities in generation of green energy through 

dye-sensitized solar cells (DSSC) as a photoanode [23-25]. DSSC is a technology 

which can be used to convert the solar energy into electric energy in which photoanode 

was considered as the most important part of the DSSC, due to its function to transfer  

the electrons [25]. Similarly, Kilibarda et al. [26] studied the introduction of TiO2 

particle as anode in DSSC to facilitate the charges and observed the good efficiency 

of electron transportation. The composite of GO with TiO2 material as anode seems to 

be highly conductive, biocompatible, cost effective and stable. Kazmi et al. [27] 

studied the introduction of silver (Ag) NPs as modifier with TiO2 and used the material 

as anode electrode in DSSC. They reported 6.95 to 12.58 mA/cm2 improvement in the 

current efficiency due to the introduction of Ag NPs.  

In this study, oil palm lignin is used to synthesize the GO. In an exceptionally 

cost-effective process, lignin can be converted into GO via simple carbonization and 

Hummers’s method, after which the composite of lignin-based GO and metal oxides 
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can serve as the anode material. The selected metal oxides are not only highly 

conductive, but also inexpensive. Additionally, the prepared anodes such as GO, 

GO/ZnO nanocomposite and GO/TiO2 nanocomposites were also studied in terms of 

toxic metal remediation. According to literature, in the MFCs operations, anode plays 

a vital role in the treatment of the wastewater. Nowadays, metal pollution is one of the 

most troubling environmental concerns. Among the metals, lead (Pb), mercury (Hg), 

cadmium (Cd), chromium (Cr), cobalt (Co) and nickel (Ni) are the most dangerous for 

human lives [28]. Mathuriya et al. [29] described that MFCs technology is more 

superior than other conventional wastewater treatment methods. The advantages of 

MFCs are, it produced stable sludge than aerobic treatment process, not generating 

more CO2 than biological treatment methods and the conversion efficiency was also 

higher than the enzymatic fuel cells. Therefore, MFCs technology has emerged as a 

more promising method of remediating hazardous metals from an aqueous medium. 

Several previous studies indicated MFCs technology as a superior solution for metal 

ion removal from wastewater [30, 31]. Further, comparative studies were carried out 

to investigate the targeted anodes (commercial graphite, prepared GO, GO/ZnO 

nanocomposite and GO/TiO2, nanocomposites) performances in terms of electron 

transportation and toxic metal remediation efficiency. 

1.2 Problem Statement 

To date, MFCs are still unpractical for commercial and industrial purposes due 

to insufficient energy production, wastewater remediation inefficiency and high cost. 

In Malaysia, people use almost 99% of surface water for different domestic purposes. 

In contrast, they use 1% from groundwater, and the total internal water resources in 

Malaysia are almost 580 km3 per year [32]. Now, Malaysia is facing heavy metal 
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contaminations (Hg, Cr, Ni, Co, Pb, Cd) in the surface water which is a critical 

challenge to solve with green and feasible approach as stated by Razak et al. [32]. 

MFCs are the most promising technique, although it does have several challenges that 

must be addressed. One of the key issues is the material and design of the anode 

electrode. Additionally, the transportation of electrons from bacteria cell to anode 

electrode surface was an essential step for energy transportation. In the last decade, 

several efforts were done to improve the electron transportation between bacteria cell 

and electrodes which ultimately affect the efficiency of the MFCs. A wide variety of 

materials to build the anode electrode for MFCs have already been studied such as 

carbon-based materials, metal/metal oxides and conducting polymers [33, 34]. 

However, conventional carbon-based materials, metal-based materials (Au, Cu, Al, 

Ag) and conducting polymers (CPs) (polypyrrole, polyaniline) failed to provide 

enough power generation and to treat wastewater efficiently [33]. The above-

mentioned materials presented the following drawbacks: poor chemical stability, large 

pore size, poor mechanical stability, non-biocompatibility, corrosion and high cost 

[35]. Therefore, to overcome such drawbacks and to develop a stable anode, a high-

quality material is required. Recently, Cai et al. [10] reviewed several natural wastes 

to be used as anode electrode materials in MFCs. Such natural waste-derived anode 

electrodes performed better than those built with conventional materials because they 

had larger surface areas and fine pore sizes. However, their electrochemical 

performance was still not satisfactory. Several biomasses do not offer fine and pure 

carbonized carbon due to direct biomass carbonization processes. To prepare fine and 

fully carbonized carbon, the biomass-derived fine powder is an essential step toward 

this challenge such as oil palm biomass derived lignin, cellulose waste etc. The most 

conductive and high-quality carbon-based material named graphene and its derivatives 
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can also be synthesized from natural biomass wastes [36, 37]. In addition, the 

modification (e.g., with metal oxides) of highly conductive carbon-based materials 

such as graphene and its derivatives could provide a better outcome in MFCs. During 

the preparation of waste-derived modified anode, the composition optimization of 

waste material with modifier poses another challenge. An ideal composition of waste-

derived material/metal oxide with binder can effectively bring major breakthrough in 

MFCs field. For example, ElMekawy et al. [38] reviewed the literature about graphene 

derivative-based electrodes for MFCs and indicated that the modified graphene-based 

anode electrode led to better results. Thus, the modified graphene-anode electrode 

enhanced the oxidation process of the substrate by promoting the healthy growth of 

bacteria on the surface of the anode electrode, thereby enhancing considerably the flow 

of electrons. Today, there is no work on waste-derived graphene anode electrodes in 

MFCs for energy generation and pollutant remediation has been conducted. The anode 

electrode built with waste-derived materials improved the  electrochemical 

performance  of MFCs as stated by Huggins et al. [39]. They studied the comparison 

of waste-derived anode with commercial anodes and found that the waste-derived 

material is still more satisfactory in terms of energy generation as well as metal 

remediation. Additionally, the modification of graphene with green synthesized metal 

oxides such as TiO2, and ZnO NPs has a great impact on cost reduction and corrosion 

prevention [40]. The improved anode electrode can address the remediation 

performance issue in MFCs such as slow redox reaction to convert the soluble metal 

into insoluble state. The direct oxidation of organic substrate (such as oil palm trunk 

sap) at modified anode surface can bring major breakthrough in improving the 

remediation performance of MFCs. The green synthesized metal oxide as modifier 
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may enhance the bacterial biocompatibility and boost the redox reaction which may 

lead to the high metal remediation performance. 

1.3 Research Objective 

1. To synthesize the biomass derived GO-based metal oxide 

nanocomposites anodes and investigate the prepared material through 

several physiochemical and morphological techniques.  

2. To investigate the electrochemical and biochemical performances of  

the prepared anodes and commercial anode via MFCs. 

3. To investigate the bacterial community of each MFCs operation by 

using the prepared anodes and commercial anode via MFCs. 

4. To study the toxic metal remediation performances of the prepared 

anodes and commercial anode via MFCs.    

1.4 Scope of Research  

1. Biomass material was considered as primary source to synthesize the 

graphene derivatives such as GO. The targeted biomass was only oil 

palm empty fruit bunch (EFB). The EFB lignin and cellulose material 

is an eminent good feedstock to prepare the carbonized carbon for 

further applications. The extraction process of lignin is well discussed. 

The characterizations of the lignin were not considered because it was 

primary source, later it was converted into valuable product.  

2. The synthesis of metal oxides is limited to ZnO, TiO2, for the 

preparation of GO-metal oxide nanocomposites. The green synthesis 

method was used to prepare the metal oxides to promote 
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biocompatibility of the materials. Further, simple solvothermal method 

was used to prepare the nanocomposites.  

3. The prepared GO, GO/ZnO nanocomposite and GO/TiO2 

nanocomposites are used to fabricate the electrode for MFCs 

applications. While commercial plain graphite electrode was used as 

cathodes in MFCs throughout the project. Double chamber MFCs were 

used which are separated by PEM (Nafion). 

4. Different physiochemical characterizations of synthesized materials 

were performed by using several techniques. UV-Visible, Fourier 

Transform Infrared (FTIR), scanning electron microscope (SEM), 

Energy Dispersive X-Ray (EDX), transmission electron microscope 

(TEM), Brunauer-Emmett-Teller (BET), atomic force microscopy 

(AFM), thermal gravimetric analysis (TGA), Raman spectroscopy, and 

X-ray diffraction (XRD). 

5. The prepared anodes performances were analyzed in terms of electron 

transportation and remediation efficiency with commercial plain 

graphite. The performance was investigated by different 

electrochemical measurements such as open circuit voltage trend, 

closed circuit voltage, cyclic voltammetry, electronic impendence 

spectroscopy and polarization behaviour. The biological 

characterizations were also performed such as bacteria identification 

process, SEM and EDX to examine the bacterial biocompatibility 

towards the anodes. Further, the deep study about the bacterial isolation 

and identification process is not the objective. The simple bacteria 
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identification process was considered to identify the listed bacterial 

species.   

6. During the MFCs operation, the oil palm and glucose were supplied as 

organic substrates to enhance the rate of oxidation and reduction 

reaction.  

7. The toxic metals i.e.  Pb, Hg, Cr, Ni, Co and Cr are targeted. The metals 

were supplemented with local collected wastewater to use as 

inoculation source in double chamber MFCs. 

8. The multiple parameter optimization (temperature, pH, etc.) and 

electrode fabrication composition optimizations are not included. 

1.5 Organization of Thesis  

Five chapters were organized in this thesis: Chapter 1 presents the background 

information and the purpose of this study. The problem description, goals, scope of 

study and contribution to research are clarified. Chapter 2 outlines an in-depth 

assessment of this study literature. The basic role of anode electrode with future 

perspective is described. Detailed information is available on biomass-derived anode 

electrode, its characteristics and its applicability as electrode in MFCs. Chapter 3 

presents the methodology and the workflow process of synthesis of GO and its 

modification with metal oxide to fabricate the anode electrode. The chemicals and 

apparatus that were used for this research are specifically described. The performance 

of unmodified GO anode as well as modified GO anode as efficient source of electron 

transfer and remediation support through MFCs are discussed in detail. Chapter 4 

showing the results and detail discussion on synthesis of material as well as 

performance in MFCs. The results included SEM, TEM, EDX, Raman, XPS, TGA, 
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XRD, FTIR, UV, BET, PL, CV, EIS and general procedures of microbiological 

analysis. The findings and results of this research are summarized in Chapter 5. The 

proposal for improving future research and activities is also included in this Chapter.  
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction 

The increasing world population, urbanization and industrialization have led to 

high energy demand. Currently, the world is depending largely on different fossil fuel 

sources for energy. However, fossil fuel is no longer an ideal energy source in terms 

of security, efficiency, and environmental impact. For example, in 2011, Japan 

displayed efforts to make a nuclear power as an alternative energy source to meet the 

energy crisis. Despite the efforts, the  operational reliability, security and practical 

implementation aspects of the nuclear power still needs to be scrutinized for a safely 

and sustainable solution [41]. Increasing energy consumption and managing water 

pollution are two of the most emerging concerns in the modern world, both of which 

are critical to maintaining a stable green environment for a healthy lifestyle. A large 

number of scientific literature describes innovative ways for producing energy and 

treating wastewater, but they are limited by a number of factors, including high costs, 

production by-product sludge, energy consumption, and cost [42]. Therefore, 

development and advancement in green energy technologies along with environmental 

protection are essential elements which currently attracts a wide interest of researchers. 

To address these two challenges, one of the first alternatives is MFCs, which generate 

successfully green energy by treating different kind of pollutants from wastewater. The 

production of green energy from waste materials by using available electroactive 

bacteria (such as E. coli, Geobacter spp. etc.). It is a cost effective and relatively simple 

process in which carbon is converted to energy by means of bioelectrochemical  

processes [43]. This process has received a wide interest in the remediation of 



13 

pollutants from water systems. There are several factors to take into consideration for 

the MFCs performances, such as anode, cathode, organic substrate, and PEM [44, 45]. 

Among all factors, one of the most important factors is the performance of anode and 

the reactions and interactions that take place in the anode [46]. Anode electrode is a 

component of the MFCs in which the bacteria grow to produce a biofilm around the 

anode surface. This bacterial growth encourages the decomposition of substrate to 

generate protons and electrons. The generated electrons are pushed towards the 

cathodic chamber by using a provided circuit, whereas the generated protons are 

transferred directly into the cathodic chamber through a PEM [47]. The transferred 

protons and electrons from the anode are consumed in the cathode chamber. The 

combination of protons and oxygen in the cathode chamber, results in the formation 

of water molecules. The generation of energy through MFCs depends on the oxidation 

of organic substrate on the surface of anode. While the reduction reaction occurs on 

the surface of cathode electrode. Several factors such as extracellular electron transfer 

(EET), bacterial attachment on anode, substrate decomposition and biofilm growth are 

directly linked to the anode electrode [48]. Despite all efforts, the quality of the anode 

material, cost and free availability issues do not allow the utilization of MFCs at large 

scale. The most utilized materials reported for the anode have been carbon-based, 

metal/metal oxides and conducting polymer composites. In early time, the precious 

metals such as gold received significant interest due to their high conductivity and 

excellent mechanical strength. Later, to minimize the cost of the anode material, the 

transitional metals like copper, nickel, titanium, aluminum, and stainless steel have 

also been utilized [11]. Similarly, the carbon-based material such as carbon rod, felt, 

fiber, graphite etc. are still extensively studied. These are all conventional materials 

that have shown several drawbacks such as for example: the metal-based materials 
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showed corrosion under long term operation, and high cost, similar conventional 

carbon material showed low efficiency due to a low electric conductivity of the 

material. These conventional materials require extensive surface modification to 

enhance their quality and thus minimize their limitations. Recently, Aziz et al., [49] 

studied the paper waste-derived conventional three‑dimensional carbon aerogel which 

was further modified with nitrogen‑doped reduced graphene oxide (rGO) to enhance 

the anodic performance in MFCs. They achieved power density of 1468 mW/m2. They 

found that the improvement in conventional carbon-based material is preferable due 

to cost effectiveness as well as energy performance. Wang et al., [50] studied the 

conventional carbon foam and derived from the corncob wastes. They modified the 

conventional carbon foam to fabricate the 3D N-doped carbon foam anode. The 

prepared 3D N-doped macroporous carbon foam delivered 4.99 ± 0.02 W/m2. 

Therefore, modification of a conventional material is a priority for high performance 

of MFCs. It is a good idea to use waste material to produce highly conductive carbon-

based material such as CNTs, carbon black and graphene (Gr`) derivatives. Later, 

among them the CNTs and carbon black-based anode showed cellular toxicity towards 

the bacterial community which may decrease the performance of microbial 

electrochemical technologies (such as MFCs) as explained by Hassan et al., [51]. 

Therefore, Gr` derivatives were introduced as materials that prevent the extensive 

limitations that have risen by the other carbon-based materials. Gr` is a 2D allotrope 

of carbon which is considered suitable for the anode due to its high conductivity, high 

chemical, thermal, mechanical stability, and biocompatibility towards bacterial growth 

[10]. The commercial Gr` derivatives are very expensive, therefore, carbon derived 

from waste biomass material for anode preparation may serve as a low-cost preparation 

approach. Several recent studies showed that natural waste derived carbon (which may 
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be converted into precious carbon form such as Gr` derivatives, CNTs etc.) can serve 

as anode and the reports indicated that significant improvement were achieved in 

MFCs applications [38]. Additionally, doping or composite of natural derived precious 

carbon with metal oxides can lead to a breakthrough in the field of MFCs. The metal 

oxides such as ZnO, TiO2, CuO, AgO, Al2O3 etc. have been extensively studied as 

cost-effective materials. This is because they can be produced through utilizing natural 

waste sources. The composite of these two or more different natural waste materials 

can serve as an ideal anode in MFCs. Additionally, the modified waste-derived Gr` 

derivatives anodes has the capacity to improve bacteria-anode interaction which 

increase the formation and strength of biofilm which may lead to high electrons 

transfer from bacterial cell to anode electrode. Kumar et al., [52] also considered the 

preparation of the Gr`/poly (3, 4 ethylenedioxythiophene)/Fe3O4 nanocomposite as 

cost-effective oxygen reduction catalyst for high energy generation and wastewater 

treatment. The achieved maximum power density was 3525 mW/m2. However, the 

aim of the present literature is to discuss the efficiency of energy generation and MFCs 

performance by utilization of the modified anode materials. 

2.2 MFCs: Mechanisms of Energy Generation and Pollutant Remediation 

A fuel cell is usually defined as a conversion of a chemical energy into an 

electrical energy without using any kind of combustion. MFCs approach is also a form 

of electrochemical fuel cell. MFCs approach promotes the growth of bacteria to 

oxidize the organic substrate in wastewater to generate electrical energy. However, 

prior to knowing the mechanisms of pollutant biodegradation or biotransformation 

through the utilization of MFCs, it is necessary to know the proper mechanisms of 

energy generation through MFCs. In the MFCs chambers several strains of bacteria 
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may present the capability of transferring the electrons and protons through electrodes. 

It has been found that there are five dominant groups of microorganisms such as 

Firmicutes, Proteobacteria, Acidobacteria, fungi and algae that are present the 

characteristic of electricity generation associated to their respiration process in the 

MFCs chamber [52]. Some of the bacteria that have been reported earlier, which acts 

as electron exchanger with electrodes are Clostridium butyricum, Rhodoferax 

ferrireducens, Shewanella sp., Geobacter sp. and Aeromonas hydrophila [53-55]. 

Further, there are some bacterial species which can transfer the electrons directly to 

the anode. These types of species are recognized as electrogenesis. The bacterial 

species which carry out this process are known as exoelectrogens [56]. During the 

MFCs operation, the bacterial species oxidize the various organic substrates to 

generate electrons and protons.  

However, microorganisms can transfer electrons to electron acceptors that are 

present in an insoluble state. For example, some Geobacter species have pili (pili is 

body part of bacteria), which are as conductive as metal and are actively expressed. 

Microorganisms grow on the surface of the electrodes and develop a biofilm to transfer 

electrons more efficiently [11]. The formation of biofilm on the surface of anode is the 

most significant mode of interaction to pass the electrons. To reduce the competition 

between electron carriers’ mediators and oxygen, anaerobic conditions must be 

applied. The oxygen supply (oxygen is as electron acceptor) in the anode chamber lead 

to poor energy generation [57].   

In biofilm, both forms of bacterial culture, such as mixed bacterial culture and 

pure bacteria culture, have been previously documented in the literature. For example, 

according to Jadhav et al., [58] the mixed bacterial culture offered higher power 

efficiency than pure culture. The key advantage of the mix bacterial consortia is that 
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they can oxidize the organic substrate more effectively. This is due to the syntrophic 

relations between exoelectrogens and fermentative bacteria; such interaction may 

improve the exoelectrogenic activities. On other hand, the pure single bacterial 

colonies are easy to investigate in biofilm for electron transfer mechanisms study. 

Meanwhile, the anaerobic condition of anode chamber is an essential metabolic 

pathway for the oxidation of the complex organic substrate by bacterial species. 

During oxidation process, any complex organic substrate first hydrolyzed into simple 

compounds like aromatic compounds, monosaccharides, fatty acid, and amino acid as 

shown in Figure 2.1.  Next, the hydrolysed simple compounds are fermented or 

oxidized to CO2 which may generate and transfer the electrons to the anode electrode. 

The maximum generation of electrons and complete oxidation of simple compounds 

are the ideal conditions in MFCs.  

 

Figure 2.1 Oxidation process of organic substrate on the surface of anode in 

presence of biofilm to generate the electron and proton (Adapted from 

[57] with MDPI permission). 
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2.3 Mechanism of Electron Transfer from Bacteria to Anode Electrode 

Microorganisms that transfer the electrons extracellularly are classified as 

exoelectrogens and some species that have the ability to transfer electrons in this way 

are: Geobacter lovleyi, Geothrix fermentans, Thermincola carboxydophila, Geobacter 

sulfurreducens, Shewanella oneidensis, Rhodopseudomonas palustris, Thermincola 

potens, E. coli, and Shewanella putrefaciens [59, 60]. For energy generation, 

exoelectrogens can transfer electrons from electrodes through some mechanisms that 

have been clearly stated as shown in Figure 2.2.  

i. In brief, the short-range transfer of electrons towards the anode electrode is 

carried out via electron shuttles molecules such as in the case of G. fermentans. 

Both, gram positive and negative bacteria, can transfer electrons through using 

self-producing shuttle molecules. Desulfuromonadaceae and Geobacteraceae 

are two families of bacteria that produce self-electron shuttles, for example, c-

type cytochromes are a group of these electron shuttles that include MtrC, 

MtrD, MtrF, OmcA and MtrE components [61]. 

ii. Geobacter sulfurreducens is a good example of microorganism that can assist 

the electrons transformation towards the anode via anaerobic enzymatic-based 

metabolism activities. The bacteria Geobacter sulfurreducens facilitates the 

electron transformation to several types of acceptors such as fumarates etc. It 

has been reported that several redox active proteins such as OmcT, OmcZ, 

OmcS, OmcE and OmcB are available in exoelectrogens [62].  

iii.  The long-range transfer of electrons through conductive pili attracts great 

interest. A little filamentous projection in bacteria body which promotes 

surface adhesion and is not used for mobility is known as pili. These pili are 

usually conductive and help to transfer the electrons from the biofilm to the 
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anode surface. The conductive pili are generally available in the strains of 

Shewanella oneidensis, Pelotomaculum thermopropionicum, G. 

sulfurreducens, and Methanothermobacter thermautotrophicus [63]. The 

direct interspecies electron transfer approach was studied mostly in Geobacter 

metallireducens and Geobacter sulfurreducens. In this approach, the 

microorganism serves to transfer the electron directly and enhances the mutual 

growth. The Pelotomaculum thermopropionicum and Synechocystis are also 

examples of this kind of transformation in MFCs [64]. 

 

Figure 2.2 Schematic presentation of MFCs and electron transfer mechanisms 

from exoelectrogens to electrodes.  

2.4  Reduction Mechanism of Heavy Metals 

To date, several chemical, physical, analytical, and biological approaches have 

been introduced for the remediation of heavy metals. Among all, MFCs is the feasible, 

cost-effective, and eco-friendly approach which can reduce heavy metals and 

simultaneously generate energy.  The microorganism that can accept electrons from 

(anode and cathode) electrodes is known as electrotrophs [65]. This fact opens a new 



20 

direction for treatment of heavy metals via reduction reaction. The heavy metals are 

removed through the reduction reaction at cathode while organic substrates are 

oxidized at anode [66].  

There are many types of bacteria (such as Geobacter species) that produces 

electrons from organic substrates [61]. There are many toxic heavy metals like Cr, Ni, 

Zn, Hg, Pb, Cu, V ions etc. that are reduced by different microorganisms. The 

reduction process followed the same mechanisms, i.e., G. sulfurreducens produce 

electrons and simultaneously reduces the U6+ to U4+ form (soluble to insoluble). The 

U4+ is insoluble, and it is deposited on the electrodes [67]. Watts et al., [68] studied 

that G. sulfurreducens has the capability of reducing Cr 6+ to Cr 3+, where it converted 

the highly toxic oxidation state of chromium to the less toxic form. The reduction of 

Cr 4+ depends on the oxidation of substrate (acetate) at the anode electrode. Later the 

electrons were transferred to microorganisms and the reduction of chromium ions 

occurs at the cathode. The reduction reaction can be written as:  

Cr2O7
−2 + 14H+ +6e−   →   2Cr3+ + 7H2O ---------------------------------------------- (2.1) 

Hao et al. [69] studied the removal of vanadium with microorganisms such as 

Enterobacter, Macellibacteroides and Lactococcus. The authors recorded vanadium 

removal efficiency of 93.6% and a high current density of 543.4 mW/m2.  Similarly, 

the most toxic heavy metal which is mercury (Hg2+) can also be reduced via MFCs. 

The Hg2+ redox potential was recorded as -320 mV. The removal mechanism of Hg2+ 

in a precipitate form occur in the presence of chloride (Cl-) ions and the reduction 

through electrons occur at cathode electrode as shown below:  

Hg2
2+ + 2Cl−   →   Hg2Cl2(s) -------------------------------------------------------------- (2.2) 

Hg2Cl2(s) + 2e−  
→   2Hg(I) + 2Cl− --------------------------------------------------- (2.3) 
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The final product was Hg2Cl2 and deposited at the bottom of the cathode while 

the elemental Hg2+ was found on the surface of cathode. During this process, the 

maximum power density achieved was 433.1 mW/m2  as stated by Wang et al., [70].  

Similarly, the reduction mechanism of Cu2+ to Cu can be written as: 

Cu2++ 2e-   →    Cu ------------------------------------------------------------------------- (2.3) 

2Cu2+ +H2O + 2e-   →  Cu2O + 2H+ ----------------------------------------------------- (2.4) 

Cu2O + 2e- +2H+   →   2Cu +H2O --------------------------------------------------- (2.5) 

During reduction of Cu2+ in MFCs operation, two major products may produce 

which are Cu2O or Cu at cathode. The electrons originated from the oxidation process 

of organic substrate which occur in anode compartment [71]. Anode has received 

significant attention in MFCs research because the working mechanism of MFCs 

directly depends on the performance of anode. Therefore, the improvement of the 

anodic component of MFCs systems is of upmost importance over others.  

2.5 Biochemical Cell Reactions and Electrochemical Measurements  

During the MFCs operation, organic substrate such as glucose, acetate sucrose 

etc. are oxidized by bacteria to generate the electrons. The oxidation reaction at anode 

and reduction reaction at cathode can be written as follow with different organic 

substrate [72, 73]. 

(a)  If glucose is used as organic substrate 

Oxidation reaction at anode: C6H12O6 + 6H2O   →  6CO2 + 24H+ +24e- ------------ (2.6)  

Reduction reaction at cathode: 24H+ + 24e- + 6O2  →  12H2O ---------------------- (2.7) 

Overall reaction: C6H12O6 + 6O2  →  6CO2 + 6H2O + Electricity + Biomass ------ (2.8) 
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(b)  If acetate is used as organic substrate  

Oxidation reaction at anode: CH3COOH + 2H2O  →  2CO2 + 8H+ +8e- ------------ (2.9) 

Reduction reaction at cathode: 8H+ + 8e- + 2O2  →  4H2O ------------------- ------ (2.10) 

 Overall reaction: CH3COOH + 2O2   →  2CO2 + 2H2O + Electricity + Biomass - (2.11) 

(c)  If sucrose is used as organic substrate  

Oxidation reaction at anode: C12H22O11 + 13H2O  → 12CO2 + 48H+ +48e- ------ (2.12) 

Reduction reaction at cathode: 4H+ + 4e- + O2  →  2H2O -------------------------- (2.13) 

Overall reaction: C12H22O11 + 12O2 →  12CO2 + 11H2O + Electricity + Biomass… 

(2.14) 

Further, the produced electrons move from anode to cathode electrode while 

different electrochemical measurements are carried out to measure the performance of 

the electrode  

2.6 Essential Properties of Anode Electrode Materials 

The selection of an anode electrode material in MFCs is still a critical challenge 

for researchers to achieve desired results in terms of electrochemical efficiency, 

electron transformation and bacterial adhesion [74]. Some essential properties which 

must be present in an ideal anode electrode are listed in Figure 2.3a. 
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Figure 2.3 Schematic presentation of an anode electrode. (a) Essential properties 

of anode electrodes; (b) Classification of anode electrode materials; (c) 

Modification strategies for anode electrodes. 

2.6.1 Conductivity  

Conductivity is an important property of anode material because the electrons 

released by bacteria are transferred to anode electrode which further travel to cathode 

via the outer circuit. Thus, the anode material is responsible for enabling the flow of 

electrons and increasing their speed [75, 76]. Highly conductive materials help to 

reduce the bulk solution resistance and increase the transfer of electrons. The 

interfacial impedance between the substrate and the electrode must be low to boost the 

transfer of electrons [77, 78]. The electrical conductivity of materials is usually studied 

before building the anode electrodes for MFCs. 
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2.6.2 Surface Area and Porosity 

Energy generation in MFCs is seriously affected by the surface area of the 

anode electrode [79]. The anode electrode resistance is directly proportional to the 

ohmic losses of fuel cell and, thus, the best way to reduce the resistance power is by 

increasing its surface area. Additionally, a large surface area offers more active sites 

for bacterial growth and increases the efficiency of the electrode kinetics. 

Microorganisms such as Escherichia coli, Geobacter species, Pseudomonas species, 

etc. were efficiently and actively immobilized on the surface of anode electrodes 

ensuring the effective and direct electron transfer to the anode electrode [34]. 

Biological reactions occur on the surface of the anode electrodes and, therefore, the 

surface area extremely influences MFCs performances [80]. As can be seen in Table 

2.1, conventional carbon materials have a smaller surface area than Gr` derivatives 

[44, 81, 82].  

2.6.3 Biocompatibility 

Biocompatibility of the anode electrode has a significant importance in MFCs 

operations because it is directly in contact with bacteria and their respiration process. 

In MFCs, several materials such as copper, silver and gold are not considered 

biocompatible to be used as anode electrodes because they are prone to corrosion [44]. 

The toxicity of the said metals can inhibit the bacterial growth during MFCs operation 

and thereby decrease the generation of energy. 

2.6.4 Stability and Durability  

The long-term contact of conventional anode electrodes with substrate and 

inoculated microorganisms in MFCs generally produces swelling due to non-


