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MODEL PROSES GAUSSIAN BERHIERARKI UNTUK RIZAB KERUGIAN

ABSTRAK

Peramalan rizab kerugian merupakan antara aktiviti utama aktuari dalam industri

insuran. Amalan ini dilakukan untuk memastikan kesihatan kewangan sesebuah syarikat

insuran dalam keadaan baik, dan pada masa yang sama melindungi hak pelanggan syarikat

tersebut. Walaupun teknik-teknik yang digunapakai adalah dikawalselia dengan ketat, na-

mun para penyelidik masih giat mencari kaedah yang mampu menambah baik ketepatan

dan mengukur ketidakpastian ramalan rizab kerugian ini. Beralih daripada kaedah nis-

bah kerugian yang merupakan kaedah biasa dalam amalan aktuatri, para penyelidik telah

mengkaji kaedah-kaedah yang lain termasuk model berparametrik seperti model lengkung

pertumbuhan, model yang berasaskan system dinamik dan juga model tak berparametrik.

Wujudnya peningkatan minat para penyelidik dalam bidang ini untuk menggunakan kaedah

Bayesian dalam pengukuran ketidakpastian ramalan. Perkembangan terkini kajian topik

ini melibatkan satu model proses Gaussian berhierarki dan bersifat Bayesian yang mem-

odelkan hubungan spasial tiga dimensi yang wujud dalam data kerugian. Model ini telah

diuji dengan tiga fungsi kernel yang berbeza dan, termasuk penggunaan kaedah ledingan

input untuk menguruskan data yang berada dalam keadaan tidak pegun. Pemeriksaan yang

lanjut dalam fungsi kernel eksponen berkuasa dua yang bersifat anisotropi dalam kajian

ini menunjukkan fungsi kernel tersebut terdiri daripada pendaraban dua fungsi kernel

eksponen berkuasa dua yang bersifat pegun. Kedua-dua fungsi kernel dalam pendaraban

ini mewakili dimensi input masing-masing. Dalam satu kajian yang lain pula, fungsi

kernel yang dihasilkan oleh pendaraban mempunyai kuasa ekstrapolasi yang lebih lemah

berbanding dengan fungsi kernel yang dihasilkan melalui tambahan, namun kedua-dua

jenis fungsi kernel mempunyai sifat yang berbeza. Kombinasi fungsi kernel telah diperke-

nalkan dalam kajian tersebut, terutamanya fungsi kernel berdaya tambah penuh yang men-

gandungi kedua-dua fungsi kernel berdaya darab dan fungsi kernel berdaya tambah. Tesis

ini akan menunjukkan kesan menggunakan kombinasi fungsi kernel eksponen berkuasa

xv



dua dalam model proses Gaussian berhierarki yang bersifat Bayesian untuk peramalan

rizab kerugian. Walaupun hasil daripada kajian ini tidak menunjukkan kemajuan yang

ketara daripada kajian sebelum ini, namun wujud juga bukti yang menunjukkan bahawa

kombinasi fungsi kernel mampu memberi lebih struktur untuk model proses Gaussian

berbanding dengan sebelum ini, apabila digunakan bersama kaedah ledingan input.
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HIERARCHICAL GAUSSIAN PROCESS MODELS FOR LOSS RESERVING

ABSTRACT

Loss reserving is one of the main activities of actuaries in the insurance industry

and is done to ensure the financial health of companies as well as protecting consumers’

interest. Techniques applied by the practitioners are highly regulated, but researchers

are still ongoing in the pursuit of finding methods to improve predictive accuracy and to

establish a measure of predictive uncertainties. Diverting from the link ratio methods,

researchers have experimented with parametric models such as growth-curve models and

models involving dynamical systems, as well as nonparametric models. Researchers in

this field have increasingly shown interests in utilizing Bayesian methods to measure

predictive uncertainties. The latest development in the loss reserving literature involves a

hierarchical Bayesian Gaussian Process model that models the three-dimensional spatial

relationship in the loss observation, experimented with three stationary kernels with input

warping to manage the nonstationarities present in the data. Upon inspection of the

anisotropic squared exponential kernel used in the study, we have shown that the kernel

consists of a multiplication of two stationary squared-exponential kernel applied on each

of the two input spaces, i.e. a multiplicative kernel. In another independent study, it was

found that multiplicative kernels have poorer extrapolation abilities compared to additive

kernels, but both types of kernels have di�erent properties. In that study, combinations

of kernels were introduced, especially the full additive kernel that includes both additive

and multiplicative kernels. This thesis presents the case of using various combinations

of squared exponential kernels into the hierarchical Bayesian Gaussian Process model

for loss reserving. While the results obtained from the simulations do not show a great

improvement from the original study that has proposed this model, there are evidence

that suggest that the combination of kernels have provided more structure to the Gaussian

Process model, along with the usage of input warping.

xvii



CHAPTER 1

INTRODUCTION

Loss reserving is one of the main activities of actuaries other than pricing products in the

insurance industry to ensure an insurer’s financial health as well as to protect consumers’

interest. There already exist some typical workflow for this highly regulated practice

but practitioners constantly seek for improvements in obtaining better predictions for loss

reserves as well as fulfilling the need for measure of uncertainties. While improving

predictive accuracy has always been the main focus not only in the insurance industry,

researchers in this field have been working on Bayesian models in order to capture predic-

tive uncertainties, whether by parametric or by nonparametric models. Gaussian process

regression has been recently introduced into the loss reserving literature and further study

was needed to be applied in practice. This thesis focuses on investigating the e�ect of

various combinations of kernels in the loss reserving Gaussian process models.

1.1 The loss reserving problem

The insurance business exists as a result of pooling individuals exposed to certain risks,

whether a loss of life or nonlife, and this group of individuals (insured) are consumers of

a risk transfer service whereby the insurer receives some return in the form of premiums

on its willingness to take on the risks of its customers. It is essentially a sharing of risks

since the event may not occur to every individual in the pool. General (nonlife) insurers

cover property and casualty risks of their customers (insured), that is, the insurer is liable

to any losses su�ered by the insured in an event of occurrence of a covered risk during the

policy e�ective period. However, if the covered risk does not occur in an insured’s policy

e�ective period, the premium paid by every insured in the pool at the beginning of the

policy e�ective period will be earned by the insurer. In order to make a profit out of this

business, the insurer has to charge a premium to its customers that is su�cient to cover

the losses when an event happens, to cover operational costs of the company as well as to
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make a profit for the shareholders. Despite the usual logic of profiting from a business, the

insurance business di�ers slightly from any typical business since the costs of the product

is unknown at sale, hence the accounting equation

Profit = Income ≠ Costs (1.1)

cannot be applied directly. The similar equation in the context of the general insurance

industry is as follows:

Total Profit = Investment income + Underwriting Profit (1.2)

=
1
Investment income on capital

+ Investment income earned on policyholder-supplied funds
2

+
1
Premium ≠ Losses ≠ Loss Adjusting Expenses

≠ Underwriting Expenses
2
.

From 1.2, the costs of an insurance company generally include underwriting expenses

to keep a company operational as well as the losses and loss adjusting expenses that

may only be realised in the future. To report the profitability of the company in its

financial papers, the unknown future liabilities at a point of reporting has to be estimated.

The actuaries’ responsibility in a general insurance company are typically separated into

pricing of products and valuation of future liabilities. This research focuses on the latter.

The valuation of future liabilities typically involves forecasting future liabilities

and assessing the amount of assets to address them. Insurance companies are required to

allocate a provision for the future liabilities known as a loss reserve to pay for the unknown

claims that may occur in the future. The loss reserve is recorded in the financial statements

of the insurers as a form of recognition of future liabilities, usually being the largest portion

of a general insurer’s liability. If the reserve is set too low, there is a risk of inadequate

funds for claims in the future and an overestimation of profit; if it is set too high, there is

a loss of chance to invest in the funds and an underestimation of profit. An inadequate

of funds to pay for liabilities puts a company at risk of bankruptcy as well. In fact, the
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insurance business is a heavily regulated business, especially after a compensation crisis

in the 1980s and 1990s (American Academy of Actuaries, 2000) that have brought the

actuarial industry into the spotlight. Regulations were set and tough reporting standards

have been imposed to improve actuaries’ credibility. Hence a proper estimation of this

ultimate liability is vital, but the task is challenged by underlying uncertainties which

normally arise due to the unknown ultimate number and size (amount) of reported claims

(Zhang et al., 2012). Future claims may occur randomly, and may or may not be made

known to the insurer at the time of occurrence. If claims are reported and make known

to the company, case reserves can be allocated for the particular claim but loss payments

can stretch out to months or even years for certain line of businesses before the claim

is complete, causing lengthy claim settlement periods. In some cases, especially when

huge amount of losses is involved, it may involve litigation process and so may take even

more time to reach settlement. On the other hand, the insurer needs to also take into

account claims that are unknown to them at a particular evaluation time and thus the need

to also set up a provision for these unknown claims. Therefore, the very existence of the

actuarial profession has been primarily regarded to predict these underlying uncertainties

to safeguard company and consumer interests.

1.1.1 The claims process

When an event covered in an insured’s policy occurs, the claims process begins when a

claim is reported and made known to the insurer. This process in particular is called the

opening of claims. An amount known as a case reserve or also commonly known as a

case outstanding will be allocated for each open claim that is being reported to pay for

losses of the particular claim. If the case outstanding is insu�cient as a result of claims

development, the amount can be increased (as incurred but not enough reported, IBNER),

else the remainder returns to the company funds. As long as the claim is not settled (closed

claims), the case outstanding remains allocated for future incoming losses. For situations

where an event has happened but not made known to the company up until before the

policy e�ective period is over, the incurred but not yet reported (IBNYR) or pure IBNR
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will be allocated. In general, IBNR is the sum of IBNER and IBNYR. Hence, as an

acknowledgement of the insurer’s future liabilities, the loss reserve is the sum of IBNR

and the case outstanding at a particular evaluation time. Having known the paid losses

at a particular evaluation point, together with the provision for development of known

losses and provision for unknown losses, we have the amount of ultimate value of losses.

Alternatively, we can also say that by estimating the ultimate value of losses, the amount

of IBNR can be estimated by subtracting the paid amount and the case outstanding amount

at an evaluation point from the ultimate value of losses, which can be seen from the third

line in the equation below, where t represents a point of evaluation:

Ultimate Loss ¥ Paid Losses(t) + Provision for Known Losses(t) (1.3)

+ Provision for Unknown Losses(t)
¥ Paid Losses(t) +

1
Case Outstanding(t) + IBNER(t)

2

+ IBNYR(t)
¥ Paid Losses(t) + Case Outstanding(t) + IBNR(t)
¥ Paid Losses(t) + Reserve(t).

1.1.2 The loss triangle

Loss reserving techniques have traditionally evolved around loss triangles which show the

development of aggregated claims of the insureds by accident years. Table 1.1 shows a

typical loss triangle for cumulative paid claims of the worker’s compensation line of busi-

ness from a single company. The loss data was extracted from statutory annual statements

of selected general insurance companies in the United States, which are required to be

submitted to the National Association of Insurance Commisioners (NAIC) periodically.

The extracted data was made available from the website of the Casualty Actuarial Society

(Meyers, 2011). The link to the dataset is provided in the references and is still accessible

at the time of submission of this thesis.

This loss triangle was built with information from years 1988 to 1997. The claims

were aggregated into accident years, that is, years when the events occurred, not necessarily

the time when claims get reported since reporting can be delayed, and the development of
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Table 1.1: Loss triangle of cumulative paid claims: Company GRCODE = 337.

Year Premium Development Lags

1 2 3 4 5 6 7 8 9 10

1988 104437 9558 22778 33298 40348 45146 48048 49782 50623 51812 51939
1989 88883 7913 19472 29622 36816 40975 43302 44707 45871 46229
1990 85956 8744 24302 35406 43412 48057 50897 52879 53956
1991 99339 13301 32950 47201 56394 61650 65039 66566
1992 104897 11424 29086 42034 50910 56406 59437
1993 119427 11792 27161 38229 46722 50742
1994 110784 11194 26893 38488 45580
1995 77731 12550 31604 44045
1996 63646 13194 31474
1997 48052 9372

each cohort across time is observed. The 1988 row is ‘complete’ since the development

of the 1988 accident year cohort for the full ten years would have been known by the

end of 1997; whereas for the 1997 row, only one year worth of information is known by

then. For example, the value 51939 at the tenth development lag for accident year 1988

is accumulated from the first development lag at 9558 throughout the span of 9 years.

Suppose xj represents a development lag such that j œ N, the increment of the cumulative

paid claims for each row decreases as it develops toward development year 10, that is, x10.

The development will stop at development year xŒ, that is, when the ratio between two

consecutive development reaches 1.0, and that is when the ultimate paid amount for each

cohort can be obtained. Therefore, the prediction of the ultimate paid amount for each

cohort is done by ‘completing’ the lower half of the loss triangle, which is essentially an

extrapolation problem. The representation of the loss table is generalized in Table 1.2:

Table 1.2: Generalization of the cumulative loss triangle. Source: Zhang et al. (2012)

Year Premium Development Lag Tail

x1 x2 · · · xI≠1 xI · · · xŒ

1 p1 y1(x1) y1(x2) · · · y1(xI≠1) y1(xI)
2 p2 y2(x1) y2(x2) · · · y2(xI≠1)
... ... ... ... ...
i pi yi(x1) · · · yi(xI+1≠i)
... ... ... ...
I ≠ 1 pI≠1 yI≠1(x1) yI≠1(x2)
I pI yI(x1)
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Here

yi(xj) = cumulative paid loss amount for a cohort of insurance claims that

occur in year i, evaluated at xj years since inception year i

I = Total number of rows or columns

DI = {yi(xj)|i + j Æ I + 1}

= Observed data

Dc
I = {yi(xj)|I + 1 < i + j Æ 2I}, t0 = 0

= Unobserved data.

The problem lies in the fact that we do not know xŒ, thus the value yi(xŒ) is uncertain at a

point of evaluation. In general, the goal of insurance loss reserving is to estimate yi(xŒ) for

i = 1, ..., I given DI , which are the ultimate values for each cohort and then determine the

unpaid amount for the provision of both known and unknown claims. Actuaries around the

world have been equipped with methods recommended by professional bodies in tackling

this problem but researchers continue to devise methods that may improve predictive

accuracy and ability to measure predictive uncertainties more e�ectively. While the trend

of devising new methods based upon Bayesian inference has been going on for some time

now, recent inclusion of Gaussian Process models into the loss reserving literature has

opened up opportunities to look into yet another interesting method to solve the same

problem. Since the method is still relatively new, there is a need to look into details of

Gaussian Process Models in fitting various types of data.

1.2 Problem Statement

The Gaussian process regression model has provided a framework to detect spatial rela-

tionships among the loss observations and then complete the lower half of the loss triangle

as a ‘surface’. The Gaussian Process regression model is specified mainly by a kernel func-

tion that is responsible to carry most of the assumptions in the model. A common kernel

function applied in practice is the squared exponential kernel, which is also a stationary

kernel function. However, using a stationary kernel function in a Gaussian process model

to fit the cumulative loss observations may be insu�cient as nonstationarities clearly exist
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in cumulative data. Hence, input warping was also proposed along with the model to

handle the nonstationarities. Just like any existing models, the proposed Gaussian pro-

cess model is not problem-free. Upon inspection, it can be found that there exist some

over-smoothing issue in the completed surface as well as a huge predictive uncertainties

associated to it.

1.3 Research Objectives

The primary objective of this research is to improve the predictive accuracy and to reduce

predictive uncertainties of the loss reserve estimates generated by the hierarchical Bayesian

Gaussian process regression model for loss reserving. In order to achieve that, the

objectives are broken down as follows:

1. To investigate the causes of the over-smoothing problem.

2. To investigate the e�ect of specifying the kernel functions by adding and multiplying

squared exponential kernel functions in the Gaussian process regression model for

loss reserving.

1.4 Research Methodology

The research begins by establishing a mathematical foundation critical to understand not

only the theory behind Bayesian modelling but also to briefly understand the reason behind

using Markov Chain Monte Carlo (MCMC) in estimating sophisticated integrals associated

to Bayesian inference. In this research, the MCMC sampling in the case studies are handled

by the Stan probabilistic programming software and hence will not be elaborated in the

thesis, although the related materials will be recommended to an interested reader. Since

this research covers a multiple discipline of studies from actuarial science to machine

learning, all mathematical objects mentioned in the thesis such as functions are treated

as defined in classical mathematics to avoid ambiguities. For example, f(·) denotes a

function that does not necessarily strictly represent a probability density function, while

the notation P (·) is treated as a probability measure as defined in measure-theoretic
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probability theory and not a ‘frozen notation’ for a prior distribution. Some background

in undergraduate linear algebra as well as measure-theoretic probability theory which

are especially critical in understanding Gaussian Process regression are expected from a

reader. The writing in the thesis do not cater specifically to any targeted group of readers

from any specified field.

With the mathematical foundation in place, the loss reserving literature is reviewed

where focus is given to the Bayesian models, from the most common Link Ratio method

to the Bayesian parametric and nonparametric models. The focus is then narrowed down

to the hierarchical Bayesian Gaussian Process regression model. To achieve the afore-

mentioned research objectives, the Gaussian process models will be tested with kernel

functions that are constructed from combinations of additive and multiplicative squared

exponential kernel functions. This is done to investigate the structural support that may

be provided by such specification to the Gaussian process model. These Gaussian process

models defined by the various kernel functions will be fitted to the NAIC data to evaluate

their predictive abilities and conclusions will be made from the results of the case studies.

The entire workflow is summarized and linked to the respective chapters of the thesis in

Figure 1.1.

1.5 Outline and contribution

The contribution of this thesis is to investigate Bayesian Gaussian process models for loss

reserving that may be built from various combinations of kernels, thus testifying these

kernels and make conclusions from the experiments carried out upon chosen data sets

from the NAIC.

Chapter 2 lays out the bare minimal mathematical background for the rest of this

thesis, especially Bayesian inference for both parametric and nonparametric models.

Chapter 3 discusses some methods used by practitioners in determining loss re-

serves as well as some Bayesian models available in the loss reserving literature leading

up to this research.

Chapter 4 introduces the modifications that can be made to the Gaussian Process
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Start

Build up mathematical foundations to study Bayesian modelling,
MCMC sampling methods, Gaussian Process for machine learning.

Review the loss reserving literature from the traditional Link
Ratio method to Bayesian parametric and nonparametric models.

Narrow down focus to a hierarchical Bayesian Gaussian Process
regression model for loss reserving, a nonparametric model.

Propose alternative specification of the kernel function
by adding and multiplying kernel functions to provide

more structure to the Gaussian Process regression model.

Fit the Gaussian Process loss reserving models specified us-
ing various combinations of kernel functions to test data.

Obtain summary and evaluate results.

Make conclusions, discuss about limita-
tions and possible future developments.

End

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Figure 1.1: A block diagram summarizing the research methodology.

loss reserving models by adding and multiplying kernels. The case study setup and the

data sets used for simulations will also be laid out in this chapter.

Chapter 5 presents the results from the case studies for Gaussian Process loss

reserving models using various combinations of additive and multiplicative squared ex-

ponential kernels, with and without input warping.

Finally Chapter 6 concludes the research, highlights some limitations that has

arisen throughout the research and discusses some potential developments that can be

undertaken or looked into in the future.
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CHAPTER 2

BAYESIAN INFERENCE

This research involves predicting into the future as well as estimating the uncertainties

underlying the predictions. In order to do so, Bayesian inference will be employed to

represent uncertainties with probability. Since Bayesian inference is the pillar of this

research, the mechanism of Bayesian inference will be very briefly introduced in this

chapter before we proceed into the details of its application in predicting loss reserves.

We will begin by emphasising the utilization of probability in measuring beliefs in this

statistical inference method, and later provide examples of Bayesian inferences with a

parametric model and a nonparametric model.

2.1 Random variable and Probability

Given a countable sample space �, let G = ‡(�) be a ‡-field on �, that is, a family of

subsets of � that fulfils the following closure properties:

(i) G is a collection of subsets of � that includes � itself and is closed under its

complements and countable unions.

(ii) G includes the empty subset and is closed under countable intersections.

Then by the De Morgan Laws, G is closed under the intersection and di�erence operations.

The pair (�, G) is called a measurable space.

Definition 2.1.1 (Probability measure). A probability measure P is a function of G

satisfying the properties

(i) For every A µ �, P (A) Ø 0;

(ii) For any disjoint subsets A and B of �,

P (A fi B) = P (A) + P (B);
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(iii) P (�) = 1.

When such a probability measure P is defined on G, a probability triple (�, G, P )

is formed, that is, sets in G are measurable and each set has probability.

Definition 2.1.2 (Random variable for countable �). Let X be a numerically valued

function defined on elements of �. Then X is called a random variable on � if

X : � æ R (2.1)

Ê ‘≠æ X(Ê).

Suppose � is finite or countable, and let P (Ê) be the ‘weight’ of each Ê in �. Then

the probability of A such that A µ � is given by

P (A) =
q

ÊœA P (Ê)
q

Êœ� P (Ê) , (2.2)

and P (A) reduces to the proportion of the cardinality of A relative to the cardinality of �

when the weights of all sample points in � are equal.

The set A in Equation (2.2) is determined by values of random variables. For

instance, let A be a subset of � such that

A = {Ê œ � | a Æ X(Ê) Æ b}, (2.3)

where a and b are constants and X is a random variable. Then

P (A) = P (a Æ X Æ b) =
ÿ

aÆvnÆb

pn (2.4)

is the probability of set A, where pn denotes the weight P (vn) of vn in a set of the range

of X(Ê), VX = fiÊœ�X(Ê) since the mapping in Equation (2.1) can be many-to-one.

Similarly, for the set {X(Ê) Æ x},

FX(x) = P (X Æ x) =
ÿ

vnÆx

pn (2.5)
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is a function that collects all the probabilities of random variable X in the set up to and

including x and is usually known as the cumulative probability distribution function of

X . An average value, also known as the expectation value of the set determined by the

random variable X can be obtained by

E(X) =
ÿ

Êœ�
X(Ê)P (Ê). (2.6)

In the case where � is an uncountably infinite set such as R, it is impossible

to define a probability measure P on � since there are infinitely many subsets and the

probability of each subset will be reduced to 0. Hence, the condition P (�) = 1 cannot

hold. In order to solve this measurability problem, the uncountable set needs to be prepped

into a measurable space by restricting � to a Borel field. A Borel field F is constructed

by defining a ‡-field on a set A of all finite open intervals in �, giving the smallest

‡-field containing A. Every set in F is measurable and when a probability measure P is

assigned to F , a probability triple (�, F , P ) is formed and every set in F has probability.

Therefore, as compared to defining a probability measure on a countable � where each

element (point) has a probability, defining a probability measure on an uncountable �

assigns probability to intervals.

Definition 2.1.3 (Random variable for uncountable �). Let X be a real-valued function

defined on an uncountable �. Then X is a random variable on � if for any x œ R,

{Ê œ � | X(Ê) Æ x} œ F .

One property of random variable worth mentioning is that, if X is a discrete

random variable such that X is defined on a countable �, then any function g of X is

also a random variable; if X is a continuous random variable such that X is defined on

an uncountable �, a function f of X is a random variable if f : R ≠æ R is a measurable

function.

Definition 2.1.4 (Stochastic process). If we consider a set of random variables, the collec-

tion of these random variables {Xi}iœI over the same measure space where I is an index
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set, is a stochastic process.

Since an uncountable � is an infinite set and it is impossible to assign probability

to every single point, the interval defined by a random variable X is instead given a

probability density such that probability is associated to area under the curve f and the

total area equals to 1. A density function f is a function defined on R satisfying two

conditions:

(i) f(u) Ø 0, ’u œ R,

(ii)
s Œ

≠Œ f(u)du = 1.

The probability density of any given subset defined by a random variable is obtained

by summing up the area under the density function that is partitioned into intervals by

integration. So for an interval [a, b],

P (a Æ X Æ b) =
⁄ b

a
f(u)du (2.7)

and the distribution function is then

F (x) = P (X Æ x) =
⁄ x

≠Œ
f(u)du. (2.8)

Note that f is the derivative of F if f is continuous, by the fundamental theorem of

calculus. The expectation associated to a continuous random variable is

E(X) =
⁄ Œ

≠Œ
uf(u)du. (2.9)

This research involves inferring parameters from the real space. For readers

exposed only to elementary probability theory, one may regard it as focusing on continuous

random variables in the following sections. It is crucial to emphasise here that with only

elementary probability theory, one may run into trouble when it is required to think about

discrete and continuous random variables at the same time, which are especially prevalent

in Bayesian inferences. Measure-theoretic probability theory fixes the issue of having to
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discuss discrete and continuous random variables separately and deals with all probability

distributions in a unified way. However, as measure-theory is a huge subject on its own, it

will not be discussed in this thesis but rather we will just benefit from its results.

2.2 Conditional Probability and Bayes’ Theorem

In Section 2.1, probability of a set determined by a random variable is measured with

respect to the entire sample space � as shown in Equation (2.2). However in practical

usage, we may have greater interest in the proportional weight of a set A with respect to a

set S such that A µ S µ �, especially when more information is available or when it is

certain that some of the elements in � are no longer relevant in an inquiry.

Definition 2.2.1 (Conditional probabililty). The relationship between set A and set S

when attention is focused into S as a new universe instead of � is expressed as

P (A|S) =
P (A fl S)

P (S) , P (S) ”= 0 (2.10)

and is known as the conditional probability of A relative to S.

The numerator is the weight of the part of A in S relative to � and the denominator

is the weight of S relative to �. This gives a di�erent probability than when � is set as the

‘universe’. The conditional probability is often useful when the mutual or joint relation of

several random variables are to be inspected.

Definition 2.2.2 (Partition of a set). Let S be a sample space of a union of mutually

exclusive subsets B1, B2, · · · , Bk for some positive integer k such that

(i) S = B1 fi B2 fi · · · fi Bk

(ii) Bi fl Bj = ÿ, for i ”= j.

The collection of sets B1, B2, · · · , Bk is called a partition of S.

14



If A is any subset of S and B1, B2, · · · , Bk is a partition of S, then A can be

decomposed as:

A = (A fl B1) fi (A fl B2) fi · · · fi (A fl Bk). (2.11)

By the Law of Total Probability (Chapter 2 ,Wackerly et al. (2014)), assuming that

B1, B2, · · · , Bk is a partition of S such that P (Bi) > 0, for i = 1, 2, · · · , k, then for

any event A of the same probability space,

P (A) =
kÿ

i=1
P (A fl Bi) =

kÿ

i=1
P (A|Bi)P (Bi), (2.12)

where any P (A|Bi) = 0 is omitted from the summation since P (A|Bi) is finite. Then

from Definition 2.2.1 and the Law of Total Probability, the result known as Bayes’ rule

can be derived as follows:

P (Bj|A) =
P (A fl Bj)

P (A) =
P (A|Bj)P (Bj)

qk
i=1 P (A|Bi)P (Bi)

. (2.13)

If one understands a random variable as defined in classical mathematics, it is

straightforward to replace sets A, B and S from Equation (2.10) to Equation (2.13) with

random variables, which are measurable functions that maps subsets in � to its range that

is usually R.

2.3 Bayesian inference: Probability at work

Probability is commonly used to measure frequencies of outcomes, but it can also be

used to measure degree of belief. Bayes’ rule comes into picture when the conditional

probability of unobserved variables given observed variables is to be calculated, and this

kind of problem is known as the inverse probability problem (MacKay, 2003).

Bayesian inference is a statistical inference method that employs probability to

measure degree of belief of inferences as compared to common statistical methods that

make predictions by assuming a selected most plausible hypothesis to be true ahead of an
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inference. It first assumes a range of possible values of a hypothesis that are associated with

uncertainties, represented by probabilities. Then prediction is made by marginalizing over

all possible values of the hypothesis, which helps to avoid extreme predictions. As more

information or evidence is made known, the probabilities of the values of the hypothesis

will be updated accordingly.

A formal definition for statistical models from Bickel and Doksum (2015) is as

follows.

Definition 2.3.1 (Model). Let a sample space � represents a random experiment and

Ê œ � represents the outcome of the experiment. Then let y(Ê) be the observations that

we obtain from the experiment such that y = (y1, · · · , yn) is a random vector. Since there

would be di�erent realizations of y if the experiment is repeated, there is a probability

distribution associated to y that is assumed to be part of another family of probability

distributions M on Rn, where M is the model.

Models are largely categorized into classification or regression. Classification

models predict labels or assign input variables that are often binary or fall into any one of

n discrete classes C1, · · · , Cn. On the other hand, regression models map input variables to

the real space R, that is, to predict a quantity. This research falls under the later category.

Definition 2.3.2 (Parameterization). Parameterization is a mapping that describes M

such that M = {M◊ : ◊ œ �}, where � represents the parameter space.

When the parameter space � is of fixed finite dimensional, the model is parametric,

otherwise the model is nonparametric. For example, the parametric Normal family is pa-

rameterized by ◊ = (µ, ‡
2) so � is finite dimensional with dimension two. We are making

it clear at this point that ◊ can be more than one-dimensional but for the following discus-

sion, the model parameter(s) to be estimated will be represented by a one-dimensional ◊

to simplify the equations.

The model becomes a Bayesian model when we consider assumptions upon ◊ prior

executing the experiment via the prior distribution P (◊). This would mean that ◊ is being
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treated as a random variable to generate a joint distribution for (y, ◊) such that

f(◊, y) = P (y|◊)P (◊), (2.14)

where we let P (y|◊) = M◊ in order to observe the application of Bayes’ Rule. The integral

of the joint distribution across all possible values of ◊ is the complete Bayesian model.

Bayesian statistical inference involves choosing a model that summarizes the data

generating process represented by the conditional distribution P (y|◊), and then requires an

input of an assumed prior distribution for the model parameter(s) ◊ that includes judgement

of how plausible the parameter(s) could have certain values in various regions of the

parameter space before any measurements are taken. Combining the prior distribution

and the conditional distribution P (y|◊), we get a joint distribution for all quantities related

to the problem by Bayes’ rule

P (◊, y) = P (◊, y) (2.15)

= P (◊)P (y|◊)

It is possible to make inferences before considering observed data, which is usually

done to check the model configurations before fitting data in order to make sure the

specifications are aligned to prior knowledge of a problem. This is done by integrating the

joint distribution across all possible values of ◊ to obtain the prior predictive distribution,

which is a marginal distribution P (y) of y, where

Prior predictive distribution = P (y) =
⁄

P (◊)P (y|◊)d◊. (2.16)

The likelihood function P (y|◊) from the joint distribution above is a function of ◊, and

encapsulates the relative abilities of the parameter values to describe the observed data.

Thus the function can be considered as a measure of plausibility of the parameter values, so

the likelihood principle (Chapter 2, MacKay (2003)) requires all inferences and predictions

to be depending only on the likelihood function given some observed outcomes. By
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defining a joint distribution for both the model parameter(s) ◊ and the observed data,

the Bayesian approach reduces a statistical inference to a probabilistic inference. When

observed data y = (y1, · · · , yn) is considered, a posterior probability distribution for the

parameters that updates the prior distribution can be obtained as follows:

Posterior distribution = P (◊|y1, ..., yn) (2.17)

=
P (◊, y1, ..., yn)
P (y1, ..., yn)

=
P (◊) rn

i=1 P (yi|◊)
s

P (◊) rn
i=1 P (yi|◊)d◊

.

All information about a system is quantified by the posterior distribution after the mea-

surements are taken. Hence, a new joint distribution can be formed with a likelihood

function for the unknown yn+1 and the posterior distribution from Equation (2.17). Then

to generate a prediction distribution for an unknown yn+1 given observed data, a posterior

predictive distribution P (yn+1|y) is formed by integrating over values of ◊ from the new

joint distribution:

Posterior predictive distribution = P (yn+1|y) (2.18)

= P (yn+1|y1, ..., yn)

=
⁄

P (yn+1|◊)P (◊|y1, ..., yn)d◊.

Comparing to Equation (2.9), the posterior predictive distribution can also be viewed as the

expectation of the likelihood function P (yn+1|◊) with respect to the posterior distribution

for ◊,

E[P (yn+1|◊)].

Hence, any statistical queries are answered by computing expectations with respect to the

posterior distribution.

However, computing these expectations is equivalent to computing some di�cult

integrals. Specifically, the denominator of the posterior distribution often involve some
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calculations of intractable high dimensional integrals. The problem seems to be solvable

by employing Monte Carlo sampling method to get independent samples in order to

approximate the integrals, but getting independent samples from the posterior distribution

is easier said than done. So, one way to tackle this problem is to get a sequence of

dependent samples by using Monte Carlo Markov Chains (MCMC) to explore the high

dimensional space such that each step of the sampler samples from the numerator of the

posterior distribution in Equation (2.17), known as un-normalised posterior

P (◊|y1, ..., yn) Ã P (◊)
nŸ

i=1
P (yi|◊) (2.19)

and the next sample is dependent only on the previous sample. Since the acceptance of

the next sample is determined by ratio of the samples from the un-normalised posterior,

the problem of determining the denominator of the posterior distribution can be avoided.

This research employs a probabilistic programming language Stan (Stan Development

Team, 2020) to implement the MCMC algorithms in order to obtain posterior predictive

samples. A comprehensive guide to using Stan in Bayesian Modeling and understanding

the basics of MCMC has been laid out by Lambert (2018). To understand the mechanism

of the MCMC algorithm employed by Stan in which the performance has been optimized

by Hamiltonian Monte Carlo and No-U-Turn sampler, see Betancourt (2018) for a simpler

introduction and Betancourt et al. (2017) for a higher level understanding.

2.3.1 Bayesian Parametric model: An example

We are often interested to unravel information from observations obtained from an experi-

ment. If the ‘true’ mechanism that generates the observations can be recovered, we can use

the mechanism to answer questions that can only be answered if the experiment is being

carried out continuously (interpolation) or never stopping the experiment (extrapolation).

Some well studied experiments that produce observations about certain phenomenon of

interest may already have some theoretical model established by researchers. These mod-

els are often proven to be e�ective in interacting with the latent phenomenon in question

and hence are able to answer questions that we have related to the said phenomenon. In
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fact, some models being built on one phenomenon may be also suitable for another phe-

nomenon. During a study, each observation on a phenomenon may di�er depending on

its magnitude or methods of observation, hence a parametric model with some specified

functional form governed by parameters gives a suitable guideline as a starting point and

we only have to approximate as close as possible the parameter values that when applied

into the model provides values as close to the observations as possible. This section

demonstrates the mechanism of approximating parameter values by fitting an example

Bayesian parametric regression model to a set of time series data.

Figure 2.1: A set of time series data to be fitted with a model.

We begin with a set of time series data visualized in Figure 2.1, where x represents

time and y denotes the observation at each x. Assuming that a modeler has no knowledge

of the ‘true’ data-generating process but has information such that the nonnegative outputs

from the source experience initial positive growth at smaller input values xi such that the

growth rate decreases and approaches zero as the input values increases. The modeler

wishes to model the underlying phenomenon that generates these observations and infer

the parameters of the model to obtain more insights about this phenomenon.

A possible parametric model to be chosen as a potential data-generating process

for the time series data would be an exponential function to capture the growth pattern.

On top of that, it is obvious that the observations contain some form of errors, deviating
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from a supposedly smooth exponential curve. Hence, we can consider an error component

in the data-generating process.

A common candidate for such component would usually be a Normal distribution,

but using a Normal distribution for the error component may result in negative valued

samples, which might not produce relevant samples given the information that observations

are nonnegative. For ordinary linear regression, a Normal distribution is usually assumed

to relate the variability in the observations to changes in the mean. However, if the

volatility of the observations follows the Normal distribution, that means the uncertainty

that grows with the mean can be greater at higher input values x , which contradicts the

prior knowledge that the output values should stabilize at higher input values. Another

possible candidate would be the Lognormal distribution. This is equivalent to applying

a log-transform to the constant variance in Normal distribution that results in a constant

standard deviation over mean ratio, so that the variance will not grow as the mean increases.

Considering the above information, suppose that the modeler decides on choosing

the exponential function to model the latent phenomenon of the data y = (y1, · · · , y21)

and addresses the error with the Lognormal distribution. The model can be written as

yi ≥ Lognormal (log (f (xi|⁄)), ‡) , (2.20)

where

f(xi|⁄) = 1 ≠ e
≠⁄xi , ⁄ > 0

is the candidate function chosen to model the latent phenomenon in the time series

parameterized by ⁄. The mean is wrapped with a log function so that the mean of the

Lognormal distribution centers around f(xi|⁄). As mentioned in Section 2.3, ◊ can be

more than one-dimensional. Thus in this case, the likelihood function or the sampling

distribution is

P (yi|◊) = P (yi|⁄, ‡, xi),

but since inputs xi are considered fixed, the conditioning on xi is suppressed in subsequent

notation.
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In order to define a complete Bayesian model, we need to define a model configura-

tion space made up of the prior distributions of the two parameters P (⁄, ‡) = P (⁄)P (‡).

Choosing priors in Bayesian inference is an art itself, but the rule of thumb is to ensure

that the prior generates reasonable samples that we would expect to see (Gelman et al.,

2017). In practice, we can apply our judgement on the parameters when setting up priors

and usually the assumption should constrain the system especially when dealing with

likelihood functions that are not well-behaved to avoid extreme predictions. Assuming

that the parameters are nonnegative (⁄ > 0, ‡ > 0), we can start with the Lognormal

priors and try the following values in the Lognormal distributions of the priors :

⁄ ≥ Lognormal (log(0.3), 0.4)

‡ ≥ Lognormal (log(0.15), 0.4).

To assess if these priors are suitable, we can generate samples from the prior

predictive distribution which can be compared to the one-dimensional Equation (2.21) as

follows:

P (yi) =
⁄⁄

P (yi|⁄, ‡)P (⁄, ‡) d⁄d‡ . (2.21)

Thus, we can observe the e�ect of the priors when combined with the data-generating

process before fitting the model to the data. As mentioned before, the integrand in

Equation (2.21) is the complete Bayesian model and the entire prior predictive distribution

is a marginal of the complete Bayesian joint distribution. Because the model configuration

in the prior predictive distribution is entirely dependent on prior information, the prior

predictive distribution is able to quantify the best understanding of the the phenomenon

before observations are taken. Thus, we are able to make predictions before considering

the observations, which at the same time provides the opportunity to evaluate the priors.

The prior predictive samples shown in the left panel of Figure 2.2 and the prior predictive

distribution shown in the left panel of Figure 2.3 suggest that the prior assumptions are

reasonable, so we may attempt to fit the model to the data. If the prior samples to do not
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reflect the modeler’s expectation, the values in the Lognormal distributions can be altered

according to the modeler’s knowledge or redefine the prior distributions until samples

deemed satisfactory by the modeler is generated.

Figure 2.2: Five random samples each drawn from the prior (left) and posterior (right)
predictive distributions via MCMC superimposed on the original time series data.

The role of data in Bayesian inference is to update the prior distribution that

results in the posterior distribution P (⁄, ‡|y) such that the posterior distribution is the

compromise between data and prior information. Then with the posterior distribution,

we can construct the posterior predictive distribution like the one in Equation (2.18) for a

future observable ỹ such that:

P (ỹ|y) =
⁄⁄

P (ỹ|⁄, ‡)P (⁄, ‡|y) d⁄d‡. (2.22)

The model configuration in the posterior predictive distribution now contains

information prior considering the observations as well as information given by the data,

hence it is ideal to make predictions regarding the phenomenon of interest with it. The

integral in Equation (2.22) is approximated by MCMC, which the sampling process

produces posterior distributions for the parameters as well as the posterior predictive

distribution for ỹ. For the sake of this example, the data shown in Figure 2.1 was actually

generated by the exact data-generating process in Equation (2.20) with true values being

(⁄, ‡) = (0.5, 0.125). The posterior predictive samples are shown in the right panel of
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Figure 2.3: Prior (left) and posterior (right) predictive distributions of a parametric model
where the shades denote the 75%, 97.5%, and 99.9% intervals of the MCMC samples that
approximate the integrals; Dotted line represents the mean of the samples.

Figure 2.2 and the posterior predictive distribution is shown in the right panel of Figure 2.3.

The comparison between the predictive distributions and observed data in Figure 2.3 shows

how well the Bayesian model approximates the phenomenon of interest before and after

considering the observations. The modeler might also be interested to make inferences

about the parameter ⁄ that governs the growth rate of the exponential function and the

error parameter ‡. From Figure 2.4, the concentration of the joint distribution of the

parameters towards the region closer to the ‘true value’ may indicate that the modeler

is now less unsure about the latent phenomenon that has produced the data that she was

working with. These figures of joint distributions are constructed simply using the prior

and posterior distributions of each parameter ⁄ and ‡ obtained as a result of samples drawn

with MCMC.

2.3.2 Gaussian Process model: A Bayesian nonparametric model

Despite the name, a Bayesian nonparametric model is not the case where the model has

no parameters at all but is instead a really large Bayesian parametric model, where the

dimension of the parameter space can be arbitrarily large. From Section 2.3.1, we have

seen that a parametric model for regression is specified by a functional form governed

by its respective fixed number of parameters. Nonparametric models for regression on
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