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POTENSI TERAPEUTIK SEL STEM SARAF YANG DIPREKONDISI 

DENGAN FRAKSI-KAYA BAIKALEIN DALAM MODEL TIKUS STROK 

ISKEMIA 

ABSTRAK 

Strok iskemia, yang dicetus oleh gangguan aliran darah di dalam otak secara 

tiba-tiba, boleh menyebabkan kematian sel neuron. Sejak kebelakangan ini, cantuman 

sel stem saraf (NSC) multipoten telah muncul sebagai terapi yang berpotensi untuk 

menjana semula tisu otak yang rosak. Walau bagaimanapun, persekitaran mikro yang 

tidak sesuai di kawasan otak iskemia mengancam ketahanan hidup sel yang 

dipindahkan. Oleh yang demikian, kultur NSC dioptimumkan dengan baikalein, 

sebatian aktif pelindung saraf yang diekstrak dari tumbuhan Oroxylum indicum untuk 

meningkatkan kadar kelangsungan hidup NSC setelah pemindahan ke otak iskemia. 

Baikalein merupakan salah satu flavonoid utama didalam O. indicum yang dilaporkan 

mempunyai kesan pelindung saraf. Di dalam penyelidikan ini, BEF berjaya diekstrak 

dari daun O. indicum dan dinilai menggunakan HPLC dan keupayaan menghapuskan 

radikal bebas dibandingkan dengan baikalein sintetik sebagai kontrol positif. Model 

tikus strok iskemia dihasilkan menggunakan endothelin-1 (ET-1) yang menyekat arteri 

serebrum tengah (MCA) dan menyebabkan kerosakan iskemia di otak. NSC yang telah 

dikultur secara in vitro telah dikondisikan dengan BEF pada dos optimum 3.125 µg/ml 

selama 48 jam yang ditentukan melalui ujian MTT sebelum sel-sel ditransplantasikan 

kepada kumpulan tikus strok iskemia. Tingkah laku tikus dan keparahan strok telah 

diperhatikan dan direkodkan selama 14 hari. Peningkatan dalam tingkah laku strok 

berlaku dalam masa 14 hari selepas pemindahan NSC yang dikondisikan oleh BEF 

berbanding dengan kumpulan pemindahan NSC tanpa dikondisi. Melalui pewarnaan 

TTC, kumpulan yang dirawat dengan NSC yang dikondisi dengan BEF menunjukkan 
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pengurangan infarksi otak yang sangat signifikan (11.535 ± 1.44%), berbanding 

kumpulan yang dirawat dengan NSC tanpa dikondisi (17.784 ± 2.33%) dan kumpulan 

yang tidak dirawat (23.807 ± 2.60%). Tambahan pula, kumpulan yang dirawat dengan 

NSC yang dikondisi dengan BEF juga menyebabkan angiogenesis yang signifikan dan 

pengurangan dalam degradasi neuron, nekrosis sel dan keradangan, berbanding 

kumpulan lain. Sebagai kesimpulan, kajian ini telah membuktikan potensi BEF yang 

diekstrak dari O. indicum dalam menyumbang kepada kelangsungan hidup dan 

proliferasi NSC  dan meningkatkan potensi terapeutik NSC dalam membaik-pulihkan 

tisu neuron yang rosak pada model tikus strok iskemia . 
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THERAPEUTIC POTENTIAL OF NEURAL STEM CELLS 

PRECONDITIONED WITH BAICALEIN-ENRICHED FRACTION IN 

ISCHEMIC STROKE RAT MODEL  

ABSTRACT 

Ischemic stroke, triggered by the abrupt interruption of cerebrovascular blood 

flow, could lead to permanent neuronal cell death. Recently, multipotent neural stem 

cell (NSC) grafting has emerged as potential therapy to regenerate the damaged brain 

tissue. However, the hostile microenvironment in the ischemic brain region is 

challenging for the survival of transplanted cells. In this regards, NSC culture was 

optimized with baicalein-enriched fraction (BEF) from Oroxylum indicum-  to enhance 

the NSC survival rate after transplantation into ischemic brain. Baicalein is one of the 

major flavonoids present in O. indicum and has been reported to have neuroprotective 

effects. In this study, BEF was successfully fractionated from the leaves of O. indicum 

and quantified using HPLC and its radical scavenging activity was compared to 

synthetic baicalein as positive control. Ischemic stroke rat model was established using 

endothelin-1 (ET-1) which constrict the middle cerebral artery (MCA) to induce 

ischemic damage in the brain. In vitro expandable NSCs were preconditioned with 

BEF at optimum dosage of 3.125 µg/ml for 48 hours as determined through MTT assay 

before the cells were transplanted into the ET-1 induced ischemic stroke rat groups. 

Rat behaviours and stroke severity were observed and recorded for 14 days. 

Improvements in stroke behaviours occurred within 14 days after the transplantation 

of BEF-preconditioned NSC compared to non-preconditioned NSC transplantation 

group. Through TTC staining, the BEF-preconditioned NSC-treated group showed 

significant reduced brain infarct (11.535 ± 1.44%), compared to non-preconditioned 

NSC-treated group (17.784 ± 2.33%) and non-treated group (23.807 ± 2.60%). In 
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addition, BEF-preconditioned NSC-treated group also significantly reduced neuronal 

degradation and inflammation, while also increased blood vessel density compared to 

the other groups. As a conclusion, this study proved the potential of BEF extracted 

from O. indicum in contributing to the upregulation of NSC proliferation-  and 

significantly improved the therapeutic potential of NSCs to repair damaged neuronal 

tissue-  ischemic stroke rats.
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Background of Study 

Stroke, also known as cerebrovascular accident (CVA) or “brain attack”, is one of 

the top five leading causes of death worldwide and the most frequent cause of adult 

disability among chronic diseases in developed countries (Phipps & Cronin, 2020; 

Salako & Imaezue, 2017). According to the statistics by Dep. Stat. Malaysia  (2022), 

death caused by stroke or cerebrovascular diseases reached 6.5% of medically certified 

deaths in Malaysia. Stroke represents a serious health problem not only in Malaysia 

but also worldwide as it could cause irreversible neuronal damage to those who are 

afflicted (Zhang et al., 2019). Stroke can happen to anyone; some people are at higher 

risk for different reasons such as age, family history, high blood pressure, smoking, 

being overweight, diabetes, and high cholesterol. Stroke recovery is usually a slow 

process and it depends on the severity of disease. Due to its high prevalence and long-

term recovery process, stroke can be described as a devastating and distressing 

experience not only to the affected individual, but to their families or caretakers as 

well. 

 

There are two types of strokes: ischemic stroke and haemorrhagic stroke. Ischemic 

stroke is the sudden death of brain cells due to lack of oxygen, caused by blockage of 

blood flow due to thrombosis or embolism, while haemorrhagic stroke happens when 

there is rupture of artery to the brain which causes bleeding to occur within the brain 
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(Kumar , 2016; Ruan & Yao, 2020). Both types of strokes can cause irreversible brain 

cell death, resulting in permanent brain damage. Stroke patients may suddenly 

experience paralysis, impaired speech, or loss of vision (Moskowitz et al., 2010). 

Ischemic stroke is more common in Malaysia compared to haemorrhagic stroke (Loo 

& Gan, 2012); therefore, the present study focused more on the treatment for ischemic 

stroke.  

 

Current ischemic stroke treatment is still very limited and the rate of recurrence is 

also very high (Zhang et al., 2019). To date, only one drug has been approved by the 

United State Food and Drug Administration (FDA) for acute ischemic stroke treatment 

which is the tissue plasminogen activator (tPA) that helps to restore blood flow by 

dissolving the blood clots that cause ischemic strokes (Hamblin & Lee, 2021). 

Nonetheless, tPA is unable to regenerate dead neurons after stroke attack. Therefore, 

ischemic stroke patients still have to depend on rehabilitation to regain the loss of brain 

function. Some hospitals in Malaysia also provides alternative post-stroke therapies 

such as the traditional Malay massages ‘urut Melayu’ (Anuar et al., 2010). However, 

the limited number of community-based rehabilitation centres to provide continuous 

support for stroke patients after discharge has resulted in stroke survivors being left to 

manage long term post-stroke impact on their own. Moreover, the high costs of access 

to post-stroke care and monitoring at private health care settings is also a difficult 

challenge for stroke survivors. For those reasons alone, it is crucial to develop 

alternative therapeutic strategies for stroke with the purpose of elevating the life 

quality of stroke survivors. 
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Since the last few decades, stem cell grafting has become one of the most 

promising treatments of neurodegenerative diseases such as ischemic stroke (Locatelli 

et al., 2009). This is mainly because stem cell has the ability to self-renew and 

differentiated into matured functional neuronal cells. These unique characteristics of 

stem cells make them a potential therapeutic agent for neuronal regenerative treatment. 

A study reported that brain tissue damaged after stroke could be replaced by 

endogenous neural stem cells (NSCs) (Hamblin & Lee, 2021). NSCs are multipotent 

stem cells that reside in subventricular zone (SVZ) and dentate gyrus (DG) of adult 

brain. NSCs can divide and differentiate into various brain cell types corresponding to 

their surrounding microenvironment in terms of their morphologies and functions 

(Golas, 2018). Endogenous NSC is also capable of directly restoring the damaged 

brain tissue and exert neuroprotection towards brain tissue during the acute phase of 

stroke. This corroborates the fact that NSC is a potential cell source in treating 

ischemic stroke.  

 

However, effectiveness of in vivo NSC-based treatment is limited by low survival 

rate of transplanted NSCs in ischemic brain. Therefore, in this study, we proposed to 

precondition exogenous NSCs using baicalein, a flavonoid active compound presents 

in Oroxylum indicum plant which had been found to exert neuroprotective effect and 

increase cell proliferation rate (Liu et al., 2017; Van Leyen et al., 2006) before 

transplantation into ischemic stroke brains. 

 

O. indicum is a medicinal plant that is consumed as ‘ulam’ by the locals as it 

possesses active compounds that related to wide range of biological and 
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pharmacological activities beneficial to human health (Kang et al., 2019; Salleh et al., 

2020; Singh, 2015). It possesses hundreds of secondary metabolites such as flavonoid 

and the major constituent of flavonoid present in this plant is baicalein which is 

beneficial to human health. Numerous studies also showed that O. indicum is not toxic 

to humans and experimental animals even at high doses (Ahad et al., 2012). Hence, 

the therapeutic potential of preconditioned NSCs using baicalein-enriched fraction 

(BEF) extracted from O. indicum plant on  ischemic stroke rat model was studied. 

 

In this research, ischemic stroke rat was induced with the injection of endothelin-

1 (ET-1) which constrict the middle cerebral artery (MCA) that causes ischemic 

damage in the brain. Preconditioned-NSCs were introduced into the brain after stroke 

induction via the same cannula implanted for the injection of ET-1 therefore, justifying 

the reason that this procedure is less invasive than performing surgery on the rat model 

several times. The neurological behaviour changes and ex vivo histological 

examination on brain tissue of rat model were also elucidated to investigate the effects 

of BEF-preconditioned NSC treatment. As a summary, this study intensified the roles 

of baicalein extracted from the leaves of O. indicum in preconditioning NSC to 

enhance its therapeutic potential for ischemic stroke rat.  

 

1.2 Problem statement 

NSC-based treatment had been reported to have successfully increased 

neurogenesis in vitro. However, the turnover rate of resident NSCs is too slow to 

support regeneration because of their dormancy and the hostile environment inside the 

ischemic brain. Therefore, transplantation of exogenous NSCs was found to 
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significantly complement or replace damaged tissues (Chen et al., 2016). Nonetheless, 

the effectiveness of exogenous NSC transplantation for ischemic stroke therapy is 

limited by the low retention rate of the cell after injected into an ischemic brain (Wei 

et al., 2017).  It was found that only a few grafted cells survived and successfully 

migrated from a small initial injection site to populate the target region for a prolonged 

duration in ischemic environment (Hicks et al., 2009). As a result, NSC transplantation 

is still unable to effectively regenerate damaged tissues for complete recovery. In order 

to address this problem, preconditioning of stem cells prior to their transplantation is 

imperative to activate the stem cell survival signalling to counter the rigorous 

microenvironment after cell transplantation. This can significantly improve the cell 

survival after transplantation, and thus enhance its therapeutic potential for ischemic 

stroke treatment (Kang et al., 2019). Therefore, in this study, we proposed to 

precondition exogenous NSCs using baicalein, a flavonoid active compound presents 

in O. indicum plant which had been found to exert neuroprotective effect and increase 

cell proliferation rate (Liu et al., 2017; Van Leyen et al., 2006) before transplantation 

into ischemic stroke brains. 

 

1.3 Significance of the study 

Preconditioning with neuroprotective natural product isolated from O. indicum 

plant is a promising technique to enhance the survival of NSCs against hostile 

environment in ischemic brain after transplantation. In addition, natural O. indicum 

plant is not toxic to human and experimental animal (Ahad et al., 2012). Aside from 

that, this plant was chosen because it is easily grown locally- for the source of target 

baicalein flavonoid, making it accessible at low cost. Furthermore, the ET-1 ischemic 
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stroke rat model developed in this research is the only model that induces stroke 

without the need for anaesthesia thus functional assessments of rat model can be done 

while the rat is conscious, mimicking the clinical onset of stroke in human (Ansari et 

al., 2013). Therefore, the findings of this study can become a reliable and promising 

strategy to apply natural product to enhance NSCs for ischemic stroke therapy.  

 

1.4 Objectives of study 

1.4.1 General objective 

To study the therapeutic potential of neural stem cell (NSC)-based treatment 

for ischemic stroke using baicalein-enriched fraction (BEF) derived from the leaves of 

O. indicum. 

 

1.4.2 Specific objectives 

1. To determine the optimum BEF concentration and duration for rat NSC 

preconditioning in vitro. 

2. To investigate the effects of BEF-preconditioned NSC treatment on ischemic 

stroke rats’ neurological function  

3. To investigate the effects of BEF-preconditioned NSC treatment on ischemic 

brain tissue morphology. 

 

1.4 Hypothesis of the study 

The hypotheses of the study are as follow: 
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1. BEF could precondition NSCs and activate the cell survival at optimum 

concentration and duration. 

2. BEF-preconditioned NSC therapy helps to improve ischemic stroke rats’ 

neurological function. 

3. BEF-preconditioned NSC therapy helps to improve ischemic brain tissue 

morphology. 
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CHAPTER 2  

 

LITERATURE REVIEW 

 

2.1 Ischemic stroke  

Stroke is the sudden death of brain cells due to lack of oxygen, caused by 

blockage or rupture of an artery which interferes with the blood flow to the brain. 

Stroke injury is thought to result from a cascade of events begin with energy depletion 

until irreversible  cell death (Petty et al., 2021). Stroke patients may suddenly 

experience paralysis, impaired speech, or loss of vision due to the interruption of 

oxygen to the brain (Moskowitz et al., 2010). Stroke causes the greatest burden of 

disease worldwide caused by severe disability (Katan & Luft, 2018). Deficits of stroke 

include physical disabilities such as partial loss of motor function, sensory loss, 

language disorders, aphasia, visual disorders, and even memory loss (Pinter & Brainin, 

2012).  

 

There are two types of strokes, namely ischemic stroke and haemorrhagic 

stroke (Figure 2.1). Ischemic stroke is the sudden death of brain cells due to lack of 

oxygen, caused by blockage of blood flow due to thrombosis or embolism (Figure 

2.1A) while haemorrhagic stroke is caused by haemorrhage or rupture of an artery to 

the brain which causes bleeding to accumulate and press on the adjacent parenchyma 

within the brain (Figure 2.1B). Both ischemic and haemorrhagic stroke are increasing 

in low to middle income populations due to the rising prevalence of stroke risk factors 

including diabetes, hypertension and atrial fibrillation (Khan et al., 2017). However, 
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ischemic stroke accounts for more than 80% of strokes and is much more common in 

Malaysia and worldwide compared to haemorrhagic stroke (Jiao et al., 2021; Loo & 

Gan, 2012; Petty et al., 2021).  

 

Figure 2.1 Type of stroke. (A) Ischemic stroke which is caused by occlusion of 

blood vessel to the brain and (B) haemorrhagic stroke which is caused 

by rupture of blood vessel leading to blood leakage.  

 

2.1.1 Epidemiology of ischemic stroke 

Between the year 2015 until 2020, Sierra Leone, North Korea, Mongolia, Cote 

D Ivoire, Yemen, Georgia and Indonesia are the countries with highest frequency of 

ischemic stroke (Muratova et al., 2020). According to the latest data published in 2022, 

death due to ischemic stroke in Malaysia reached 6.5% of total deaths making it as one 

of the five principal causes of death in Malaysia (Dep. Stat. Malaysia, 2022). There 

were 47, 911 incident cases, 19,928 deaths, 443,995 prevalent cases, and 512,726 
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disability-adjusted life years (DALY) lost due to stroke in 2019 (Tan & 

Venketasubramanian, 2022). The distribution is highly affected by various risk factors 

including the non-modifiable hereditary factors such as family history or genetic 

predisposition, pre-existing comorbidities such as hypertension and dyslipidermia or 

modifiable lifestyle and environmental factors such as smoking or tobacco use, 

physical inactivity, and poor nutrition. 90% of all cases of stroke in the world are 

associated with modifiable risk factors (Muratova et al., 2020), indicating that most of 

the stroke cases are avoidable. 

 

The risk of recurrent is greatest during the first weeks or months after the initial 

stroke, and studies have shown that the risk increased from 3% to 22% in the first year 

to 53% within 5 years (Zheng & Yao, 2019). Age and dementia have been identified 

as the best predictors of recurrence (Appelros et al., 2003). This is because older 

patients had a much higher rate of atrial fibrillation, hypertension, dyslipidemia and 

coronary artery disease which are constantly associated with ischemic stroke 

recurrence (Hillen et al., 2003; Navis et al., 2019; Zheng & Yao, 2019). On top of that, 

heart disease and heart failure also had been shown to have adverse influence on long-

term prognosis of ischemic stroke in different ways making it difficult for fully 

recovery from ischemic stroke (Appelros et al., 2003). 

 

2.1.2 Initial diagnosis of ischemic stroke 

Diagnosis of most of the ischemic stroke cases is straightforward based on the 

symptoms such as sudden numbness or weakness of the face, arm or leg, trouble 

speaking, sudden trouble seeing in one or both eyes, sudden dizziness, loss of balance 
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or coordination or sudden, severe headache with no known cause. However, for 

patients with unusual features such as gradual onset, seizure at the onset of symptoms, 

or impaired consciousness, the differential diagnosis should include migraine, postictal 

paresis, hypoglycaemia, conversion disorder, subdural hematoma, and brain tumors 

(Petty et al., 2021).  

 

In all patients with suspected ischemic stroke, computed tomography (CT) or 

magnetic resonance imaging (MRI) of the brain will be performed to acquire detailed 

brain imaging as quickly as possible, ideally within 20 minutes of the patient’s arrival 

(Phipps & Cronin, 2020). Due to widespread availability and lower costs, CT scan is 

typically the first neuroimaging test performed in patients but MRI has a much higher 

sensitivity for acute ischemic changes. MRI imaging can identify brain ischemia 

within minutes of onset and is highly sensitive (88% sensitivity within 24 hours) and 

specific (95% specificity) for acute infarction (Mendelson & Prabhakaran, 2021). 

 

2.1.3 Pathology of ischemic stroke 

Cerebral circulation delivers continuous oxygenated blood, glucose and other 

nutrients which is vital in maintaining the viability and function of the brain. 

Moreover, the entire central nervous system (CNS) is highly sensitive to changes in 

oxygen concentration due to a high intrinsic oxygen consumption rate. Therefore, 

insufficient flow of blood due to vessel occlusion in ischemic stroke is unable to satisfy 

the requirement of oxygen and nourishing substances of the cerebral tissue within 

seconds to minutes after the loss of blood flow to a region of the brain (Hamblin & 

Lee, 2021). A cascade of pathophysiological events will occur following occlusion 
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involved during ischemic stroke such as neuronal degradation or cell death, tissue 

inflammation, apoptosis and necrosis resulting in tissue damage. These 

pathophysiological processes are interlinked, triggering each other in a positive 

feedback loop that terminates in neuronal destruction. 

 

The energy deficit caused by the loss of neurons ability to synthesize adenosine 

triphosphate (ATP) is the main mechanism of cell death in the area of the cerebral 

infarction. This led to an inflammatory cascade, including oxidative stress, 

excitotoxicity, inflammatory cell infiltration, release of toxic inflammatory mediators, 

the slowing down of cell energy metabolism and depolarisation of the cell membrane. 

Gradual depolarisation of the cell membrane and loss of membrane potential increase 

the flow of sodium and allows for an osmotic transport of water to cells leading to the 

development of cytotoxic oedema. As a consequence, the accumulation of Na+ and 

Ca2+ ions leads to organelle degeneration and loss of membrane integrity (Moskowitz 

et al., 2010; Pawluk et al., 2020). Brain and immune cells also produce reactive oxygen 

species (ROS), which not only causes primary vascular damage, but also triggers the 

development of the inflammatory response (Pawluk et al., 2020). These responses will 

ultimately contribute to damage to tissues surrounding circulatory system, leading to 

further necrosis of the blood-brain barrier (BBB) and neurons, loss of neurovascular 

unit function, and disruption of the brain network (Jiao et al., 2021; Maida et al., 2020; 

Mo et al., 2020).  

 

Inflammation is widely regarded as a localised protective reaction, which helps 

restore balance when the body suffers from infection or tissue damage by killing 

pathogens and initiating the process of tissue repair (Biswanath Dinda et al., 2017). 
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Inflammation in the brain accompanies the acute and chronic processes of central 

nervous system diseases and helps repair the damage of the nervous system under 

normal physiological conditions. However, the abnormal activation of inflammation 

will affect multiple signal pathways, inducing intense inflammatory cells infiltration 

in and around the injured brain tissue. Acquired brain injury such as ischemic stroke 

activate microglia along with activated astrocytes react via secreting cytokines 

resulting in an upregulation of cell adhesion molecules, allowing inflammatory cells 

to invade the brain parenchyma and secrete inflammatory mediators which lead to 

secondary brain injury, including brain oedema, haemorrhage and cell death 

(Kawabori & Yenari, 2015; Yuanyuan Li et al., 2020). Experimental data have shown 

that resident microglia are activated within minutes of ischemia onset and produce a 

plethora of proinflammatory mediators which exacerbate tissue damage but may also 

protect the brain against ischemic and excitotoxic injury (Jin et al., 2010). Occlusion 

to the MCA also causes fibrosis of the vascular cells and stimulates production of 

reactive oxygen species (ROS) and consequently leads to the development of oxidative 

stress. The vasoconstriction enhances the expression of adhesion molecules on 

vascular endothelial cells and stimulates the aggregation of polymorphonuclear 

neutrophils (PMNs) contributing to inflammation and endothelial dysfunction 

(Kowalczyk et al., 2015). Although different mechanisms are involved in the 

pathogenesis of stroke, increasing evidence shows that ischemic injury and 

inflammation account for its pathogenic progression (Lakhan et al., 2009). 

 

Restoration of local blood perfusion in ischemic brain tissue plays a vital role 

in tissue repair and functional recovery after ischemic stroke. Studies have shown that 

stroke patients have reduced morbidity and longer survival time because of a higher 
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density of blood vessels (Yu et al., 2014). The early response facilitates cerebral blood 

flow recovery through collateral circulation and anastomotic vessel activation, and the 

long-term response involves angiogenesis (Beck & Plate, 2009). Angiogenesis is the 

formation of new blood vessels from pre-existing vessels which helps improve tissue 

micro perfusion in ischemic boundary regions and reduce infarct volumes (Hui et al., 

2017). Angiogenesis may provide sufficient oxygen and nutrition for cerebral 

reconstruction and may participate in remodelling the damaged area to improve the 

recovery of the neural function of stroke patients (Carmeliet, 2000).  

 

Ischemic infarct site can be defined by two distinct areas: the core and an outer 

stratum known as the penumbra (Figure 2.2). Initially after arterial occlusion, a central 

core of very low perfusion is surrounded by an area of dysfunction caused by metabolic 

and ionic disturbances yet the structural integrity is preserved. This surrounding area 

is known as the penumbra. The ischemic penumbra can be reinstated if cerebral blood 

flow is promptly restored. Therefore, in the first hours after ischemic stroke onset, the 

damage could be salvaged depending on the rate of reperfusion blood flow and the 

duration of ischemia. The timing is utterly important because the penumbra will 

eventually be incorporated into the infarct if reperfusion is not achieved (Petty et al., 

2021). 
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Figure 2.2 The ischemic core and penumbra. Ischemic core is the brain tissue that 

severely affected by ischemia and is destined to die while ischemic 

penumbra can be salvaged after restoration of blood flow. Adapted 

from (Petty et al., 2021).  

 

2.1.4 Current treatments for ischemic stroke and its limitations 

Tissue plasminogen activator (tPA) is the only drug approved by the US Food 

and Drug Administration (FDA) for acute stroke treatment. tPA helps restore the blood 

flow in ischemic brain by dissolving the blood clots (thrombosis) in affected blood 

vessels following an ischemic stroke (Boese et al., 2018). However, the major 

limitation is that it must be administered in a limited time window within 3 to 4.5 hours 

of stroke onset to be effective (Roth, 2011). This short therapeutic window has greatly 

limit its utilisation rates in routine clinical practice because hospitalization delays for 

stroke occurrence is very common (Yperzeele et al., 2014). Over the years, it was 

found that almost 80% of ischemic stroke patients were late to be admitted to hospital 

within the golden treatment window of tPA due to several factors including slow or 

gradual onset, mild neurological symptoms or those who  were  alone  and initially did 
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not contact anybody when their symptoms occurred (Jiao et al., 2021; Wester et al., 

1999; Yperzeele et al., 2014). 

 

Besides tPA, another potential pharmacological drug for ischemic stroke 

known as acetylsalicylic acid (ASA), or aspirin is also used as secondary prevention 

medicine to reduce the risk of recurrent ischemic stroke. This is because aspirin acts 

as anticoagulant by thinning the blood and thereby prevents clots in vessels. However, 

the efficacy is limited because full anticoagulation could result in haemorrhagic 

transformation in the immediate poststroke period depending on the infarct size 

(Herpich & Rincon, 2020; Petty et al., 2021). There are also side effects from the usage 

of ASA such as headache and general ill feeling or flu-like symptoms.  

 

Surgical is another option to treat ischemic stroke. Clot can be removed 

through mechanical clot removal surgery within 24 hours after the onset of stroke 

symptoms. However, not all patients can go under the invasive surgical procedure 

especially if their carotid arteries are mostly blocked and aging factor. Moreover, 

surgery may increase the risk of bleeding or disability. Other than that, no other 

specific treatment is available to treat either focal cerebral ischemia or a global 

ischemic event (Tajiri et al., 2013).  

 

Some hospitals in Malaysia for example, Kepala Batas Hospital in Penang, 

Putrajaya Hospital in Federal Territory of Putrajaya and Sultan Ismail Hospital in 

Johore have traditional and complementary units that practice the traditional Malay 

massages or ‘urut Melayu’, which serve as an alternative post-stroke therapy (Anuar 
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et al., 2010). A non-profit organisation, the National Stroke Association of Malaysia 

also provides stroke rehabilitation services to enable stroke survivors to return to 

normal life as much as possible within the limits of their disabilities within Malaysia. 

However, the limited number of community-based rehabilitation centres to provide 

continuous support for people with stroke after discharge from hospital care has 

resulted in stroke survivors being left to manage long term post-stroke impact on their 

own. There is also difficulty to access to post-stroke care and monitoring at private 

health care settings due to the high costs.  

 

Hence, it is crucial to develop alternative therapeutic strategies for stroke which 

primarily focused to help in full recovery and reduce the risk of deteriorating patient’s 

quality of life during chronic phase rehabilitation. Since last few years, cell grafting 

has been the most encouraging approach for the treatment of neurodegenerative 

diseases and stroke (Locatelli et al., 2009). Stem cell therapy is a novel treatment that 

exhibits potential for replacing current standard treatment for ischemic stroke.  Neural 

stem cells (NSCs) are an ideal stem cell source that can be established to provide a 

continuous supply of neurons, astrocytes and oligodendrocytes to restore neural 

networks and vascular remodelling after ischemic injury (Annese et al., 2017; 

Trounson & McDonald, 2015). In this study, the therapeutic potential of neural stem 

cell in treating ischemic stroke is further investigated.  

 

2.2 Overview of stem cell  

Stem cells are undifferentiated cells which have the ability to self-renew and 

develop into specific types of cells. Stem cells can be obtained from two main sources 
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which are embryonic stem cells and adult stem cells, where the former comes from 

embryos and the latter originates from mature adults (Asahara et al., 2000). 

 

Embryonic stem cells (embryoblast) derive from a four- to six-day-old human 

embryo that is in the blastocyst phase of development (Figure 2.3). The embryos are 

usually extras that originated from in vitro fertilization (IVF) clinics. Sexual 

reproduction begins when a male's sperm fertilises a female's ovum (egg) to form a 

single cell called a zygote. The single zygote cell then begins a series of divisions, 

forming to 2 to 4, 4 to 8, 8 to 16, and so on. After 4 to 6 days post-fertilisation, a hollow 

ball of cell known as blastocyst is formed. The blastocyst consists of an inner cell mass 

(embryoblast) and an outer cell layer (trophoblast). The outer cell layer becomes part 

of the placenta, while the inner cell mass is the group of cells that will differentiate to 

become all the structures of an adult organism. This inner cell is known as embryonic 

stem cell which is a great therapeutic cell source to various health problems due to its 

potential to give rise to an entire organism and to differentiate into all cell lineages. 

However, the main concern with embryonic stem cells is the way that they are acquired 

which triggers ethical issue as it will results in the destruction of human embryo. 

Embryonic stem cells also divide uncontrollably, leading to growth of unwanted 

tissues and tumours called teratoma (Yamanaka, 2020). 
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Figure 2.3 The development of zygote (fertilised egg) to blastocyst (inner cell  

mass). Adapted from (Łos et al., 2018). 

 

Adult stem cells are multipotent cells (can differentiate into many types of cells 

that originate from the same lineage) which are responsible for replacing damaged and 

dead cells in the body and can be divided into tissue-specific stem cells. These stem 

cells can be found in tissues such as the brain, bone marrow, blood, blood vessels, 

skeletal muscles, skin, and the liver. They remain in a quiescent or non-dividing state 

for years until activated by disease or tissue injury. Adult or somatic stem cells can 

divide or self-renew indefinitely, enabling them to generate a range of cell types from 

the originating organ or even regenerate the entire original organ (Carresi et al., 2021). 

One of the tissue-specific adult stem cells are neural stem cells (NSC) which are 

located in the subventricular zone (SVZ) and subgranular zone (SGZ) or the dentate 

gyrus (DG) of the hippocampus in brain (Grochowski et al., 2018). 

 

2.2.2 Neural stem cell 

NSCs are multipotent cells which generate progenitor cells that later primarily 

differentiate into neurons, astrocytes, and oligodendrocytes to maintain brain 

homeostasis (Łos et al., 2018) (Figure 2.4). It was first isolated from the lateral 
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ventricle ependymal cell layer called the SVZ in the mouse brain by Reynold and 

Weiss in 1992 (Reynolds & Weiss, 1992). NSCs possess unique ability to mitigate 

stroke pathology since they are able to migrate through the CNS and repopulate lesion 

site after ischemic injury. There have been so many positive studies of ischemic stroke 

patients undergoing natural endogenous neurogenesis at the ischemic penumbra region 

of the brain (Guo et al., 2022; Hamblin & Lee, 2021; Tornero, 2022). It was also 

reported that in the post-ischemic brain, dying neurons was replaced by new viable 

immature neuronal cells (neuroblasts) which were differentiated from endogenous 

NSCs originated from DG and SVZ (Kojima et al., 2010). NSCs exhibit multiple 

potentially therapeutic actions against neurovascular inflammation (Hamblin & Lee, 

2021). Besides, human NSCs are also known in vivo to promote new blood vessel 

growth (Sinden et al., 2017). 

 

Figure 2.4 The derivatives of neural stem cells into neuron, astrocytes and 

oligodendrocytes. Adapted and edited from Tang  (2017). 
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Besides endogenous NSC, exogenous NSC transplantation approach also is a 

good alternative for neurogenesis. Exogenous NSCs can be obtained from donor 

compatible with the recipient. Transplantation of NSCs interindividual or interspecies 

have lower immune rejection (Morizane et al., 2017). Transplantation of NSCs into 

animal stroke model not only was found to restore the damaged brain tissue 

(neurogenesis), but also able to exert neuroprotection towards inflammation of brain 

tissue during the acute phase of the stroke. Besides, NSCs can easily cross the blood-

brain barrier (BBB) and has the ability to migrate to the damaged site due to its strong 

chemotaxis and migration abilities (Addington et al., 2017; Xu & Heilshorn, 2013). 

Another potentially attractive advantage of NSC therapy over conventional drug 

therapies is that NSCs can continually respond to environmental cues and secrete 

appropriate quantities and type of signalling factors, therefore providing a tailored 

response to individual stroke injuries (Baker et al., 2019). 

 

Nevertheless, the site of ischemic injury is usually associated with occluded 

blood flow, extracellular matrix degradation, oxidative stress, inflammation, and acute 

immune response. As a consequence, there are only limited transplanted stem cells or 

newly formed brain cells that can survive the hostile microenvironment in the ischemic 

regions, leaving only a few number of cells that will integrate to populate the target 

region for a prolonged duration in ischemic environment (Hicks et al., 2009; Othman 

& Tan, 2020). Moreover, most of the endogenous NSCs also are rather dormant in 

normal setting to prevent their own exhaustion, lowering the retention rate in injured 

tissues thus limiting the cell proliferation and reducing the benefit of their therapeutic 

effect. Therefore, either endogenous or exogenous NSCs are capable to generate 
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sufficient viable new brain cells for structural or functional restoration of the injured 

brain. 

 

In light of this, many researches have been conducted to prolong the NSCs 

survival in damaged tissues by minimising immune rejection and increase resistance 

against oxygen and nutrient deprivation, as well as oxidative stress in the ischemic 

area. Among those, stem cell preconditioning had generated much interest.  

 

2.2.3 Preconditioning strategy 

Stem cell preconditioning means exposing the cells to certain pharmacological, 

biological or physical inducers in order to improve cell resistance against the host 

harsh environment and to enhance their regulatory function of the local immune 

responses before transplantation into the recipient host (Moeinabadi-Bidgoli et al., 

2021). Preconditioning strategies have been tested in many types of stem cells, 

including NSCs, to increase cell survival rate and to maximize their therapeutic 

potential within ischemic microenvironments. 

 

There are many approaches of preconditioning stem cells before cell grafting. 

For example, hypoxic preconditioning which involves brief periods of hypoxia that 

triggers various protective signalling pathways and enhances resilience to ischemia 

has been extensively investigated in various cell types, organs, animal models, and 

human. Zhuo  (2021) reported that ischemic-hypoxic preconditioned olfactory mucosa 

mesenchymal stem cells protected mitochondrial function and inhibited apoptosis and 

pyroptosis of neurons in rat ischemia model. Other NSC preconditioning approaches 
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in treating ischemic injury are using cytokine such as interleukin-6 (Sakata, 

Narasimhan, et al., 2012) or even antibiotics such as minocycline (Sakata, Niizuma, et 

al., 2012).  

Another promising approach is the brief period exposure of stem cells towards 

natural compound because of its more sustainable and environmentally friendly 

approach. Interestingly, pharmacological preconditioning represents a novel and 

efficient technique for stimulating the secretory activity of stem cells. Preconditioning 

with natural compound had successfully ameliorated ischemic nerve damage by 

enhancing the survival of transplanted stem cells under oxidative stress and increasing 

endogenous neural stem cell proliferation of ischemic nerve injury (Li et al., 2020; 

Shu et al., 2020). Therefore, in this study, NSC culture was preconditioned with brief 

periods of exposure to baicalein active compound extracted from Oroxylum indicum 

plant to enhance its bioactivity. O. indicum extract has been shown to exert 

neuroprotection effect and increase cell proliferation rate in many other cell types 

mainly due to its baicalein composition (Liu et al., 2017; Van Leyen et al., 2006;  

Zhang et al., 2005). 

 

2.3 Natural product for preconditioning as source of neuroprotective agent 

2.3.1 Oroxylum indicum 

Oroxylum indicum (L.) Vent., a semi-deciduous tree belongs to family 

Bignoniaceae have wide array of medicinal and ethnomedicinal properties (Jagetia, 

2021). In Malaysia, this plant is locally known as beko, beka or bonglai. Other 

common names are “Midnight Horror” as the flowers bloom at night while discharging 

strong odour to attract their pollinators, “Indian trumpet tree” since the flower 
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resembles trumpet and “broken bones tree” due to accumulation of dry leaf and 

peduncle beneath the tree which resembles a pile of broken bones (Ahad et al., 2012; 

Begum et al., 2019; Kalra & Kaushik, 2017; Wahab et al., 2018). The young shoots 

and unripe fruits of this plant are popularly consumed as vegetable or ‘ulam’ by the 

locals since it is claimed to have significant anti-aging properties and health benefits 

(Kang et al., 2019; Salleh et al., 2020; Singh, 2015). The plant is widely distributed 

throughout India, Nepal, Indonesia, Sri Lanka, Philippines, China, Japan, Bhutan, 

Malaysia, Taiwan, Thailand and Vietnam (Kalra & Kaushik, 2017). 

 

O. indicum is a small to medium sized deciduous tree, of height 18-20 metres 

(Figure 2.5A). The flowers bloom on top of the tree and the fruits hang down from the 

bare branches like dangling swords (Figure 2.5B). Bark of the plant is light brown or 

greyish-brown coloured, which is soft and spongy with numerous corky lenticels. The 

leaves are pinnately compound which normally grows up to 3–10 cm long (Figure 

2.5C) while the leafstalks of the adjacent leaflets are 6-15 mm long. The corolla of the 

flower is funnel shaped, about 10 cm long with 5 lobes, subequal with wrinkled 

margin, reddish outside, and yellowish to pinkish colored inside (Figure 2.5D). The 

flowers are bisexual, numerous in numbers and the flowers stalk is approximately 30 

cm (Figure 2.5E). The fruits are woody, winged, large and flat, capsule or sword 

shaped (Figure 2.5F). The flowers usually bloom in rainy season and fruit appears in 

December to March (Jagetia, 2021; Kalra & Kaushik, 2017; Salleh et al., 2020). This 

plant also lives in a mutualistic association with an actinomycete Pseudonocardia 

oroxyli, a gram-positive bacterium that has the capacity to produce many secondary 

metabolites exhibiting a wide variety of biological activities (Ahad et al., 2012; 

Lalrinzuali et al., 2018).  




