

PARALLEL PROGRAMMING WITH

DISTRIBUTED SHARED MEMORY

By

Lee Pau Hua

Dissertation submitted to

UNIVERSITI SAINS MALAYSIA

As a fullfillment of a part of the requirement for

a degree with honours

BACHELOR OF ENGINEERING (ELECTRONIC)

Pusat Pengajian Kejuruteraan
Elektrik dan Elektronik
Universiti Sains Malaysia May 2006

 ii

ABSTRACT

There is a continual demand for greater computational speed from a

computer system than is currently possible because it seems that there will

always be applications that require still more computation power. One way of

increasing the computation speed is by using multiple computers that linked

through network operating together on a single problem that split into parts, and

each performed by a separate computer in parallel. Such application can gain

advantageous on performance, scalability, and even price. In this reseach, a

parallel matrix multiplicaton system will be designed using Parallel Programming

with Distributed Shared Memory. With the message-passing method, this system

will perform the matrix multiplication computation in parallel by using multiple

computers that linked through network. The computation time for the parallel

matrix multiplication will be compared with the computation time for serial

matrix multiplication and will expecting to have a faster computation speed from

the parallel comutation method on the larger matrix scale. In overall, the

computation cabability of the conventional computer can be improved by the

application of parallel computer system.

 iii

ABSTRAK

Dalam dunia komputer, terdapatnya suatu permintaan yang berterusan untuk

mengejar kelajuan pengiraan yang lebih pantas daripada sistem komputer masa

kini disebabkan selalunya akan terwujud aplikasi yang masih memerlukan lebih

kuasa pengiraan. Salah satu cara untuk meningkatkan kelajuan pengiraan ialah

dengan menggunakan komputer-komputer yang disambungkan melalui rangkaian

untuk beroperasi bersama dalam menyelesaikan satu masalah tunggal yang

dipecahkan kepada beberapa bahagian, dibahagikan kepada setiap komputer

untuk membuat pengiraan secara selari. Aplikasi seperti ini mempunyai

kelebihan dalam keberkesanan, kestabilan dan juga harga. Dalam penyelidikan

ini, satu sistem pendaraban matriks selari akan direkabentuk menggunakan

pengaturcara selari dengan penyimpanan berkongsi secara terbahagi (distributed

shared memory). Dengan menggunakan kaedah “message-passing”, sistem ini

akan mebuat pengiraan pendaraban matriks secara selari menggunakan komputer-

komputer yang disambung melalui rangkaian. Masa pengiraan untuk pendaraban

matriks selari akan dibandingkan dengan masa pengiraan pendaraban matriks

selari dan dijangkakan masa pengiraan pendaraban matriks selari adalah lebih

laju untuk skala matriks yang lebih besar. Secara keseluruhannya, kebolehan

pengiraan komputer biasa akan dapat dipertingkatkan lagi dengan aplikasi sistem

komputer selari.

 iv

CONTENTS

Page

ABSTRACT ii

ABSTRAK iii

TABLE OF CONTENTS iv

LIST OF FIGURES vii

ACKNOWLEDGEMENT viii

CHAPTER 1 INTRODUCTION

2.1. Introduction ... 1

2.2. Purpose of Project ... 1

2.3. Aim of Project ... 2

2.4. Objectives of Project .. 2

2.5. Tools for the Design of Parallel Programming 2

2.6. Steps for Preparing and Finishing Project 2

2.7. Structure of Thesis ... 3

CHAPTER 2 THEORY

2.1. Introduction ... 4

2.2. Parallel Pogramming .. 4

2.3. Explantion of “Distributed Shared Memory” 5

2.3.1. Distributed Shared Memory 5

2.3.2. Synchronization ... 8

2.3.3. Barrier ... 8

2.3.4. Semaphore ... 9

2.3.5. Lock .. 9

2.3.6. Deadlock ... 9

2.3.7. False Sharing ... 9

2.4. Java Technology .. 11

2.4.1. Java Programming Language 11

2.4.2. The Java Platform .. 12

2.5. BlueJ ... 13

2.6. Borland C++ Builder ... 14

 v

CHAPTER 3 METHODOLOGY

3.1. Introduction ... 15

3.2. Design Flow Chart ... 15

3.3. Description of Phases .. 16

3.4. Gantt Chart ... 17

CHAPTER 4 IMPLEMENTATION OF PARALLEL PROGRAMMING

WITH DISTRIBUTED SHARED MEMORY

4.1. Introduction ... 18

4.2. Overview of implementation of Distributed Shared Memory 18

4.2.1. Distributed Shared Memory 18

4.2.2. Implementing Distributed Shared Memory 19

4.3. Overview of the Application of Parallel Programming with

DSM in Matrix Multiplication 20

4.3.1. Review of Matrices 20

4.3.1.1. Matrix Addition 21

4.3.1.2. Matrix Multiplication 21

4.3.2. Implementing Matrix Multiplication 21

4.3.2.1. Sequential Matrix Multiplication 21

4.3.2.2. Parallel Matrix Multiplication 22

4.3.3. Recursive Implementation 22

4.4. Software Design Architecture 24

4.4.1. Introduction ... 24

4.4.2. Java and OOAD ... 24

4.4.3. UML(Unified Modeling language) 25

4.4.4. Matrix Multiplication Computation Development 25

4.4.4.1. Matrix Multiplication Computation –

Use Case Diagram 25

4.4.4.2. Matrix Multiplication Computation –

Class Diagram 26

4.4.5. User Interface .. 29

 vi

4.5. Implementation of the Matrix Multiplication System ... 29

4.5.1. Format of the Matrix Data File 29

4.5.2. Read Operation .. 30

4.5.3. Serial Matrix Multiplication 31

4.5.4. Distributed Shared Memory 32

4.5.5. Parallel Matrix Multiplication 33

4.5.6. User Interface .. 38

4.6. Results of the Matrix Multiplication 40

CHAPTER 5 CONCLUSION

5.1. Discussion ... 43

5.2. Suggestion .. 44

5.3. Conclusion .. 44

REFERENCES 45

APPENDIX A: PROGRAM SOURCE CODE

 vii

FIGURE LIST

 page

Figure 2.1: Distributed Memory Platform .. 6

Figure 2.2: Multiprocessor (SMP) ... 8

Figure 2.3: Read-Write False Sharing .. 10

Figure 2.4: Write-Write False Sharing .. 10

Figure 2.5: Java programming language .. 11

Figure 2.6: API & JVM .. 12

Figure 2.7: BlueJ interface .. 13

Figure 3.1: Design Flow Chart ... 15

Table 3.1: Gantt Chart .. 17

Figure 4.1: An nm× matrix .. 20

Figure 4.2: Code of sequential matrix multiplication 22

Figure 4.3: Submatrix multiplication ... 23

Figure 4.4: Submatrix multiplication and summation 24

Figure 4.5: Use case diagram of Matrix Multiplication System 26

Figure 4.6: Matrix Multiplication Class Diagram .. 26

Figure 4.7: Parallel Matrix Multiplication concept 27

Figure 4.8: Parallel Matrix Multiplication Class Diagram 28

Figure 4.9: Matrix Data File Format ... 30

Figure 4.10: Serial Matrix Multiplication Output .. 31

Figure 4.11: An Example of DSM Tuple Space Server Output 32

Figure 4.12: Master and Slave communication through DSM 33

Figure 4.13: Activity Diagram for Parallel Matrix Multiplication 35

Figure 4.14: Parallel Matrix Multiplication Output (Master) 36

Figure 4.15: DSM Tuple Space Server Output for Master and Slave 37

Figure 4.16: User Interface Matrix Data Editor ... 38

Figure 4.17: User Interface Main Panel .. 39

Figure 4.18: Results in Time for Serial Matrix Multiplication 40

Figure 4.19: Results in Time for Parallel Matrix Multiplication 41

 viii

ACKNOWLEDGEMENT

I would like to take this opportunity to thank the many people that have

helped me tremendously.

First and foremost to Dr. Kamal Zuhairi b. Zamli, the person who guided me

all the way. As my supervisor he had patiently taught and advised me and put me

in the right path of enlightenment. Without him, this project would be a failure.

Secondly, my gratitude to my friends and coursemates; Yoke Leen, Li Feong,

Han Choong, Gan and Kim Aun that had given me ideas and helped me to

complete this project, thanks to you all.

Lastly, to my beloved parent and my sisters that always giving me the

support. God bless you forever.

Lee Pau Hua

 1

Chapter 1

INTRODUCTION

1.1. Introduction

Conventional computer aren’t fast enough to do the work we need nowaday.

Even supercomputers may not even be fast enough, and the price puts them out of

range in any case. That’s why parallel computer is important for solving

computationally intensive problems. Parallel computer are likely to be around as

applications for us become more widespread. It gives us the ability to ask

questions and examine answers more quickly, in greater detail, and more cost

effectively.

For multi-year research problems involving extremely large calculations,

parallel supercomputers win on performance, scalability, and even price.

Nevertheless, for a small scale research with limited budget, multiple

conventional computers can be linked through network to form a system likely

the supercomputer in order to solve the computation problem in the lab.

There will be a more detail explanation about the use of parallel computation

application in Chapter 2, also the explanation about the topic of my final year

project which is Parallel Programming with Distributed Shared Memory.

1.2. Purpose of this Project

The main purpose of this project is to design a system that uses the concepts

of parallel computation to compute the matrix multiplication problem which

needs complex iteration computation.

The design will be concentrate on the difference of computation speed

between the parallel computation and serial computation techniques, that is to get

a faster computation speed by using parallel computation techniques.

 2

1.3. Aim of This Project

• The aim of this project is to study the concept and usage of parallel

programming and distributed shared memory.

1.4. Objectives of This Project

The objectives of this project is as below:

•••• To learn the core issues of parallel computation application.

•••• To learn the use of distributed shared memory in parallel programming.

•••• To learn the developing of object oriented software.

•••• To learn the process of designing an parallel programming system.

•••• To learn Java technology and Java programming language.

1.5. Tools for The Design of Parallel Programming

The tools that being use are:,

• Java 2 Standard Editon (J2SE1.5.0_04)

• Bluej v2.05 (object oriented Java Editor tools)

• Borland C++ Builder 6

1.6. Steps for Preparing and Finishing This Project

Before designing and implementing the parallel programming, studies and

understanding of the concepts and requirements are necessary for developing the

software system. There are a lot of information needs to be studies for getting

start of this final year project. Later on, the object analysis and design of the

software system is started. The design, implementation, testing and integration of

unit system will be done after that. And finally, implements all the unit systems

and doing an overall system testing and experimentations.

 Meanwhile can start to prepare and do the documentation (thesis). The

thesis can be completed after all the designs, implementation, solutions and

results are collected.

The methods of finishing this final year project and thesis will have further

discuss in chapter 3.

 3

1.7. Structure of Thesis

Chapter 1 of this thesis discusses about the short explanation, purpose, aim

and objectives of final year project topic.

Chapter 2 of this thesis provides all the theories referred to implement the

parallel programming system with distributed shared memory. There is also an

introduction and explanation of the Java tools (J2SE) which be used.

Chapter 3 of this thesis discuss about the methods to be used and also the

flow of finishing this final year project and thesis.

Chapter 4 of this thesis discusses about the implementation of the parallel

programming system with distributed shared memory. The concept, software

design architecture, implementation, results and discussion are all included in

this chapter.

Chapter 5 of this thesis is the conclusion of this final year project topic and

the thesis.

 4

Chapter 2

THEORY

2.1 Introduction

This project is about the design of Parallel Programming with Distributed

Shared Memory system. It implements the parallel computaion techniques with

the use of distributed shared memory.

In this chapter, we will discuss about all the theories referred to implement

the parallel programming system with distributed shared memory system,

including the explanation of the parallel programming, distributed shared

memory, and the tools that used to implement this system.

2.2 Parallel Programming

Parallel programming uses multiple computers, or computers with multiple

internl processor, to solve a problem at a greater computational speed than using

a single computer. It also offers the opportunity to tackle larger problem that

with more computational steps or more memory requirements, the latter because

multiple computer and multiprocessor systems oftn have more total memory than

a single computer.

One of the parallel computing technique is by using multiple computing

process operating together on a single problem. The overall problem is split into

parts, each of which is performed by a separate process in parallel. Writing

programs for this form of computation is known as parallel programming.

The computing platform, a parallel computer, could be a specially designed

computer system containing multiple processors or several independent

computers interconnected in some way. The idea is that n computer could provide

up to n times the computational speed of a single computer, with the expectation

that the problem would be completed in 1/nth of the time.

The use of multiple computer/processor often allows a larger or a more

precise solution of a problem to be solved in a reasonable amount of time. A

related factor is that multiple computers often have more total main memory than

 5

a single computer, enabling problems that require larger amount of main memory

to be tackled.

Here we concentrate upon the use of multiple computers that communicate

between themselves by sending messages; hence the term message-passing

parallel programming. The computer we use can be different platforms (PC,

UNIX, SUN, etc.) but must be interconnected by a network, and a software

environment must be present for intercomputer message passing. Suitable

networked computers are very widely available as the basic computing platform

for students so that acquisition of specially designed multiprocessor systems can

usually be avoided [1].

2.3 Explanation of “Distributed Shared Memory”

2.3.1 Distributed Shared Memory

Parallel programming requires a suitable computing platform, which have

described as either a single computer with multiple internal processors or

multiple interconnected computers. Examples, shared memory multiprocessor

system, message-passing multicomputer system, distributed shared memory

(DSM) system and multiple instruction stream-multiple data stream-multiple data

stream (MIMD) computer system.

In a Distributed Shared Memory system the memory is physically distributed

with each processor, but each processor has access to the whole memory using

single memory address space. For a processor to access a location not in its local

memory, message passing must occur to pass data from the processor to the

location or from the location to the processor, in some automated way that hides

the fact that the memory is distributed. Of course, access to remote locations will

incur a greater delay, and usually a significantly greater delay, than for local

accesses.

Multiprocessor system can be designed in which the memory is physically

distributed but operates as shared memory and appears from the programmer’s

perspective as shared memory. Perhaps the most appealing approach is to use

networked computers. Distributed Shared Memory systems can be implementing

 6

the shared-memory abstraction on multi-computer architectures, combining the

scalability of network based architectures with the convenience of shared-

memory programming. One way to achieve distributed shared memory on a

group of networked computers is to use the existing virtual memory management

system of the individual computers which is already provided on almost all

systems to manage its local memory hieracchy. The virtual memory management

system can be extended to gives the illusion of global shared memory even when

it is distributed in different computers [2].

Figure 2.1: Distributed Memory Platform

Distributed Shared Memory enables programs to access data in traditional

virtual memory. It is primarily a tool for parallel application or a group of

applications in which individual shared data items can be accessed directly. A

cluster is a form of multi-computer system which uses a collection of

independent computers that are connected by a high-speed interconnection

network. Since all communication between concurrently executing processes

must be performed over the network, in such a system, until recently the

programming model was limited to a message passing paradigm. However, recent

systems have implemented the shared-memory abstraction on top of message-

passing distributed-memory systems. The shared memory abstraction gives these

 7

systems the illusion of a physically shared memory and allows programmers to

use the shared-memory paradigm.

In systems that support Distributed Shared Memory, data moves between

secondary memory and main memory as well as between main memories of

different nodes. Each node can own data stored in the shared address space, and

the ownership can change when data moves from one node to another. When a

process accesses data in the shared address space, a mapping manager maps the

shared memory address to the physical memory. The Distributed Shared Memory

spares the programmer the concerns of message passing when writing

applications that might otherwise have to use it. Shared memory provides the

fastest possible communication, hence the greatest opportunity for concurrent

execution.

Although DSM gives users an impression that all processors are sharing a

unique piece of memory, in reality each processor can only access the memory it

owns. Therefore the DSM must be able to bring in the contents of the memory

from other processors when required. This gives rise to multiple copies of the

same shared memory in different physical memories. The DSM has to maintain

the consistency of these different copies, so that the any processor accessing the

shared memory should return the correct result. A memory consistency model is

responsible for the job. “Instantaneous” consistency is the one which written

values are immediately available to others. The atomic consistency is just

interesting theoretically for comparison. It ensures all procs sees all reads and

writes in same order, where the order is corresponds to real-time order. The third

one is sequential Consistency which all processors observe the same order. It

must correspond to someserial order and only ordering constraint that reads or

writes appear in the same order, but no restrictions on relative ordering between

processors.

A few differences between Symmetric Multiprocessor (SMP) (Figure 1.2)

and Software DSM are the delay tradeoffs, such as block size, cost of read/write

misses and connections, where is using bus and long networks that depends on

serialization and broadcast. The consequent is differences in protocols and

applications with the bigger block size that cost amortization, higher hit ratio for

larger blocks and reduced overhead. Therefore, migration and replication concept

 8

is uses and also the false sharing increases. DSM protocol is more complex, it

must handle lost, corrupted, and out-of-order packets.

Figure 2.2: Multiprocessor (SMP)

2.3.2 Synchronization

Since the DSM processes may share memory, sharable objects must be

created and associated with parallel processes. Synchronization constructs must

be initialized in order to access sharable objects correctly.

Barriers, which are used as the coordination mechanism for parallel

processes, must also be initialized. Distributed shared memory system uses

messages passing to implement synchronizaitons. The synchronization of DSM

processes sharing memory takes the form of semaphore-type synchronization for

mutual exclusion and barriers are used to coordinate executing processes.

2.3.3 Barrier

The barrier that being used to coordinate executing processes is a method of

synchronization that designates one processor as barrier manager. It is a

mechanism that prevents any process from continuing past a specified point until

all the processes are ready. A barrier is inserted at the point in each process

where it must wait. All processes can continue from this point when all the

process have reached it. When a process waits at a barrier, it sends an arrival

message to the barrier manager and waits. When barrier manager has received all

messages, it sends a departure message to all processes.

 9

2.3.4 Semaphore

The semaphore is a protected variable (or abstract data type) and constitutes

the classic method for restricting access to shared memory in a

multiprogramming environment. Semaphores remain in common use in

programming languages that do not intrinsically support other forms of

synchronization. The trend in programming language development, though, is

towards more structured forms of synchronization like monitors and channels. In

addition to their inadequacies in dealing with deadlocks, semaphores do not

protect the programmer from the easy mistakes of taking a semaphore that is

already held by the same process, and forgetting to release a semaphore that has

been taken.

2.3.5 Lock

Lock is another method for synchronization that designates one process as

the lock manager for a particular lock. When a process acquires a lock, it sends

an acquire message to the manager and waits. Manager forwards message to last

acquirer. If lock is free, it send lock grant message. If lock is held, it holds on to

request until free, and then send lock grant message.

2.3.6 Deadlock

An important consideration is being aable to avoid deadlock, which prevents

prcesses from ever proceeding. Deadlock will occur for a specific condition when

two processes are each waiting for the other to release a resource, or more than

two processes are waiting for resources in a circular chain. Deadlocks are a

common problem in multiprocessing where many processes share a specific type

of mutually exclusive resource known as a lock. They are particularly troubling

because there is no general solution to avoiding deadlocks.

2.3.7 False Sharing

One of the problem that might be facing is false sharing where the

concurrent access to different data within the same consistency unit. Two flavors

for false sharing occur is read-write false sharing in Figure 1.3 and write-write

false sharing in Figure 1.4.

 10

Figure 2.3: Read-Write False Sharing

Figure 2.4: Write-Write False Sharing

As summary, the software implementation of DSM requires adding a

software layer between the operating system and the application. One method is

to structure the shared memory as objects in the distributed object-oriented

systems on distributed memory hardware using virtual memory. The home

migration to improve locality is important because of high latencies.

 11

2.4 Java technology

Java technology is both a programming language and a platform.

2.4.1 Java Programming Language

The Java programming language is a high-level language that can be

characterized by all of the following buzzwords:

• Simple

• Object oriented

• Distributed

• Multithreaded

• Dynamic

• Architecture neutral

• Portable

• High performance

• Robust

• Secure

 In the Java programming language, all source code is first written in plain

text files ending with the .java extension. Those source files are then compiled

into .class files by the Java compiler (javac). A .class file does not contain code

that is native to your processor; it instead contains bytecodes-- the machine

language of the Java Virtual Machine. The Java launcher tool (java) then runs

your application with an instance of the Java Virtual Machine.

Figure 2.5: Java programming language

Because the Java Virtual Machine is available on many different operating

systems, the same .class files are capable of running on Microsoft Windows, the

Solaris TM Operating System (Solaris OS), Linux, or MacOS. Some virtual

 12

machines, such as the Java HotSpot Virtual Machine , perform additional steps at

runtime to give your application a performance boost. This include various tasks

such as finding performance bottlenecks and recompiling (to native code)

frequently-used sections of your code [8].

2.4.2 The Java Platform

A platform is the hardware or software environment in which a program runs.

We have already mentioned some of the most popular platforms like Microsoft

Windows, Linux, Solaris OS, and MacOS. Most platforms can be described as a

combination of the operating system and underlying hardware. The Java platform

differs from most other platforms in that it's a software-only platform that runs

on top of other hardware-based platforms.

The Java platform has two components:

•••• The Java Virtual Machine

•••• The Java Application Programming Interface (API)

The Java Virtual Machine is the base for the Java platform and is ported

onto various hardware-based platforms.

The API is a large collection of ready-made software components that

provide many useful capabilities, such as graphical user interface (GUI) widgets.

It is grouped into libraries of related classes and interfaces; these libraries are

known as packages.

The following figure depicts how the API and the Java Virtual Machine

insulate the program from the hardware.

Figure 2.6: API & JVM

As a platform-independent environment, the Java platform can be a bit

slower than native code. However, advances in compiler and virtual machine

technologies are bringing performance close to that of native code without

threatening portability [8].

 13

2.5 BlueJ

BlueJ is an integrated Java environment specifically designed for

introductory teaching that developed at a University specifically for the purpose

of teaching object orientation with Java to beginners.

BlueJ is implemented in Java, and regularly being tested on Solaris, Linux,

Macintosh, and various Windows versions. It should run on all platforms

supporting a recent Java virtual machine [7].

In overall, BlueJ offers:

• a project manager, a compiler, an editor, a debugger, a virtual machine

• full tool integration (compilation from within the editor, compiler error

message display in the editor, setting breakpoints in the editor, etc.)

• abstraction from operating system

• class structure visualisation

• direct object interaction

• simplicity, easy-to-use interface

Figure 2.7: BlueJ interface

 14

 In this project, BlueJ is use as the main editing tools for design, compiling

and implementing the program with Java programming language.

2.6 Borland C++ Builder 6

Borland C++ Builder 6 is used to implement the graphical user interface

(GUI) for this project. In this parallel programming with distributed shared

memory system, it acts as a shell to pass the parameter and trigger the running of

the program (which is written in Java programming language) in command promt.

 15

Chapter 3

METHODOLOGY

3.1 Introduction

In order to complete a piece of research, a well-founded methodology is

required. In the context of the word reported in this thesis, the methodology is as

usual have some phases which will be discuss from the chapter.

3.2 Design Flow Chart

Start

End

Identify the main components of
the Parallel Programming with DSM

Object-oriented design and
analysis of the components

Completed ?

Integration of components
& unit testing

Successful ?

Redesign ?

Redesign ?

Integration testing Experimentations Documentations

Satisfactory ?

no

no

no

no

yes

yes

yes
yes

yes

no

Figure 3.1: Design Flow Chart

 16

3.3 Description of Phases

In overall, this project will be conducted into a number of phases:

Phase 1: Study & Learning

In this phase, the basic concept of the parallel programming with DSM is

studied. The tools used to design the program are also being learned

before start using it. All the information needed for completthis project

will being search for reference.

Phase 2: Requirement elicitation

All the requirements for the parallel programming system with DSM will

be identified. With these requirements, the main components of the system

will bedecided.

Phase 3: Design and implementation of the program

Based on the decision in phase 2, the design and implementation of each

of the components for the program will be considered utilising the object-

oriented analysis and design tools. The overall design and implementation

will undergo a number of iterations until all of the components are

successfully completed.

Phase 4: Unit testing and integration

A number of test cases will be identified for each component. Unit testing

will be performed to ensure that each component behaves properly as

expected. The component that completed the testing will be integrated into

the overall system.

Phase 5: Integration testing and experimentations

In this phase, the integration testing and evaluations will be performed.

Finally, the overall system will be tested as to whether or not the program

can be use in varies condition and system environment.

 17

3.4 Gantt Chart

The following is the Gantt chart of the process to complete this project.

Table 3.1: Gantt Chart

Week Task

Month

1 2 3 4 5

August Literature review Write the
proposal

September Hand out
proposal

on 5th
September

Learning the concepts of parallel progrmming

and Java Source code

October

November

December

January

February

o Design the software system architecture
o Writing and compiling the program
o Improve the simulation results
o Finalize the software system
o Implement the user interface

March

Write the FYP thesis

Hand out
the FYP

thesis draft
on 27th
March

-

April
-

Viva

Finalize the
final draft

of FYP thesis
May Finalize the

final draft of
FYP thesis

Hand out
Final Draft of

FYP thesis
before 12th

May

-

 18

Chapter 4

IMPLEMENTATION OF PARALLEL PROGRAMMING

WITH DISTRIBUTED SHARED MEMORY

4.1. Introduction

This project is to design and implement a system that uses the concepts of

parallel computation to compute the matrix multiplication problem which needs

complex iteration computation. The design will be concerntrate on the

comparison of the computation speed between the parallel computation and serial

computation techniques. The goal is to get a faster computaion speed using the

parallel computation techniques.

This chapter will outline all the implementations of parallel programming

with distributed shared memory (DSM) include the overview of implementation

of DSM, overview of the application of parallel programming with DSM in

matrix multiplication, software design architecture, implementation of the matrix

multiplication system and the results of the matrix multiplication.

4.2. Overview of implementation of Distributed Shared Memory

4.2.1. Distributed Shared Memory

From a programming viewpoint, ditributed shared memory (DSM) approach

is where the memory is grouped together and sharable between the processor. In

the software means approach, it can be used with ease on existing cluster a little

or no cost except for the effort of installing the software, although the

performance of software DSM will generally be inferior to using explicit

message-passing on the same cluster.

Distributed shared memory is the designation for making a group of

interconnected computers, each with its own memory, appear as though the

physically distributed memory is a single memory with a single address space.

Once distributed shared memory is achieved, any memory location can be

accessed by any of the processor whether or not the memory resides locally, and

normal shared memory memory programming techniques can be used.

 19

In a DSM system implemented on a cluster, message are sent between

computers to move data between them, but this message-passing is hidden from

the user. The user does not have to specify the message explicitly in the program.

Simply using the appropriate shared memory constructs or routines to access

shared data will instigate the necessary message-passing. It will be up to the

underlying DSM system to decide what messages to send and whether to

replicate data or to actually move it from one computer to another [2].

4.2.2. Implementing Distributed Shared Memory

In the software approach, no hardware changes are made to the cluster and

everything has to be done by software routines. Usually, a software layer is

added between the operating system and the application. The kernel of the

operating system may or may not be modified, depending upon the

implementation. The software layer can be:

• Page based

• Shared variable based

• Object based

In the page-based approach, the system’s existing virtual memory is used to

instigate movement of data between computers, which occurs when the paged

referenced does not reside locally. Major disadvantages of the page-based

approach come from the fact that the unit of data being moved is a complete page.

This lead to longer messages than are necessary. Also, false sharing effect appear

at the page level and may be even more significant than at the cache level

because of the large size of the page. Hence, page-based systems may not be very

portable, sice thay are generally tied to particular virtual memory hardware and

software.

In the shared-variable approach, only variables that are declared as shared

are transferred, and this is done on demand. The paging mechanism is not to

cause the transfer. Instead, software routines, called by the programmer directly

or indirectly, perform the actions.

In the object-based approach, the shared data are embodied in object which

include data items and the only procedures (methods) that may be used to access

this data. In other aspects, it is the similar to the shared-variable approach and

 20

can be regarded as an extention of this approach. It is relatively easy to

implement using an object-based language such as C++ or Java and has the

advantage over the shared-variable approach of providing an object-oriented

discipline [2].

The software distributed shared memory system that being used in this

research is implemented by using Java programming language with the object-

based approach. The uses of this system will be discuss in another section in this

chapter.

4.3. Overview of the Application of Parallel Programming with DSM in

Matrix Multiplication

4.3.1. Review of Matrices

The underlying basis for many scientific problems is the matrix. A matrix is

a two-dimensional array of numbers (or variables representing numbers). An

nm× matrix A is shown in Figure 4.1. Thisstructure will be familiar from

sequential programming as a two-dimensional array, and an array would typically

be used to stored a matrix [1].

A =

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

−−−−−−

−−−−−−

−−

−−

1,12,11,10,1

1,22,21,20,2

1,1,11,10,1

1,02,01,00,0

2

nmnmmm

nmnmmm

nn

nn

aaaa

aaaa

aaaa

aaaa

�

�

����

�

�

Figure 4.1: An nm× matrix

Column

Row

 21

4.3.1.1. Matrix Addition

Matrix addition simply involves adding corresponding elements of each

matrix to form the result matrix. Given the elements of A as ai,j and the elements

of B as bi,j, each element of C is computed as

)0,0(
,,,

mjni

bac jijiji

<≤<≤

+=
 (4.1)

4.3.1.2. Matrix Multiplication

Multiplication of teo matrices, A and B, produces the matrix C whose

elements,)0,0(, mjnic ji <≤<≤ , are computed as follows:

�
−

=

=
1

0
,,, ,

l

k
jkjiji bac (4.2)

Where A is an ln× matrix and B is an ml × matrix. Each element of the ith row of

A is multiplied by an element of the jth column of B and the products summed

together to obtain the value of the element in the ith row and jth column of C.

The number of columns in A must be the same as the number of rows in B, but

otherwise can be of different sizes. Matrices can also be multiplied by constants

(all elements multiplied by the same constant) [1].

4.3.2. Implementing Matrix Multiplication

The implimentation of matrix multiplication can be done in two different

way, which is in sequential and in parallel.

4.3.2.1. Sequential Matrix Multiplication

For convenience, let us assume throughout that the matrices are square (nn×

Matrices). From the previous definition of matrix multiplication (4.2), the

sequential way to compute A×B could be simply write as the code in Figure 4.2.

 22

for (i = 0; i < n; i++)

 for (j = 0; j < n; j++) {

 c[i][j] = 0;

 for (k = 0; k < n; k++)

 c[i][j] = c[i][j] + a [i][k] * b[k][j];

 }

Figure 4.2: Code of sequential matrix multiplication

This algorithm requires n3 multiplications and n3 additions, leading to a

sequential time complexity of O(n3). For computational efficiency, a temporary

variable, say sum, could be substituded for c[i][j] so that an address

calculation is not specified within each iteration of the inner ��� loop [1].

4.3.2.2. Parallel Matrix Multiplication

Parallel matrix multiplication is usually based upon the direct sequential

matrix multiplication algorithm. Even a superficial look at the sequential code

reveals that the computation in each iteration of two outer loops is not dependent

upon any other iteration and each instance of the inner loop could be executed in

parallel. Hence, with n processors (and nn× matrices), a paralleltime complexity

of O(n2) can be expected.

Usually, we want to use far fewer than n processor with nn× matrices

because of the size of n. Then each processor operates upon a group of data

points (data partitioning). Partitioning can be done very easily with matrix

multiplication. Each matrix can be divided into blocks of elements called

submatrices. These submatrices can be manipulated as if there were single

matrix elements [1].

4.3.3. Recursive Implementation

The block matrix multiplication algorithm suggests a recursive divide-and-

conquer solution. The method has significant potential for parallel

implementations, especially shared memory implementations.

First, consider two nn× matrices, A and B, where n is a power of 2. Each

matrix is divided to four square submatrices, as shown in Figure 4.3.

 23

�
�
�
�

�

�

�
�
�
�

�

�

×
�
�
�
�

�

�

�
�
�
�

�

�

3,32,31,30,3

3,22,21,20,2

3,12,11,10,1

3,02,01,00,0

3,32,31,30,3

3,22,21,20,2

3,12,11,10,1

3,02,01,00,0

bbbb

bbbb

bbbb

bbbb

aaaa

aaaa

aaaa

aaaa

(a) Matrices

0,0

1,33,11,22,11,11,11,00,10,33,10,22,10,11,10,00,1

1,33,01,22,01,11,01,00,00,33,00,22,00,11,00,00,0

1,33,11,22,10,33,10,22,1

1,33,01,22,00,33,00,22,0

1,11,11,00,10,11,10,00,1

1,11,01,00,00,11,00,00,0

1,30,3

1,20,2

3,12,1

3,02,0

1,10,1

1,00,0

1,10,1

1,00,0

0,11,00,00,0

C

babababababababa

babababababababa

babababa

babababa

babababa

babababa

bb

bb

aa

aa

bb

bb

aa

aa

BABA

=

�
�

�
�
�

�

++++++
++++++

=

�
�

�
�
�

�

++
++

+�
�

�
�
�

�

++
++

=

�
�

�
�
�

�
×�
�

�
�
�

�
+�

�

�
�
�

�
×�
�

�
�
�

�

(b) Multiplying 0,00,0 BA × to obtain 0,0C

Figure 4.3: Submatrix multiplication

Suppose the submatrices of A are labeled App, Apq, Aqp and Aqq and the

submatrices of B are labeled Bpp, Bpq, Bqp and Bqq (p and q identifying the row

and column positions). The final answer requires eight pairs of submatrices to be

multiplied, App ×Bpp, Apq × Bqp, App × Bpq, Apq × Bqq, Aqp × Bpp, Aqq × Bqp, Aqp × Bpq

and Aqq ×Bqq, and pairs of results to be added, as shown in Figure 4.4. The same

algorithm could do each submatrix multiplication, by decomposing each

submatrix into four sub-submatrices, and so on.

Each of the eight recursive multiplication can be performed simultaneously

by separate processors. More processors can be assigned after further recursive

calls. Genarally, the number of processors needs to be a power of 4 if each

processor is to be given one task of the tasks created by the recursive calls. The

level of recursion can be limited by stopping not when the number of elements on

each row and column of each submatrix is 1, but at some higher number dictated

by the number of processor available. With four processors, it may be better to

stop the recusion at the first level, because any further division of the problems

still requires the tasks to be mapped onto these processors [1].

 24

Figure 4.4: Submatrix multiplication and summation

A very advantageous aspect of the method is that at each recursion, the data

being passed is edused and localized. This is ideal for the best performance of a

multiprocessor system with cache memory. The method is especially suitable for

shared memory systems.

4.4. Software Design Architecture

4.4.1. Introduction

The software design architecture of the Matrix Multiplication using Parallel

Programming with DSM is by the uses of Java programming language with

OOAD concepts and UML method.

4.4.2. Java and OOAD

Java is a high level language that supports OOAD (object oriented analysis

and design) concept. By using OOAD concept, the system is viewed as a

collection of interacting objects. Objects are instances of class and communicate

by exchanging methods calls. OOAD concept is easily map to real world

concepts (i.e. objects or classes). More over most new generations programming

language are object oriented based. So it is based on this for the design in this

project.

App Apq

Aqp Aqq

Bpp Bpq

Bqp Bqq

P0 P1 P2 P3

P4 P5 P6 P7

 P0+P1

 Cpp

 P2+P3

 Cpq

 P4+P5

 Cqp

 P6+P7

 Cqq

	Parallel programming with distributed shared memory_Lee Pau Hua_E3_2006_NI
	THESIS 71105

