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PROPORTIONAL-DERIVATIVE LINEAR QUADRATIC REGULATOR 

CONTROLLER DESIGN FOR IMPROVED DIRECTIONAL AND LATERAL 

MOTION CONTROL OF UNMANNED AERIAL VEHICLES 

 

ABSTRACT 

 

This study investigates the directional and lateral motion control of unmanned 

aerial vehicles by controlling the sideslip angle through a simulation in 

MATLAB/Simulink. The linear model of a mini unmanned aerial vehicle, Ultra Stick 

25e is applied to controllers to explicate the lateral-directional motion of the unmanned 

aerial vehicle. Directional and lateral motion control of an unmanned aerial vehicle is 

very crucial especially when the unmanned aerial vehicle performs any maneuver. These 

maneuvers usually performed when the unmanned aerial vehicle is avoiding any flying 

obstacles or in tasks that require complex maneuvers. It is crucial for an unmanned aerial 

vehicle to have the ideal performance to achieve the desired response instantly with 100% 

precision especially when the unmanned aerial vehicle is avoiding flying obstacles. 

However, currently available controllers show a delay in the response time which need 

further improvements. Therefore, a proportional-derivative linear quadratic regulator 

controller is developed and compared with a proportional-integral-derivative controller, 

a linear quadratic regulator controller, and a proportional linear quadratic regulator 

controller. The flight condition of the mini unmanned aerial vehicle model was set at 

forward velocity, u=17m/s, pitch angle, θ= 0.0217rad, elevator deflection angle, η = 

0.091rad, throttle angle, τ = 0.559rad, aileron and rudder deflections of ξ= 0rad, ζ= 0rad 

respectively, and altitude of 120m. The proportional-integral-derivative controller, linear 
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quadratic regulator controller, proportional linear quadratic regulator controller, and 

proportional-derivative linear quadratic regulator controller are simulated in 

MATLAB/Simulink and compared with the results in terms of rise time, settling time, 

overshoot, steady-state error and root mean square error. The tuning of each controller 

makes sure every controller performs at its optimized state which gives the best 

performance for each controller. The proportional-derivative linear quadratic regulator 

controller enhances the response of the system by reducing the settling time by more than 

74% compared with other controllers. The rise time and steady-state error are improved 

by more than 50% whereas the root mean square error is improved by more than 6% and 

having the overshoot at a reasonable value. 
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KONTROLER PROPORSIONAL-DERIVATIF LINEAR KUADRATIK 

REGULATOR BAGI MENINGKATKAN KAWALAN PERGERAKAN 

BERARAH AND SISI KENDERAAN UDARA TANPA PEMANDU 

ABSTRAK 

 

Kajian ini menyiasat kawalan pergerakan berarah dan sisi kenderaan udara tanpa 

pemandu melalui simulasi dalam MATLAB / Simulink. Model linear kenderaan udara 

tanpa pemandu mini, Ultra Stick 25e digunakan oleh kontroler bagi mengutarakan usul 

sisi-arah kenderaan udara tanpa pemandu. Arah dan sisi kawalan pergerakan kenderaan 

udara tanpa pemandu adalah sangat penting terutamanya apabila kenderaan udara tanpa 

pemandu melaksanakan apa-apa manuver. Manuver-manuver ini biasanya dilakukan 

apabila kenderaan udara tanpa pemandu cuba mengelakkan sebarang halangan terbang 

atau dalam tugas-tugas yang memerlukan gerakan kompleks. Hal ini menjadi penting 

untuk kenderaan udara tanpa pemandu mempunyai prestasi yang ideal bagi mencapai 

output yang dikehendaki dengan serta-merta dan 100% ketepatan terutamanya apabila 

kenderaan udara tanpa pemandu sedang mengelakkan halangan terbang. Walau 

bagaimanapun, kontroler yang ada sekarang menunjukkan kelewatan dalam masa tindak 

balas yang memerlukan penambahbaikan. Jadi, kontroler proporsional-derivatif linear 

kuadratik regulator dikenalkan and disbanding dengan kontroler proporsional-integral-

derivatif, kontroler linear kuadratik regulator, dan kontroler proporsional linear kuadratik 

regulator. Keadaan penerbangan model kenderaan udara tanpa pemandu mini telah 

ditetapkan pada halaju hadapan, u=17m/s, sudut padang, θ= 0.0217rad, pesongan sudut 

elevator, η = 0.091rad, sudut pendikit, τ = 0.559rad, pesongan aileron, ξ= 0rad, pesongan 

kemudi, ζ= 0rad, dan ketinggian dalam 120m. Kontroler proporsional-integral-derivatif, 

kontroler linear kuadratik regulator, kontroler proporsional linear kuadratik regulator, 
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dan kontroler proporsional-derivatif linear kuadratik regulator disimulasi dalam 

MATLAB / Simulink dan dibandingkan dengan keputusan dengan  ‘rise time’, ‘settling 

time’, ‘overshoot’, ‘steady-state error’ dan ‘root mean square error’. Penalaan setiap 

kontroler memastikan setiap kontroler mampu mencapai tahap yang dioptimumkan 

untuk memberik prestasi yang terbaik bagi setiap kontroler. Kontroler proporsional-

derivatif linear kuadratik regulator meningkatkan tindak balas sistem dengan 

mengurangkan ‘settling time’ dengan lebih daripada 74% berbanding dengan kontroler-

kontroler lain. ‘Rise time’ dan ‘steady-state error’ telah ditambahbaik dengan lebih 

daripada 50% manakala ‘root mean square error’ telah ditambahbaik dengan lebih 

daripada 6% and kontroler mempunyai ‘overshoot’ dengan nilai yang munasabah. 
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CHAPTER 1 

INTRODUCTION 

 

This chapter presents the problem faced in controlling the motion of Unmanned 

Aerial Vehicle (UAV) during its mission. The motion control of UAV is so important 

that it directly affects the success of a mission conducted. Poor motion control of UAV 

results in crashing of the UAV in mid-air, causing the failure of the mission. Therefore, 

controllers are used to improve the motion control of UAV and the success rate of a 

mission. In this thesis, a combination of Proportional-Derivative-Integral (PID) 

controller and Linear quadratic regulator (LQR) controller which is the Proportional-

Derivative Linear Quadratic Regulator (PD-LQR) controller is introduced to improve the 

motion control of UAV. 

1.1 Unmanned Aerial Vehicle (UAV) 

UAV is an aircraft without a pilot aboard. It was originally implemented for 

military purpose to reduce risk and casualties of pilots in operations, but its involvement 

in civilian applications has grown rapidly recently. The civilian applications such as 

search and rescue (Półka & Kuziora, 2017), surveillance and reconnaissance, data 

collection and natural disaster response operations (Silva, De Mello & GOUVÊA, 2017) 

showed UAVs are widely been used. The UAV developed so rapidly due to its capability 

in reducing risk at low-cost. The presence of UAV benefits human in many ways other 

than reducing casualties in performing difficult tasks, but also improving the efficiency 

of a mission without requiring a large number of workforces. For example, the use of 

drone mapping improves the time efficiency compared to manual mapping which is way 

more significant when applying in the large test area (Eva, 2016). 
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1.2 UAV Motion Control 

The UAV motion control can be separated into two groups, longitudinal motion 

control and lateral-directional motion control. The longitudinal motion control of UAV 

is responsible for controlling the pitching movement of the UAV whereas the lateral-

directional motion control is to control the yawing and rolling movement of the UAV. In 

this study, the directional and lateral motion control of UAV will be focused on.  

Directional and lateral motion control of UAV is very crucial especially when the 

UAV performs any maneuver. The directional and lateral stability ensure the UAV being 

stable during rolling or banking. These maneuvers usually performed when the UAV is 

avoiding any flying obstacles or in tasks that require complex maneuvers. Hence, the 

directional and lateral motion control always is an interesting study field because most 

UAV will not just be spending the whole time in longitudinal motion. Studies showed 

the design of directional and lateral controller used to control the directional and lateral 

motion of UAV (Swarnkar & Kothari, 2016), (Triputra et al., 2015). The studies used 

complete coupled six degrees of freedom model to simulate the motion control of UAV 

and showed the satisfactory performance of the overall architecture.  

Sideslip angle is one of the state variables in the lateral state-space dynamics of 

UAV. In steady level flight, this angle must be controlled to ensure the lateral stability 

of the UAV. The large asymmetric aerodynamic loads induced on the fuselage of UAV 

when the UAV is at a high angle of attack produces side force and yawing moment. The 

UAV will eventually loss of control due to the directional and lateral instability caused 

by the asymmetric aerodynamic loads. This problem can be solved by controlling the 

sideslip angle to reduce the side force and yawing moment. 
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1.3 Problem Encountered in Existing Controllers 

The ideal performance of a UAV is to have an instant response over the pilot’s 

command with 100% precision. However, in real case, the communication link between 

the UAV and the ground control existing time delay and errors which prevent the pilot 

to have full and precise real-time motion control on UAV. Therefore, computational 

algorithms, such as PID, LQR, fuzzy logic, and neural network, have been studied to aid 

in stabilizing the UAV (Liu et al., 2017). PID and LQR controllers are widely used in 

controlling the motion of UAV while the combination of both controllers is less 

implemented. Since PD-LQR controller showed an overall improvement in longitudinal 

motion control of UAV, therefore the same controller is predicted to have same 

improvement in directional and lateral motion control of UAV. 

1.4 Objective 

The objectives of the project are: 

i. To improve the directional and lateral motion control of UAV in controlling the 

sideslip angle using PD-LQR controller by reducing the rise time, settling time, 

overshoot, steady-state error and RMSE.  

ii. To investigate and compare the performance PID controller, LQR controller, P-

LQR controller and PD-LQR controller in terms of their step response 

characteristics.  
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CHAPTER 2 

LITERATURE REVIEW 

 

 This chapter presents the review of literature relates to the motion control of UAV 

using various control algorithms. Some literature shows the improvement in the motion 

control of UAV on a large scale. 

2.1 UAV motion control using PID controller 

PID controller is a commonly used controller in researching on UAV stability 

control (Haoqin et al., 2015). This controller is good to enhance the response times of 

systems with first- or second-order characteristics. The PID controller is popular because 

its simple structure can be easily applied with sufficient performance. The fault-tolerant 

control of fixed-wing UAV in the presence of actuator failure has been investigated. The 

inclusion of a PID control architecture in the longitudinal and lateral control system gives 

the advantage to detect which control surface has failed and redistribute the required 

control effort and the effectiveness of the control methodology is guaranteed (Pedro & 

Tshabalala, 2017).  

2.2 UAV motion control using LQR controller 

LQR controller is known for minimizing cost function, which the LQR algorithm 

reducing the amount of time for control system engineer to optimize the controller. A 

Study has been done on integral LQR controller for inner control loop design of a fixed-

wing Micro Aerial Vehicle (MAV). The adding integral action to the LQR inner loop 

controller in traditional PID controller displays a better dynamic performance in terms 

of transition time and speed overshoot and stronger robustness of LQR control 

methodology than that of traditional PID controller (Anjali et al., 2016). A control system 
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is designed on the (Lapan Surveillance UAV-05) LSU-05 to fly steadily using LQR 

controller. Based on LQR controller, the obtained transient response for longitudinal 

motion, delay time, td = 0.221s, rise time, tr = 0.419s, settling time, ts = 0.719s, peak 

time, tp = 1.359s, and maximum overshoot, Mp = 0%. In other hand, transient response 

for lateral-directional motion showed that td = 0.186s, tr = 0.515s, ts = 0.87s, tp = 2.02s, 

and Mp = 0% (Purnawan & Purwanto, 2017). Another study has investigated on a 

conventional integral LQR controller for the lateral-directional dynamics. Simulations 

show good performances of the overall architecture (Gavilan et al., 2015).  

2.3 Improvement of UAV motion control using P-LQR controller 

 The results in controlling the UAV motion using PID controller and LQR 

controller are good but still can be improved. An improvement has done by combining 

the two control algorithms into one which becomes the P-LQR controller. The behaviour 

of increasing the proportional gain to reduce the response time of the system was 

implemented in the LQR controller. Results show that P-LQR controller has significantly 

improved the response times of the control system by at least 38.55% compared with 

other existing controllers (Kok & Rajendran, 2015). The downside of this controller is 

the increase in overshoot which causes the system more likely to become unstable.  

2.4 Improvement of UAV longitudinal motion control using PD-LQR 

controller 

Research has been done on PD-LQR controller for improved longitudinal motion 

of UAV. PD-LQR controller is the combination of both PID and LQR controllers which 

keeps the original advantage of each controller while improving the results even better. 

The use of PD-LQR controller has improved the overall response of the system by 

reducing settling time by more than 95% compared with PID, LQR and P-LQR 

controllers. It also improves the root mean square error (RMSE) by almost 50% 
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compared with the P-LQR controller and improves rise time by almost 96% with 

reasonable overshoot (Kok et al., 2016). However, the implement of PD-LQR controller 

is not yet proven to be effective for improving directional and lateral motion of UAV 

raised an interest to be found out. 

2.5 Literature Gap 

 There are many kinds of research done in improving the motion control of UAV 

using various type of controller. Among the controllers, the combination of PID 

controller and LQR controller which is PD-LQR controller shows an outstanding result 

in improving the longitudinal motion control of UAV. However, it is still unknown that 

if this new proposed controller can also apply in the directional and lateral motion control 

of UAV. Study shows that LQR controller gives a good result in terms of the time 

response in lateral-directional motion control of UAV, but it is still not considered as 

instant response which improvement is still available. Since the PD-LQR controller 

shows the improvement in longitudinal motion control of UAV by reducing the settling 

time more than 95%, it is proposed here to improve the directional and lateral motion of 

UAV. 
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CHAPTER 3 

METHODOLOGY 

 

 This chapter presents the mathematical model of UAV lateral-directional 

dynamics used in the designing of the control algorithms. The mathematical model 

acquired in state-space form and transfer function form. Besides, the development and 

the tuning process of each control algorithm will be discussed in detail with figures. 

3.1 Mathematical Modelling 

 A mini-UAV, Ultra Stick 25e is chosen in this investigation on lateral-directional 

motion control. The Ultra Stick 25e is fixed-wing, radio controlled and equipped with 

conventional elevator, aileron and rudder as control surfaces. The UAV is assumed to be 

symmetrical where the effects of the cross-coupling are assumed negligible on the yaw-

roll motion (Aliyu et al., 2016). The physical characteristics of the UAV are listed in 

Table 3.1. 

Table 3.1: UAV parameters 

Parameter Description Value 

𝐴 Wing Reference Area 0.31 𝑚2 

𝑏 Wing Span 1.27 𝑚 

𝑐 ̅ Wing Chord 0.25 𝑚 

𝑚 Gross Weight 1.9 𝑘𝑔 

𝑚𝐶 Mass of Payload 0.25 𝑘𝑔 

𝑚𝑇 Take-off Mass 2.15 𝑘𝑔 

𝐼𝑥 Roll Moment of Inertia 0.07151 𝑘𝑔.𝑚2 

𝐼𝑦 Pitch Moment of Inertia 0.08636 𝑘𝑔.𝑚2 

𝐼𝑧 Yaw Moment of Inertia 0.15364 𝑘𝑔.𝑚2 

𝐼𝑥𝑧 Product of Inertia 0.014 𝑘𝑔.𝑚2 
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 The UAV is linearized at altitude of 120m and forward velocity, 𝑢 = 17𝑚/𝑠, 

pitch angle, 𝜃 = 0.0217𝑟𝑎𝑑, elevator deflection angle, ƞ = 0.091𝑟𝑎𝑑, throttle angle, 

𝜏 = 0.559𝑟𝑎𝑑 , aileron and rudder deflections of 𝜉 = 0𝑟𝑎𝑑 , 𝜁 = 0𝑟𝑎𝑑  respectively. 

Two assumptions are made to decouple the linear model. The assumptions are: 

• The conventional control surfaces in the UAV design will not give significant 

cross-coupling control between the lateral-directional and longitudinal modes. 

• The inertia cross coupling in 𝑥𝑦 (lateral) and 𝑥𝑧 (longitudinal) planes results in 

minimal cross-coupling between lateral and longitudinal modes as the UAV is 

symmetrical about the 𝑥𝑧 plane. 

 

Figure 3.1: Perturbed lateral-directional dynamics of UAV (Aliyu et al., 2016). 

Figure 3.1 shows the perturbed lateral-directional dynamics of UAV. The state-space 

equation is modified to incorporate sideslip angle, 𝛽. The equation is obtained through 

the linearization and expressed in following: 
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[
 
 
 
𝛽̇
𝑝̇
𝑟̇
𝜙̇]
 
 
 
=

[
 
 
 

𝑦𝑣 𝑦𝑝 𝑉0⁄ 𝑦𝑟 𝑉0⁄ 𝑦𝜙 𝑉0⁄

𝑙𝑣𝑉0 𝑙𝑝 𝑙𝑟 𝑙𝜙
𝑛𝑣𝑉0 𝑛𝑝 𝑛𝑟 𝑛𝜙

0 1 0 0 ]
 
 
 

[

𝛽
𝑝
𝑟
𝜙

] + [

𝑦𝜉 𝑉0⁄ 𝑦𝜁 𝑉0⁄

𝑙𝜉 𝑙𝜁
𝑛𝜉 𝑛𝜁

0 0

] [
𝜉
𝜁
] (1) 

Where 𝛽 is the sideslip angle, 𝑝 is the roll rate, 𝑟 is the yaw rate, 𝜙 is the roll angle, 

𝑙𝑣, 𝑙𝑝, 𝑙𝑟 and 𝑙𝜙 are the rolling moments with respect to the state variables, 𝑛𝑣, 𝑛𝑝, 

𝑛𝑟 and 𝑛𝜙are the yawing moment with respect to the state variables, 𝑦𝑣, 𝑦𝑝, 𝑦𝑟 and 

𝑦𝜙 are the dimensionless stability aerodynamic derivatives with respect to the state 

variables, 𝑦𝜉  and 𝑦𝜁 are the dimensionless control aerodynamic derivatives, 𝜉 and 𝜉 

are the aileron and rudder  input control signal. The state-space model in this study 

is: 

𝑥̇ = [

−0.86 0.93 −16.76 9.69
−2.76 −15.83 3.31 0
1.67 0.51 −2.73 0
0 1 0.07 0

] 𝑥 + [

0.05 5.12
−154 −4.93
11.30 −80.70

0 0

] [
𝜉
𝜁
] (2) 

𝑦 = [0.59 0 0 0] [

𝛽
𝑝
𝑟
𝜙

]    (3) 

The transfer functions of the lateral-directional motion are obtained using the 

MATLAB command ss2tf. There are two transfer functions where equation (4) shows 

the inputs from aileron and equation (5) shows the inputs from rudder. 

𝐺(𝑠)𝛽𝜉
=

0.0295𝑠3−195.6912𝑠2−2077.0397𝑠−2149.5911

𝑠4+19.42𝑠3+88.0454𝑠2+482.6698𝑠+2.4720
  (4) 

𝐺(𝑠)𝛽𝜁
=

3.0208𝑠3+851.3548𝑠2+12568.1195𝑠−2116.3308

𝑠4+19.42𝑠3+88.0454𝑠2+482.6698𝑠+2.4720
  (5) 
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3.3 Performance Indices 

The performance indices must be determined to make sure that all parameters 

obtained by the newly designed controller algorithm are usable. To do so, the response 

of the system should have the overshoot with less than 10% and the control precision 

should be lower than ±1 %.  Moreover, the ideal performance for rise time, settling time, 

overshoot, steady-state error, and root mean square error (RMSE) should be close to zero 

as much as possible. Since the model is a mini UAV, the expected level of precision 

should be ±0.001s (Kocer et al., 2019).  

3.2 Design of Controllers 

 There are total four control algorithms developed in this study which are PID, 

LQR, P-LQR and PD-LQR to control the lateral-directional motion of the UAV. 

Simulink is used in designing control algorithms (Martyanov et al.,2015). 

3.2.1 PID Controller 

 PID controller is a commonly used controller in researching on UAV stability 

control. This controller is good to enhance the response times of systems with first- or 

second-order characteristics. It involves three gain values which are proportional, 

derivative and integral. The equation of PID controller is expressed as below (Abdelhay 

& Zakriti, 2019): 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾 ∫ 𝑒(𝜏)𝑑𝜏 + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0
   (6) 

The design of the PID controller circuit involves the transfer function of the lateral-

directional motion. The overall flow of a PID controller is shown in Figure 3.2. 
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Figure 3.2: The flow of PID controller. 

3.2.2 LQR Controller 

LQR is an optimal control technique applied in a closed-loop system. It provides 

practical feedback gains to achieve the best performance. The objective of LQR is to 

design a state feedback controller K that control the difference between the output of the 

system with the desired value. The system equation can be expressed as follow (Kudinov 

et al., 2019): 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢     (7) 

The system comes with a cost function as 

𝐽 = ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡
∞

0
    (8) 

Where Q and R are weight matrices. Q is positive definite or positive semi-definite 

symmetry matrix whereas R is positive definite symmetry matrix. The cost function J 

need to be minimized to obtain an optimal control signal. A large Q required a low system 

state 𝑥(𝑡) to keep the cost function J small while a large R required a low control input 

𝑢(𝑡) to keep the cost function J small (Vinodh & Jerome, 2013). The optimum control 

vector for the state space form is given by 
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𝑢 = −𝐾𝑥     (9) 

Where K can be obtained through 

𝐾 = 𝑅−1𝐵𝑇𝑃     (10) 

P is found by solving the continuous time Algebraic Riccati Equation (ARE) (Gandhi et 

al., 2017) and substituted in equation (10). 

𝐴𝑇𝑃 + 𝑃𝐴 + 𝑄 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 = 0   (11) 

The design of LQR controller requires the state matrices from equation (2) and (3), the 

flow of the controller is shown is Figure 3.3. 

 

Figure 3.3: The flow of LQR controller. 

3.2.3 P-LQR Controller 

 The idea of combining the PID controller and LQR controller to have a new 

control algorithm that keeps the advantages from both controllers is introduced which is 

P-LQR controller. The LQR controller has given the optimum control to the system is 

now added with another closed loop as negative feedback in the LQR controller, making 

the system response as additional system feedback.  The closed loop will function as a 
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proportional controller when a gain parameter is added. However, another gain parameter 

is needed to balance the desired response due to the additional system feedback. Since 

the controller is modified by adding only proportional gain, therefore the P stands for 

proportional in the P-LQR controller (Kok & Rajendran, 2015). The overall flow of the 

P-LQR controller is shown in Figure 3.4. 

 

Figure 3.4: The flow of P-LQR controller. 

3.2.4 PD-LQR Controller 

 The addition of proportional gain in the LQR controller did increase the response 

speed of the controller, but it also brings an undesired problem to the controller which is 

the increase of the overshoot. This increase in overshoot will make the controller become 

more unstable than before. Therefore, a derivative controller element is added in P-LQR 

controller to overcome the overshoot problem and make the response smoother. With the 

addition of the derivative gain in the controller, the controller is now named as PD-LQR 

controller where the D stands for derivative (Kok et al., 2016). The overall flow of PD-

LQR controller is shown in Figure 3.5. 
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Figure 3.5: The flow of PD-LQR controller. 

3.3 Tuning of Controllers 

 A controller proves no use if it is not tuned to get its optimal gain value for the 

system. Different controllers have different tuning method to obtain the optimal gain. In 

the tuning of these four controllers, MATLAB, Simulink and Microsoft Excel are being 

used. 

3.3.1 PID Controller 

 The tuning of PID controller is much simpler with the aid from MATLAB. The 

built-in PID Tuner in the MATLAB requires only the transfer function of the system and 

the software will autotune the transfer function with the selected combination of 

proportional control, integral control and derivative control. Based on the autotune result, 

the optimal gain for the PID controller is shown in Table 3.2. 

Table 3.2: Optimal gain values for PID controller 

Transfer Function Aileron Input Rudder Input 

Kp -0.0199 -0.00307 

Ki -0.0002 -0.00001 

Kd 0 0 
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A PID controller is developed in Simulink to verify the autotune result. The step-response 

characteristics of the controller are obtained using the stepinfo command in MATLAB 

and the steady state error of the controller is calculated in MATLAB as well. 

3.3.2 LQR Controller 

 The tuning of LQR is to adjust the suitable weight matrices Q and R to get the 

optimal gain matrix K (Nagarkar et al., 2018). The state matrices A, B, C and D can be 

obtained from the state-space model of lateral-directional dynamics such that: 

 

𝐴 = [

−0.86 0.93 −16.76 9.69
−2.76 −15.83 3.31 0
1.67 0.51 −2.73 0
0 1 0.07 0

]   (12) 

𝐵 = [

0.05 5.12
−154 −4.93
11.30 −80.70

0 0

]     (13) 

𝐶 = [0.59 0 0 0]     (14) 

𝐷 = 0        (15) 

 

To find the optimal feedback gain matrix K, P must be found in the ARE as in equation 

(11). Then, substitute value P into equation (10) to obtain the optimal feedback gain 

matrix K. The optimal feedback gain matrix K can be obtained using the MATLAB 

command lqr(A,B,Q,R,N). Table 3.3 shows the value of weight matrices and the optimal 

feedback gain matrix. 
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Table 3.3: Value of weight matrices and the optimal feedback gain matrix 

Matrices Value 

Q [

0.245 0 0 0
0 1 0 0
0 0 0.08 0
0 0 0 500

] 

R [
1 0
0 1

] 

K [
−0.0491 −1.0359 −0.0164 −22.1757
0.4505 −0.0740 −0.4636 −2.9519

] 

 

3.3.3 P-LQR Controller 

 The P-LQR controller’s performance varies when the percentage of response 

added as negative feedback. The proportional gain value is varied between 0 to 1 as the 

increment of the percentage of response added as negative feedback from 0% to 100%. 

Figure 3.6, Figure 3.9 and Figure 3.10 show the rise time, RMSE and steady-state error 

decrease as the percentage of response added as negative feedback increases and reach 

minimum at 100%. Figure 3.7 shows the settling time increases from 0% to 10% increase 

in the percentage of response added as negative feedback, then decreases as the 

percentage of response added as negative feedback increases. Figure 3.8 shows the 

overshoot of the system response increases almost linearly as the percentage of response 

added as negative feedback increases. 
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Figure 3.6: Change in rise time with 

gain variation in P-LQR controller 

 

 

Figure 3.7: Change in settling time with 

gain variation in P-LQR controller 

 

Figure 3.8: Change in overshoot with 

gain variation in P-LQR controller 

 

 

Figure 3.9: Change in RMSE with gain 

variation in P-LQR controller 

 

Figure 3.10: Change in steady-state error with gain variation in P-LQR controller 
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Table 3.4: Change in step-response characteristics with gain variation in P-LQR 

controller 

Percentage of  

response 

added (%) 

Rise 

time  

(s) 

Settling 

time  

(s) 

Overshoot 

(%) 
RMSE 

Steady State 

Error 

0 0.093 0.139 1.510 1.179 5.40E-03 

10 0.084 0.196 2.290 1.155 4.90E-03 

20 0.077 0.198 3.120 1.134 4.50E-03 

30 0.072 0.194 3.970 1.115 4.20E-03 

40 0.067 0.188 4.820 1.097 3.90E-03 

50 0.063 0.182 5.660 1.081 3.60E-03 

60 0.059 0.176 6.480 1.067 3.40E-03 

70 0.056 0.170 7.270 1.054 3.20E-03 

80 0.053 0.164 8.040 1.041 3.00E-03 

90 0.051 0.159 8.780 1.028 2.80E-03 

100 0.049 0.154 9.490 1.020 2.70E-03 

 

Table 3.4 shows the change in step-response characteristic of the system with the 

variation in proportional gain value. The set data with 100% of response added as 

negative feedback gives the best performance in overall since it has the smallest rise time, 

RMSE and steady-state error, a good performance in settling time while the overshoot of 

the system is still within 10%. Therefore, the optimal Kp value in P-LQR controller is 1. 

3.3.4 PD-LQR Controller 

 In the previous controller which is P-LQR controller, the increase in proportional 

gain did results in improving the response time of the system but the con is the increase 

in overshoot. A high value of overshoot tends to make the system becomes unstable. 

Therefore, there is a limit in adding the proportional gain value to the P-LQR controller. 

However, this problem can be solved by using the proposed control algorithm which is 

PD-LQR controller. The purpose of derivative gain in this controller is like a booster for 

the system which reduces the overshoot and enables the limit on the proportional gain 

goes higher.  
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Increment of Proportional Gain in PD-LQR 

 The following figures show the increment of proportional gain without any 

derivative gain. Figure 3.11, Figure 3.12, Figure 3.14 and Figure 3.15 show that the rise 

time, settling time, RMSE and steady-state error decrease as the proportional gain 

increases. The results are good since the response time and the system errors have been 

improved a lot, but Figure 3.13 shows the overshoot of the system starts to overwhelm 

as the proportional gain increases. The improvements in the response time and the system 

errors become unpractical since the overshoot is exceeded 10%.  

 

Figure 3.11: Rise time along 

proportional gain 

 

Figure 3.12: Settling time along 

proportional gain 

 

 

Figure 3.13: Overshoot along 

proportional gain 

 

 

Figure 3.14: RMSE along proportional 

gain 
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Figure 3.15: Steady-state error along proportional gain 

Increment of Derivative Gain for Particular Gain in PD-LQR 

 Any proportional gain value can be optimized with a suitable derivative gain 

value. The derivative gain will bring down the overshoot of the system drastically but 

still having a good performance in rise time, settling time, RMSE and steady-state error. 

The limit of the derivative gain in this system is 0.65. The Simulink model cannot solve 

the simulation if the derivative gain goes beyond the limit. Figure 3.18 shows the 

increment of the derivative gain reduces the overshoot to nearly zero which completely 

solved the problem faced in P-LQR controller. Figure 3.16 and Figure 3.19 show the rise 

time and RMSE increase as the derivative gain increases. Therefore, both the parameters 

are not the deciding parameter in determining the best derivative gain for the particular 

proportional gain. Figure 3.17 shows the settling time of the system experienced a 

decreasing gradient and increase gradient as the derivative gain increases. Along the 

increment of the derivative gain, there is a minimum point for the settling time of the 

system which happens at derivative gain of 0.15. The steady-state error of the system 

fluctuates when the derivative gain increases as shown in Figure 3.20. Although the 

steady-state error is fluctuating, the minimum point happens same as where the minimum 

point of the settling time happens which is at a derivative gain of 0.15. Hence, the 
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deciding parameters to determine which derivative gain is the best value for the particular 

proportional gain is the settling time and the steady-state error.  

 

Figure 3.16: Rise time along derivative 

gain when proportional gain = 10 

 

Figure 3.17: Settling time along 

derivative gain when proportional gain 

= 10 

 

 

Figure 3.18: Overshoot along derivative 

gain when proportional gain = 10 

 

 

 

Figure 3.19: RMSE along derivative 

gain when proportional gain = 10

 

Figure 3.20: Steady-state error along derivative gain when proportional gain = 10 

Minimum 
settling time 
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Table 3.5 shows the changes in step-response characteristics with gain variation in PD-

LQR controller at Kp=10. The set data when Kd=0.15 gives the best overall performance 

of the system. Noted that the optimal derivative gain is differed for each proportional 

gain. Therefore, the process in determining the optimal derivative gain is repeated for 

every proportional gain by recording the step-response characteristics of the PD-LQR 

Simulink model in Microsoft Excel, plotting the graph and determining the optimal 

derivative gain for each proportional gain. 

Table 3.5: Change in step-response characteristics with gain variation in PD-LQR 

controller at Kp=10 

Kd 
Rise time  

(s) 

Settling 

time  

(s) 

Overshoot 

(%) 
RMSE 

Steady State 

Error 

0.00 0.016 0.120 28.500 0.775 4.88E-04 

0.05 0.020 0.066 12.308 0.855 4.84E-04 

0.10 0.027 0.069 3.759 0.949 5.02E-04 

0.15 0.035 0.054 0.223 1.046 4.78E-04 

0.20 0.045 0.078 0.006 1.144 5.01E-04 

0.25 0.056 0.100 0.003 1.228 5.09E-04 

0.30 0.067 0.120 0.001 1.311 5.16E-04 

0.35 0.078 0.139 0.000 1.409 5.18E-04 

0.40 0.088 0.158 0.001 1.705 5.18E-04 

0.45 0.098 0.176 0.001 2.180 5.22E-04 

0.50 0.108 0.194 0.002 2.766 5.06E-04 

0.55 0.118 0.212 0.001 3.511 5.03E-04 

0.60 0.128 0.229 0.002 4.669 4.84E-04 

0.65 0.138 0.247 0.001 6.614 4.98E-04 

 

Increment of Proportional Gain with Optimized Derivative Gain in PD-LQR 

 With the optimized derivative gain for each proportional gain, new graphs of the 

step-response characteristics along the proportional gain are plotted. Figure 3.21, Figure 

3.22 and Figure 24 show the rise time, settling time and RMSE have the same trend as 

the proportional gain increases. The parameters decrease exponentially while having the 

minimum point at proportional gain=14. Figure 3.23 shows the overshoot of the system 
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experiences fluctuation between 0% to 2% as the proportional gain increases. Since the 

maximum overshoot is still under 10%, therefore the overshoot is not the deciding 

parameter in determining the optimal proportional gain. The steady-state error of the 

system showed in Figure 3.25 decreases exponentially and almost reaching a constant 

value as the proportional gain increases. Clearly, in determining the optimum 

proportional gain with the optimized derivative gain, the point that having the minimum 

settling time should be considered. The point with the minimum settling time also has 

the minimum rise time, minimum RMSE, low steady-state error and acceptable 

overshoot level. 

 

Figure 3.21: Rise time along 

proportional gain with optimized 

derivative gain 

 

Figure 3.22: Settling time along 

proportional gain with optimized 

derivative gain 

 

 

Figure 3.23: Overshoot along 

proportional gain with optimized 

derivative gain 

 

Figure 3.24: RMSE along proportional 

gain with optimized derivative gain

Minimum 
settling time 



24 
 

 

Figure 3.25: Steady-state error along proportional gain with optimized derivative gain 

The tuning process can be improved by doing more iterations. The flow of the 

tuning process can be summarized in Figure 3.26. In this study, there are total of two 

iterations made in determining the optimum proportional gain. The number of iterations 

is limited due to the manual iteration made by using Microsoft Excel. The improvements 

in determining the derivative gain and proportional will be discussed in Chapter 5.  

 

Figure 3.26: Flowchart for tuning derivative gain and proportional gain 

Step 1

Divides the lowest limit to the highest limit of 
the gain into 5-10 intervals

Step 2

Run the analysis and record the step-response 
characteristics, then obtain the gain with 

minimum settling time

Step 3

Set the gain just before and after the optimum 
gain as new lowest limit and highest limit 

respectively. Divide the gains into 5-10 intervals

Step 4

Repeat step 2 and get the optimum gain with 
more precisely
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