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OBSTACLE AVOIDANCE USING CONVOLUTIONAL NEURAL NETWORK 

FOR DRONE NAVIGATION IN OIL PALM PLANTATION 

 

ABSTRACT 

In Malaysia, oil palm plantation is one of the vital sectors that contribute to the country 

economy. In recent years, drones are widely applied in the precision agriculture due to 

their flexibility and capability. However, one of the challenges in a low-altitude flight 

mission is the ability to avoid the obstacles in order to prevent the drone crashes. Most 

of the previous literature demonstrated the obstacle avoidance systems with active 

sensors which are not applicable on small aerial vehicles due to the cost, weight and 

power consumption constraints. In this research, we present a novel system that enables 

the autonomous navigation of a small drone in the oil palm plantation using a single 

camera only. The system is divided into two main stages: vision-based obstacle detection, 

in which the obstacles in the input images are detected, and motion control, in which the 

avoidance decisions are taken based on the results from the first stage. As the monocular 

vision does not provide depth information, a machine learning model, Faster R-CNN, 

was trained and adapted for the tree trunk detection. Subsequently, the heights of the 

predicted bounding boxes were used to indicate their estimated distances from the drone. 

The detection model performance was validated on the testing images in term of the 

average precision. In the system, the drone is programmed to move forward until the 

detection model detects any closed frontal obstacle. Next, the avoidance motion direction 

is defined by commanding a yawing angle which is corresponded to the x-coordinate in 

the image that indicated the optimum path direction with the widest obstacle-free space. 

We demonstrated the performance of the system by carrying out flight tests in the real 
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oil palm plantation environment in two different locations, where one of them is a new 

place. The results showed that the proposed method was accurate and robust for the drone 

vision-based autonomous navigation in the oil palm plantation.  
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OBSTACLE AVOIDANCE USING CONVOLUTIONAL NEURAL NETWORK 

FOR DRONE NAVIGATION IN OIL PALM PLANTATION 

 

ABSTRAK 

Di Malaysia, pertanaman kelapa sawit merupakan salah satu sektor penting yang 

menyumbang kepada ekonomi negara. Kebelakangan ini, dron digunakan secara meluas 

dalam pertanian ketepatan. Walau bagaimanapun, antara cabaran untuk misi 

penerbangan di ketinggian rendah adalah keupayaan untuk mengelakkan perlanggaran 

daripada halangan untuk mengelakkan kemalangan drone. Kebanyakan sastera terdahulu 

menunjukkan sistem halangan pengelakan dengan sensor aktif yang biasanya tidak 

digunakan dalam kenderaan udara kecil disebabkan oleh kekangan kos, keberatan dan 

penggunaan kuasa. Dalam kajian ini, kami membentangkan satu sistem baru yang 

membolehkan navigasi autonomi sebuah dron kecil di ladang kelapa sawit dengan 

menggunakan kamera monokular sahaja. Sistem ini dibahagikan kepada dua peringkat 

utama: halangan pengesanan berasaskan penglihatan dan kawalan gerakan berdasarkan 

hasil dari peringkat pertama. Oleh sebab penglihatan monokular tidak memberikan 

maklumat kedalaman, antara satu teknik pembelajaran mesin, Faster R-CNN dilatih dan 

disesuaikan untuk pengesanan batang pokok. Selanjutnya, ketinggian kotak perbatasan 

yang diramalkan menganggarkan jarak halangan tersebut dari dron. Model pengesanan 

dinilai berdasarkan purata ketepatan dengan imej yang tidak termasuk dalam kumpulan 

latihan sebelum ini. Dalam sistem ini, drone diprogramkan untuk bergerak ke depan 

sehingga model pengesanan mengesan sebarang halangan frontal yang berhampiran. 

Seterusnya, arah pergerakan elakan ditakrifkan dengan mengarahkan sudut yaw 

berdasarkan koordinat-x yang menunjukkan arah laluan optimum yang mempunyai 
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ruang bebas daripada halangan yang paling lebar. Kami menunjukkan prestasi sistem ini 

dengan melakukan ujian penerbangan dalam persekitaran ladang kelapa sawit sebenar di 

dua lokasi yang berbeza. Antara satu lokasi ialah lokasi yang baru. Keputusan tersebut 

menunjukkan bahawa kaedah yang dicadangkan itu adalah calon yang tepat dan kuat 

untuk navigasi autonomi dron berpandukan penglihatan di sebuah ladang kelapa sawit. 
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CHAPTER 1 

1 INTRODUCTION 

 An unmanned aerial vehicle (UAV), generally known as a drone, is defined as an 

aircraft without a human pilot onboard for the navigation control. A drone is a remotely 

controlled aircraft that is either flown by a human pilot at the ground or navigated 

autonomously by the pre-programmed automation systems. Originally, drones are 

designed to be used in the operations which are conducted in the remote, dull or 

dangerous situations, especially for the military defence purposes. With continuous 

research and developments, nowadays, drones are utilized widely in the military and 

civilian applications, such as military real-time monitoring, resource exploration, civil 

surveillance, cargo transportation and agricultural planning.  

In recent years, drones are started to be applied in precision agricultural (Zhang 

and Kovacs, 2012, Mogili and Deepak, 2018) due to the flexibility and capability of a 

drone compared to the labour dependent techniques. Furthermore, the ground sensing 

and advanced technology of satellite remote sensing (Drusch et al., 2012) that were 

applied in smart plantations previously, are very useful but the operation and equipment 

costs are too high, especially for the small to medium scale enterprises. Hence, the 

implementations of drones with the onboard cameras or sensors become the relatively 

low cost alternatives to the small scale enterprises to perform precision agricultural 

missions without comprising the required performances.  

The drones can be used to collect images and other information from the onboard 

sensors. A mission can be performed efficiently and effectively by processing the data 

obtained from the drones. Using the data gathered and processed, drones can assist in 
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many tasks in the plantations, such as the plantation analysis and planning (Chebrolu et 

al., 2018), plantation surveillance (Herwitz et al., 2004), and the subsequent monitoring 

of fields to ascertain health and growth which include the crop monitoring (Lelong et al., 

2008) and soil sampling analysis (Demattê et al., 2018, Huuskonen and Oksanen, 2018, 

Ivushkin et al., 2018).  

 In Malaysia, agriculture sector, especially the oil palm plantation, is one of the 

important sectors that contribute to the country economy. Malaysia is known as the 

second largest palm oil producer in the world after Indonesia (Alam et al., 2015). With 

the current technology developed, in Malaysia, the drones are utilised in the smart oil 

palm plantations by flying the drone at a high altitude to perform precision agriculture 

missions, such as tree counting and monitoring (Li et al., 2016, Tugi et al., 2015, Chong 

et al., 2017). However, to obtain a high-resolution image from a high altitude in order to 

observe the soil conditions for the health assessments, the drone tends to carry a heavy 

and costly multispectral or hyperspectral camera (Chong et al., 2017) which causes a 

high power consumption as well. The high power consumption of the instruments will 

affect the flight endurance and range of the drone.  

At a low-altitude or near the ground flight, the drone can captures the images at 

a nearer distance to the target objects, such as the soil or crop. Hence, a commercially 

available camera is sufficient to capture clear images for the further data processing and 

analysis. In addition, compared to the applications of the drone at a high altitude, the 

drone in a low-altitude flight can be used to perform more missions, such as crop 

monitoring, and fertiliser spraying with a suitable quantity based on the condition of the 

soil. The applications of drone at a low altitude offer more cost-effective and efficient 

solutions compared to the labour in a vast field. 
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However, the greatest challenge to overcome in a low-altitude flight is the ability 

of the drone to avoid collision from the obstacles in order to prevent the drone crashes. 

Traditionally, the drone navigations are dependent on the pilots which might prone to 

have human errors in the operations. To achieve autonomous navigation, the capability 

of obstacle detection is a significant key in order to identify and feedback the information 

of the surrounding environment to the system. The system will produce a motion 

command based on the environment information to avoid the detected obstacles. This 

reduces the risk of collisions caused by the human operation handling errors.  

 Commonly, the drone obstacle avoidance systems are performed by using the 

active sensing sensors (Fasano et al., 2008), such as LIDAR (Ramasamy et al., 2016), 

inertial sensors, ultrasonic and infrared range finders (Gageik et al., 2015) or the passive 

sensors, such as RGB-D camera (Iacono and Sgorbissa, 2018), stereo camera (Barry et 

al., 2018) or multiple cameras, etc. The cost, weight, and power consumption of these 

instruments become a great constraint to the drone mission. Therefore, a single camera 

is preferable in an obstacle avoidance system as it is light-weight, commercially available, 

and low power consumption. 

 Generally, monocular vision-based obstacle detection methods can be divided 

into two categories: motion-based and knowledge-based methods. Optical flow (Lee et 

al., 2010, Yoo et al., 2011, Eresen et al., 2012) is a typical approach used to detect and 

estimate the depth based on the motion information. The obstacle may be missed due to 

the wrong detection of feature points, or there is no feature point available in the image. 

Since monocular vision does not allow accurate and robust distance geometric 

measurement, often machine learning-based solutions or the approaches which are 

combined with the optical flow methods (Ho et al., 2018) have been proposed.  
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Since Alexnet (Krizhevsky et al., 2012) won ImageNet competition in 2012, 

Convolutional Neural Network (CNN) became the gold standard for image classification. 

Since then, CNN approaches were improved until now they outperform humans in the 

ImageNet challenge (Alom et al., 2018). Lately, CNN has been applied with a great 

success to the detection, segmentation and recognition of objects in images (LeCun et al., 

2015). For instance, CNN approaches were applied in the vehicle detection from aerial 

images (Qu et al., 2017), the medical image detection (Hoo-Chang et al., 2016) and the 

fruit detection from images by Faster Region-based CNN (Faster R-CNN) (Sa et al., 

2016), etc. Thus, CNN is a good option to be trained as a detector in an obstacle 

avoidance system for drone autonomous navigation. 

 Nowadays, there are few models that demonstrated object detections with CNN 

approaches. Deformable Parts Models (DPM) (Felzenszwalb et al., 2010) used the 

sliding window approach (Vedaldi et al., 2009) which the classifier was run at evenly 

spaced locations over the entire image, to detect the presence of the targets in the image. 

To bypass the problem of selecting a huge number of regions when using sliding window 

algorithm, the selective search method (Uijlings et al., 2013) was proposed to extract just 

2000 regions from the image which were used as region proposals in R-CNN model 

(Girshick et al., 2014). The other demonstrated approaches for region proposal were the 

Edgebox (Zitnick and Dollár, 2014) and the grouping superpixels (Rantalankila et al., 

2014).  

 CNN acted as a feature extractor to feed the features into a Support Vector 

Machine (SVM) to classify the presence of the objects within the candidate region 

proposals. However, R-CNN model need a long computational time as it required a 

forward pass of the CNN for every single region proposal in every single image. Hence, 

Spatial Pyramid Pooling networks (SPPnets) (He et al., 2014) were proposed to speed up 
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the R-CNN model by sharing computation with spatial pyramid pooling. However, the 

fine-tuning algorithm proposed in SPPnets cannot update the convolutional layers and 

affect the accuracy. Fast R-CNN model (Girshick, 2015) achieved a higher detection 

quality and shorter test time by introducing the RoI (Region of Interest) Pooling which 

allowed every RoIs to share the forward pass of a CNN for an image. Despite all, the 

slow external region proposals in the models were affecting the test time performances.  

 To overcome the limitations, the Fast R-CNN and Region Proposal Network 

(RPN) were merged in the Faster R-CNN model (Ren et al., 2015) to share the 

computations and use neural networks instead of external region proposal methods to 

propose regions. With the advantage of short test time, the Faster R-CNN model was 

proposed to use for real-time object detections. Next, the evolution of You Only Look 

Once (YOLO) models up to YOLOv3 model (Redmon et al., 2016, Redmon and Farhadi, 

2017, Redmon and Farhadi, 2018) had brought the object detection algorithms to another 

higher performance level by modelling detection as a regression problem. YOLO 

algorithms eliminated the need for the region proposal method and used the entire image 

during the training and testing process. Thus, it implicitly encoded contextual 

information about classes as well as their appearance. However, the accuracy of a single 

shot detector, YOLO, had a lower accuracy compared to the region-based algorithms. 

Furthermore, currently, the open source algorithm of the model is not publicly available 

in the online resources yet. 

 From the other side, Faster R-CNN algorithm is publicly available in the open 

sources which the users can either construct the network from scratch or import a pre-

trained network to be trained as an obstacle detector. The outstanding performance of 

Faster R-CNN model was proved in ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) and Common Object in Context (COCO) 2015 competitions. 
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Faster R-CNN was the foundation of the first place winning entries in several tracks of 

these competitions. To the best of the knowledge, this research is the first approach to 

adapt Faster R-CNN in drone navigation. 

In this research, by using the monocular vision, a machine learning approach is 

proposed to allow the drone to recognise the features of the tree trunks in the images then 

perform the obstacle detection and avoidance control in an oil palm trees field. The 

approach involves the configuration of Faster Region-based Convolutional Neural 

Network model (Faster R-CNN) as the detector to localise the frontal obstacle. The 

system is divided into two main stages: vision-based obstacle detection, in which the 

obstacles in the images captured by the front single camera are detected, and motion 

control, in which the avoidance decisions are taken based on the result from the first stage 

and sent back to the drone.  

 

1.1 Problem Statement 

Commonly, a small multi-rotors drone, such as a micro aerial vehicle, has a limited 

flight endurance which is around 15 to 30 minutes only. This is due to the limitation of 

the battery and the power consumption by the rotors to provide the thrust to the drone. 

Hence, the additional payloads, such as sensors or multi-camera, applied on the drone to 

detect the presence of obstacles will reduce the flight endurance and range of the drone 

significantly. This will be a constraint for the further development and applications of 

drone in precision agriculture. Hence, it is essential to develop an obstacle avoidance 

algorithm which eliminates the needs of sensors in object detection for the autonomous 

navigation purpose. A single camera onboard of the drone is an alternative replacement 

to the sensors. 
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Furthermore, although Faster R-CNN performs well in the common object 

detection in different competitions and challenges, it is necessary to verify its practicality 

in a real-life scenario and practical implementation on the drone navigation. Besides, the 

factors that affect the performance of a Faster R-CNN model need to be investigated to 

construct a scratch detector model and optimise the performance in the detection of the 

tree trunks.  

Lastly, in a real flight, the environment factors might affect the stability of the 

drone. When flying in the plantation, the drone might not able to fly at a constant height 

from the ground due to the external issues, such as the ground might be soft after rain 

and unexpected gust, which can cause the drone to become unstable. This also causes the 

view of the camera is different from time to time.  Thus, this is a challenge to overcome 

in a vision-based obstacle avoidance system. 

 

1.2 Objective  

The research work in this thesis is performed to achieve the following objectives: 

1. To study the performance of a CNN-based detector on different flight motions. 

2. To construct and optimise the performance of a scratch Faster R-CNN model with 

different specifications. 

3. To compare the performance of a scratch model and the pre-trained Faster R-

CNN models in the tree trunks detection. 

4. To develop an obstacle avoidance algorithm and implement in drone autonomous 

navigation in oil palm plantation. 
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1.3 Thesis Layout 

This thesis consists of 5 main chapters which are Introduction, Literature Review, 

Methodology, Result and Discussion, Conclusion and Recommendation. Each chapter is 

further divided into several sub-chapters as appropriate. 

Chapter 1 introduces the applications of drones, especially in the agricultural sector, 

followed by the background of the evolution of the CNN approach in the detection task. 

The problem statement and objective of this research work are also presented in the first 

chapter. Chapter 2 focuses on the review of approaches done by the previous researchers 

on the drone autonomous navigation. 

Chapter 3 is divided into 2 main sections to discuss the approaches used in obstacle 

detection and avoidance Motion Control, respectively. The methods used to train and 

implement the Faster R-CNN model in the drone image processing and the flight control 

are discussed.  

Chapter 4 shows the results of the performance of the detector models and the 

results from the real flight tests of the drone in the oil palm trees fields. Finally, the 

findings of the work are concluded and recommendations to improve the performance in 

the drone autonomous navigation in the future are done in Chapter 5. 
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CHAPTER 2 

2 LITERATURE REVIEW 

 

Nowadays, many researchers use monocular images as the inputs to control the 

drone in the autonomous navigation. However, with monocular vision, the depth 

information is not available directly. Hence, there were few approaches proposed to 

overcome this limitation to utilise a single camera in the drone autonomous navigation.  

Firstly, using a single camera, the movement of the drone was used to reconstruct 

the scenes in the Structure from Motion (SfM) approaches. From a small set of 

consecutive images, a regularized depth map was computed and subsequently used for 

the waypoint generation (Alvarez et al., 2016). A direct depth estimation approach was 

proposed by enabling real-time computation of dense depth maps and navigation in a 

cluttered outdoor environment (Daftry et al., 2016). However, in the SfM-based obstacle 

avoidance scheme, the drone was not able to avoid dynamic obstacles which were moved 

during mapping or between mapping cycles. Moreover, the mapping cycle required the 

computational memory to store and compare the consecutive frames of the scene in order 

to obtain the depth information.  

Most of the monocular vision obstacle avoidance research focused on the 

demonstration of the accurate depth measurements as the monocular vision cannot 

provide depth information directly. The common methods are optical flow-based 

methods and SLAM-based methods. An optical flow method was proposed to obtain the 

tested structure in a 3D space environment based on the gradient method of Lukas-

Kanade (Gosiewski et al., 2011). By comparing the sequential images, the model found 
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out whether the obstacle was getting closer. Hence, the movement of the drone were 

controlled by producing a steering command which was inversely proportional to the 

optical flow difference between the two sides of the image (Agrawal et al., 2017).  

Moreover, a variety of bio-inspired optical flow navigation methods have also been 

proposed (Zufferey and Floreano, 2006). For instance, the translational optic flow that 

was inspired by the method that the insects employ for the collision-free navigation, was 

demonstrated (Serres and Ruffier, 2017). However, the optical flow-based method 

cannot acquire precise distance, which may limit the usages in some specific missions.  

By contrast, SLAM-based methods were proposed to provide precise metric maps 

with a sophisticated SLAM algorithm. With the algorithm proposed, the drones 

navigated and avoided obstacles with more environment information obtained from the 

low-cost ultrasonic and infrared range finders (Gageik et al., 2015). For instance, the 

application of Scanning LIDARs for SLAM on the drone navigation was demonstrated 

successfully in the indoor environments (Bachrach et al., 2009). As the instruments 

proposed previously were heavy to the drone, a method based on Oriented fast and 

Rotated Brief SLAM (ORB-SLAM) was proposed to process the video stream of the 

front camera (Esrafilian and Taghirad, 2016). First, it computed the 3D locations of the 

drone and generated a sparse point cloud map. Then, it enriched the spare map to denser. 

Finally, it generated a collision-free roadmap by applying potential field method and 

quickly exploring the Random Tree (RRT). These SLAM-based obstacle avoidance 

systems performed much more complex tasks though, but usually fail at high speeds 

since they reconstructed the environment from frame to frame triangulations. 

Some approaches detected the presence of the frontal obstacles and then adjusted 

the motion control to avoid them. These approaches are commonly categorised as the 
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sense-and-avoid mechanism. The classification algorithms were used to detect the types 

of environment, and then for each environment perspective cue, the desired direction for 

the drone to fly was extracted (Bills et al., 2011). However, this approach was limited to 

the simple indoor environment only, and it cannot be applied in complex and clustered 

outdoor condition.  

Moreover, the changes in the size area of the obstacles were proposed to predict 

the depths (Al-Kaff et al., 2016, Al-Kaff et al., 2017). Furthermore, a feature point 

detector, Speeded Up Robust Features (SURF) was proposed for the fast obstacle 

detection (Aguilar et al., 2017). Lastly, the outline of obstacles from Multi-Scale 

Oriented Patches (MOPS) and the spatial coordinates of feature points from the Scale 

Invariant Feature Transformation (SIFT) algorithm were proposed to merge in order to 

show the 3D information of the obstacles (Lee et al., 2011). However, the drawback of 

these algorithms is they only work for the obstacles stored in the database. 

There were several approaches which were applied to the similar environment as 

our research. The Dagger algorithm was presented to learn and predict the control from 

the human expert through dense forest environments (Ross et al., 2012). Furthermore, a 

hybrid collision avoidance scheme which consists of the Rapidly exploring Random Tree 

(RRT) as the global path planner and a fuzzy logic method, was proposed as the local 

collision avoidance mechanism. For the development of the proposed path following 

scheme, the extended Kalman filter was utilized for estimating the cross-track error of 

the flight in the hazardous environment (Liu et al., 2018). 

Recently, deep learning-based solutions have proposed to improve real-time 

performance in a complex unknown environment. Firstly, Convolutional Neural 

Network (CNN) was used to learn a control strategy that mimics an expert pilot's choice 
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of action to navigate autonomously at the indoor (Kim and Chen, 2015) and outdoor 

environment (Giusti et al., 2016), respectively. For instance, in a navigation approach 

demonstrated at the outdoor environment (Giusti et al., 2016), the camera orientation 

estimation was framed as a three-class motion classifications which were Left, Front and 

Right. A set of forest trail images was captured with three head-mounted cameras, each 

pointing in one direction. Given one frame input, the model decided the next optimal 

move. However, this work was demonstrated to follow a specific path, but this research 

is working on the general navigation.  

There were few researchers who presented deep learning solutions to predict the 

depth of the scenes (Liu et al., 2016, Jia et al., 2016, Chakravarty et al., 2017). A fully 

convolutional network which was fed with both images and optical flows, was designed 

to obtain fast and robust depth estimation (Mancini et al., 2016). In addition, a two-stage 

obstacle avoidance deep reinforcement learning system was proposed. It was composed 

of a depth predictor fully convolutional neural network followed by a double-Q network 

(D3QN) which consists of a convolutional network and a duelling network to predict the 

Q-value of angular actions and linear actions in parallel (Xie et al., 2017).   

Most recent, J-MOD2 which was a novel CNN architecture, was proposed to 

jointly learn the task of the depth estimation, and the obstacle detection from the image 

feature extracted by the fine-tuned VGG19 network (Mancini et al., 2018). The approach 

was tested and evaluated in a virtual forest scenario on the Unreal Engine software 

environment. Furthermore, a saliency detection algorithm was developed by using a deep 

CNN to extract monocular visual cues and Radial Basis Function (RBF) neural network 

in an actor–critic reinforcement learning module to control the motion of the drone (Ma 

et al., 2018). The types of the state-of-the-art drone sensing and detection methods are 

summarised in Figure 2-1. 
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Figure 2-1: Summary of Drone Detection and Sensing Methods (Aswini et al., 2018) 

 

This research proposes to adapt Faster R-CNN model as the tree trunk detector. 

This is because Faster R-CNN model has shown a short computational time and high 

mean Average Precision (mAP) in other robust applications.  The drone is proposed to 

avoid the frontal obstacles when it detects the approaching obstacles by estimating the 

distance from obstacles. In contrast to the approaches that compared the consecutive 

frame of images to estimate the distance of obstacles, the heights of the bounding boxes 

are used to indicate the estimated distance. Hence, the computational memory for the 

previous image frames is not needed. This algorithm aims to have a high mAP and low 

computational time in order to be suitable for the drone vision-based navigation 

application. 
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CHAPTER 3 

3 METHODOLOGY 

 In this study, a commercially available quadrotor, namely the Parrot Bebop Drone 

2 is used as the airborne platform to collect the dataset and involve in the flight test to 

evaluate the result. The performance of a scratch model and pre-trained models of Faster 

R-CNN with different convolutional bases trained for the tree trunk detection, are 

compared. The trained model with the best performance is selected to adopt in the 

obstacle avoidance system.  

 The Robot Operating System (ROS) framework is used to communicate with the 

software development kit (SDK) of the Parrot Bebop Drone 2 using the developed 

bebop_autonomy package. The drone sends the data collected onboard, such as the 

images and attitude information, to the ground control station through Wi-Fi connection. 

After the ground control station makes the motion control decision based on the detection 

result, the command is sent back to the drone to avoid the critical obstacle if it is 

necessary.  

 This system was run within ROS Kinetic on Linux Ubuntu 16.04 with Intel Core 

i7-7500U MB CPU and 32GB RAM. Nvidia 940MX GPU was used for extensive 

mathematical computations in detection algorithm to free up CPU cycles for other jobs 

and speed up the computation time for the detection. This is because the detection 

algorithm deals with the complex convolutional computation and the large size data as 

the input is an image. At the end of the project, the real field environment flight tests are 

carried by using Parrot Bebop Drone 2 in several oil palm tree fields to evaluate the 

performance of the obstacle avoidance system.  
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3.1  Object Detection 

3.1.1 Data Collection and Annotation 

 In order to train and validate a detection model, a large dataset which consists of 

the images taken from the target environment is required. In this research, Parrot Bebop 

Drone 2 is used as the airborne platform to fly and record the flight videos in an oil palm 

trees field in Engineering Campus of University Sains Malaysia. The Bebop Drone 2 

features 14 megapixels with a fish-eye lens and can produce a 3-axes full HD 1080p 

video at 30 frames per second. The exact dataset collection location is shown in Figure 

3-1. 

 

Figure 3-1: Map of USM Engineering Campus. The red rectangle with icon shows the 

area of the location of the dataset collected, whereas the blue rectangles with 

icons show the test flight locations which labelled as Location 1 (L1) and 

Location 2 (L2), respectively.  

 

 There are two types of dataset collected in the form of flight videos captured 

using the front looking camera onboard of the drone. During the flight to collect both 

types of dataset, the drone is flown at a constant flying height of 1.5 m from the ground 

in the oil palm trees field. The built-in autopilot functions with the inputs from the 
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onboard sensors including a 3-axes gyroscope and an ultrasonic sensor which can 

analyzes the flight altitude up to 8 meters, are able to control and maintain the drone in a 

constant height during the flight.  

 Figure 3-2 shows the body axis reference system fixed to the centre of gravity of 

the drone. The 𝑥𝑏-axis is positive toward the direction of the forward movement, whereas 

the 𝑧𝑏-axis is aligned with the gravitational force. The 𝑦𝑏-axis is perpendicular to both 

axes and is directed in such a way that (𝑥𝑏, 𝑦𝑏, 𝑧𝑏) is a right-hand triad. 

 

Figure 3-2: Reference Body Axis (𝑥𝑏, 𝑦𝑏, 𝑧𝑏) of the drone 

  

 The first type of dataset is collected by alternating positions of the drone along 

the 𝑥𝑏-axis and 𝑦𝑏-axis, separately in the oil palm trees field to compare the performance 

of the networks in detecting the obstacles in the different motions. The second dataset 

consists of the flight videos of the drone random navigation in the oil palm trees field to 

train the detector with a real flight scenario. The data collection is conducted in three 

different lighting conditions in the same environment to ensure the model can detects the 

obstacles in any lighting condition.  

 The videos recorded by the drone are originally in size of 1920 x1080 pixels. The 

videos are resized to 426 x240 pixels before proceeding to the object annotation. This is 

𝒚𝒃 

𝒛𝒃 

𝒙𝒃 
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because the original input image size is too large, and it causes the training process of 

the detector becomes expensive in terms of computational time and specifications of the 

hardware needed. These images are resized to suit with the memory size of the available 

GPU in the laptop to train the detector. Furthermore, this can reduce the training process 

time to a reasonable period.  

Before the detection model is trained, the ground truth annotations are needed for 

both training and validation dataset. A ground truth represents the correct position and 

class of the object interested in the image. The dataset is labelled manually in Video 

Labeler application in MATLAB. All the oil palm tree trunks are labelled with 

rectangular Regions of Interest (RoI) labels in every frame of the videos with the aids of 

the built-in automated algorithms in the application, such as Point Tracker and Temporal 

Automation Algorithms.  

In this scenario, the only type of object of interest is the tree trunk of the oil palm 

tree in the image. Therefore, there are only two classes of object in an image which are 

a tree trunk or the background. All the bounding boxes are defined by the coordinates of 

the upper left point in the image together with the width and height of the boxes. Figure 

3-3 shows the example images with the rectangle RoI labelled around the object of 

interest, “tree_trunk”. Finally, the labelled ground truth is exported to a table form and 

used in detector performance validation or training.  
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Figure 3-3: Examples of the ground truth labelled in the images. The yellow boxes are 

the labelled bounding boxes to represent the tree trunks in the images. 
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3.1.2 Network Architecture and Training 

 Next, the detector network is constructed and trained. There are two types of 

models trained to compare their performances. The first type of the model is a scratch 

model, in which the architecture of the Convolutional Neural Network base need to be 

defined by the user. This includes the number of layers, type of the activation function, 

size of the filter, padding and stride in each convolutional layer that need to be considered 

before constructing the scratch model. The weight and bias of each node in each layer is 

trained from zero to a value that can fit to the dataset. The training process is done with 

MATLAB algorithm.    

 The second type of the model is the pre-trained model that imported from the 

online resource. The architecture of the model is well defined, and it has been trained in 

a large dataset previously. In order to transfer the ability of the feature extraction and 

classification from the previous tasks to the identification of the tree trunks in oil palm 

trees field, the training method is different from that of a scratch model as the transfer 

learning technique is needed. The training process is done with Tensorflow algorithm in 

Python language under Linux environment.  

 

3.1.2.1 Scratch Models 

The first step is done by defining the CNN network architecture. There is a total 

of four different detectors created to investigate the effect of the amount of training data 

and the number of the convolutional layers on the performance of the detectors. This can 

be a guideline to construct and train a scratch model with the specifications that are the 

most suitable to solve this detection problem, before it is implemented in the obstacle 

avoidance system. 
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There were four detectors trained with different specifications. The first parameter 

manipulated was the number of training images. Firstly, Detector A was trained with 

more than 4,000 images, whereas the other 3 detectors were trained with 1,500 images 

only. The images in the training dataset of the other 3 detectors were extracted from the 

training dataset of Detector A. In other words, the training data of Detector B, C and D 

are the same and are the subset of training data of Detector A. 

Secondly, the parameter manipulated is the number of repeating blocks that 

consists of convolutional and activation function ReLU layers. The convolutional layer 

is the important part of a detection model as it extracts the features and produces the 

convolutional feature map to feed into the last layer and identify the presence and 

location of the tree trunk in the images. As a deep architecture of the convolutional neural 

network is computationally expensive in training a new model in terms of training time 

and GPU memory space required, the architecture of the scratch model created needs to 

keep simple and shallow. Therefore, there were 3 detectors, Detector B, C and D created 

with the different number of repeating convolutional blocks in the range of 2 to 5 layers. 

Table 3-1 shows the summary of the architecture of CNN of Detector A and B.   

The architecture of the CNN is started with an image input layer. The image input 

layer feeds the images to a network and applies data normalization. The type and size of 

the input layer are defined. For common classification tasks, the input size is typically 

the size of the training images. But in the detection tasks, the CNN need to analyse the 

smaller sections of the whole image which is the image of the object of interest, so the 

input size must be similar to the size of the smallest tree trunk in the dataset. Since RBG 

images are fed into the network, an input size of [32 32] with the depth of 3 is selected. 

Furthermore, the data transformation is applied when the data is forward propagated 

through the input layer by subtracting the average image in training. 
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Table 3-1: The CNN architecture of Detector A and B 

No. Layer Name Description 

1 Image Input 32x32x3 images with 'zero-center' normalization 

2 Convolutional layer 32 3x3 convolutions with stride [1  1] and  

padding [1  1  1  1] 

3 ReLU ReLU activation layer 

4 Convolutional layer 32 3x3 convolutions with stride [1  1] and  

padding [1  1  1  1] 

5 ReLU ReLU activation layer 

6 Max Pooling 3x3 max pooling with stride [2  2] and  

padding [0  0  0  0] 

7 Fully Connected          64 fully connected layer 

8 ReLU ReLU activation layer 

9 Fully Connected          2 fully connected layer 

10 Softmax Softmax activation layer 

11 Classification Output Classification 

 

Next, the middle layers are made up of repeated blocks of convolutional, Rectified 

Linear Units (ReLU), and maximum pooling layers. These layers form the core building 

blocks of the convolutional neural networks. The convolutional layers apply a 

convolution operation to the input with the use of filters or kernels and produce a feature 

map. In the convolutional layer, 32 filters with the size of 3 x 3 are used to scan along 

the images with a stride [1 1]. The number of filters is equal to the number of neurons 

that are connected to the same region of the input which determines the number of feature 

maps. Moreover, a stride of padding is added to the input feature map borders to ensure 

that the spatial output size is the same as the input size.  

Then, the activation step applies a transformation to the output of each neuron by 

using activation functions. In here, ReLU is selected as the activation function to perform 

a threshold operation to each element of the input from the convolutional layer as shown 
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in Equation (3.1). This function takes the output of a neuron, 𝑂𝑛  and maps it to the 

highest positive value, or maps it to zero if the output is negative.  

𝑓(𝑥) = { 
𝑂𝑛 , 𝑂𝑛 > 0
0,  𝑂𝑛 ≤ 0

.                                      (3.1)                                          

Afterward, the max pooling layer is introduced in the architecture of CNN to 

reduce the dimensionality of the feature map. This is done by taking the maximum value 

from each 3 x 3 patch area of an image, and then placing it in a new matrix next to the 

maximum values from other patches. The rest of the information contained in the 

activation maps are discarded. This can help to simplify the following layers and reduce 

the number of parameters that the model needs to learn. However, to avoid down-

sampling the data prematurely, the number of pooling layer is kept as low as 1 layer only. 

This is because down-sampling in the network might discard image information that is 

useful for the training.  

The final part of the network is composed of two fully connected layers and a 

softmax layer. A fully connected layer combines all of the features extracted by the 

previous layers across the image to identify the larger patterns. The last fully connected 

layer combines the features to classify the images. Hence, the output size of the last fully 

connected layer of the network is equal to the number of the object classes in the image 

which are the tree trunk and the background.  

At this point, the network produces outputs that can be used to predict whether the 

input region of interest belongs to the tree trunk or the background. Then, the softmax 

function calculates a probability for the object on the image being predicted which known 

as a confidence score. Finally, the classification layer uses the probabilities returned by 

the softmax activation function for each input to assign the input to the class of objects. 

Figure 3-4 illustrates the architecture of the CNN network of Detector A and B. 
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Figure 3-4: Architecture of the CNN network of Detector A and B. Conv. represents 

the convolutional layers, whereas FC represents a fully connected layer. 

 

After the architecture of the network is defined, the Faster R-CNN detector is 

trained in four steps. The first and second step train the Region Proposal Network (RPN) 

and CNN network defined above in a Faster R-CNN, respectively. The third and fourth 

step combine both networks from the weight resulted from the first two steps, such that 

a single network is created for detection. In detail, the RPN training is initiated by fixing 

the shared convolutional layers, and only fine-tuning the unique layers of RPN in the 

third step. On the other hand, in the fourth step, the unique layers of detector network are 

fine-tuned, while the convolutional layers are fixed.  

The algorithm used in the training is Stochastic Gradient Descent with Momentum 

(SGDM) optimizer. The stochastic gradient descent algorithm evaluates the gradient and 

updates the parameters using a subset of the training set. For Faster R-CNN training, the 

mini batch size must be equal to 1 as the training algorithm creates a training batch by 

sampling multiple regions within an image. At each iteration, the algorithm takes one 

step towards minimizing the loss function, 𝐽(𝑤𝑙).  
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The gradient descent algorithm updates the network parameters which are the 

weights, w and biases, b of each neuron to minimize the loss function by taking small 

steps in the direction of the negative gradient of the loss. Equation (3.2) and (3.3) show 

the gradient descent algorithm applied to update weight and bias of each neuron during 

the training process.  

𝑤𝑙+1 = 𝑤𝑙 − 𝛼∇𝐽(𝑤𝑙).   (3.2) 

𝑏𝑙+1 = 𝑏𝑙 − 𝛼∇𝐽(𝑏𝑙). (3.3) 

The learning rate,  determines the size of the steps taken to reach a minimum loss. 

In here, a value of 0.001 is selected as the optimum learning rate as a large value of  

may miss the global minimum and caused it fail to converge to a solution, whereas a 

small value will take too long time before the minimum point is reached.  

 

3.1.2.2 Pre-trained Model by Transfer Learning 

 Transfer learning is one of the techniques in machine learning, which reuses a 

model that trained for a general task by transferring the outcome in the previous training 

to another similar target task. The model is known as the pre-trained model which has 

been trained on a large benchmark dataset for a mission, such as classification, 

localization or segmentation, which should be similar to the target task. The model 

contains the weights and biases in each layer that represent the features of dataset trained 

initially, and can be transferred to a different type of data. These models are available in 

the online resources, and can be imported then trained to solve the target problem.  

 There are two pre-trained models selected to be trained for the tree trunk detection. 

Both pre-trained models were trained previously on the COCO dataset which has a total 
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