

OBSTACLE AVOIDANCE USING CONVOLUTIONAL NEURAL NETWORK

FOR DRONE NAVIGATION IN OIL PALM PLANTATION

by

LEE HUI YIN

Thesis submitted in fulfilment of the requirements for the

Bachelor Degree of Engineering (Honours) (Aerospace Engineering)

June 2019

i

ENDORSEMENT

I, Lee Hui Yin hereby declare that I have checked and revised the whole draft of

dissertation as required by my supervisor.

(Signature of Student)

Date:

(Signature of Supervisor)

Name:

Date:

ii

ENDORSEMENT

I, Lee Hui Yin hereby declare that all corrections and comments made by the supervisor

and examiner have been taken consideration and rectified accordingly.

(Signature of Student)

Date:

(Signature of Supervisor)

Name:

Date:

(Signature of Examiner)

Name:

Date:

iii

DECLARATION

This thesis is the result of my own investigation, except where otherwise stated and has

not previously been accepted in substance for any degree and is not being concurrently

submitted in candidature for any other degree.

(Signature of Student)

Date:

iv

ACKNOWLEDGEMENTS

 The success and final outcome of this project required a lot of guidance and

assistance from many people and I am extremely privileged to have got this all along the

completion of my project.

 First and foremost, I have to thanks my project supervisor, Dr Ho Hann Woei for

providing me all support and patient guidance which made me completed the project. His

willingness to give his time so generously has been very much appreciated. Without his

valuable and constructive suggestions in this research work, this thesis would not have

been possible.

 I would also like to extend my thanks to Mr Amir, the technician of the laboratory

for his help in offering me the resources required in this research. Furthermore, I would

also like to show gratitude to my friends for their motivation and help. Finally, I wish to

thank my parents and my family members for their support and encouragement

throughout my study.

v

OBSTACLE AVOIDANCE USING CONVOLUTIONAL NEURAL NETWORK

FOR DRONE NAVIGATION IN OIL PALM PLANTATION

ABSTRACT

In Malaysia, oil palm plantation is one of the vital sectors that contribute to the country

economy. In recent years, drones are widely applied in the precision agriculture due to

their flexibility and capability. However, one of the challenges in a low-altitude flight

mission is the ability to avoid the obstacles in order to prevent the drone crashes. Most

of the previous literature demonstrated the obstacle avoidance systems with active

sensors which are not applicable on small aerial vehicles due to the cost, weight and

power consumption constraints. In this research, we present a novel system that enables

the autonomous navigation of a small drone in the oil palm plantation using a single

camera only. The system is divided into two main stages: vision-based obstacle detection,

in which the obstacles in the input images are detected, and motion control, in which the

avoidance decisions are taken based on the results from the first stage. As the monocular

vision does not provide depth information, a machine learning model, Faster R-CNN,

was trained and adapted for the tree trunk detection. Subsequently, the heights of the

predicted bounding boxes were used to indicate their estimated distances from the drone.

The detection model performance was validated on the testing images in term of the

average precision. In the system, the drone is programmed to move forward until the

detection model detects any closed frontal obstacle. Next, the avoidance motion direction

is defined by commanding a yawing angle which is corresponded to the x-coordinate in

the image that indicated the optimum path direction with the widest obstacle-free space.

We demonstrated the performance of the system by carrying out flight tests in the real

vi

oil palm plantation environment in two different locations, where one of them is a new

place. The results showed that the proposed method was accurate and robust for the drone

vision-based autonomous navigation in the oil palm plantation.

vii

OBSTACLE AVOIDANCE USING CONVOLUTIONAL NEURAL NETWORK

FOR DRONE NAVIGATION IN OIL PALM PLANTATION

ABSTRAK

Di Malaysia, pertanaman kelapa sawit merupakan salah satu sektor penting yang

menyumbang kepada ekonomi negara. Kebelakangan ini, dron digunakan secara meluas

dalam pertanian ketepatan. Walau bagaimanapun, antara cabaran untuk misi

penerbangan di ketinggian rendah adalah keupayaan untuk mengelakkan perlanggaran

daripada halangan untuk mengelakkan kemalangan drone. Kebanyakan sastera terdahulu

menunjukkan sistem halangan pengelakan dengan sensor aktif yang biasanya tidak

digunakan dalam kenderaan udara kecil disebabkan oleh kekangan kos, keberatan dan

penggunaan kuasa. Dalam kajian ini, kami membentangkan satu sistem baru yang

membolehkan navigasi autonomi sebuah dron kecil di ladang kelapa sawit dengan

menggunakan kamera monokular sahaja. Sistem ini dibahagikan kepada dua peringkat

utama: halangan pengesanan berasaskan penglihatan dan kawalan gerakan berdasarkan

hasil dari peringkat pertama. Oleh sebab penglihatan monokular tidak memberikan

maklumat kedalaman, antara satu teknik pembelajaran mesin, Faster R-CNN dilatih dan

disesuaikan untuk pengesanan batang pokok. Selanjutnya, ketinggian kotak perbatasan

yang diramalkan menganggarkan jarak halangan tersebut dari dron. Model pengesanan

dinilai berdasarkan purata ketepatan dengan imej yang tidak termasuk dalam kumpulan

latihan sebelum ini. Dalam sistem ini, drone diprogramkan untuk bergerak ke depan

sehingga model pengesanan mengesan sebarang halangan frontal yang berhampiran.

Seterusnya, arah pergerakan elakan ditakrifkan dengan mengarahkan sudut yaw

berdasarkan koordinat-x yang menunjukkan arah laluan optimum yang mempunyai

viii

ruang bebas daripada halangan yang paling lebar. Kami menunjukkan prestasi sistem ini

dengan melakukan ujian penerbangan dalam persekitaran ladang kelapa sawit sebenar di

dua lokasi yang berbeza. Antara satu lokasi ialah lokasi yang baru. Keputusan tersebut

menunjukkan bahawa kaedah yang dicadangkan itu adalah calon yang tepat dan kuat

untuk navigasi autonomi dron berpandukan penglihatan di sebuah ladang kelapa sawit.

ix

TABLE OF CONTENT

ENDORSEMENT i
DECLARATION iii
ACKNOWLEDGEMENTS iv
ABSTRACT v

ABSTRAK vii
LIST OF FIGURES x
LIST OF TABLES xv
LIST OF ABBREVIATIONS xvi
LIST OF SYMBOLS xvii

1 INTRODUCTION 1
1.1 Problem Statement 6
1.2 Objective 7

1.3 Thesis Layout 8

2 LITERATURE REVIEW 9

3 METHODOLOGY 14
3.1 Object Detection 15

3.1.1 Data Collection and Annotation 15
3.1.2 Network Architecture and Training 19

3.1.3 Performance Validation 28

3.2 Avoidance motion 33

3.2.1 Identification of closed frontal obstacle 34
3.2.2 Desired heading angle to steer the drone away from the

obstacle 38
3.2.3 Motion control system 40

4 RESULT AND DISCUSSION 43
4.1 Performance of scratch models 43

4.1.1 Performance in different motion 43
4.1.2 Performance of models with different specification 45

4.2 Comparison of performance between scratch model and pre-trained

model 50
4.3 Obstacle Avoidance Flight Test 57

4.3.1 Real flight Detection Testing Result 58

4.3.2 Avoidance Control Testing Result 63

5 CONCLUSION AND RECOMMENDATION 73

REFERENCE 75

x

LIST OF FIGURES

Figure 2-1: Summary of Drone Detection and Sensing Methods (Aswini et al., 2018) 13

Figure 3-1: Map of USM Engineering Campus. The red rectangle with icon shows the

area of the location of the dataset collected, whereas the blue rectangles

with icons show the test flight locations which labelled as Location 1 (L1)

and Location 2 (L2), respectively. 15

Figure 3-2: Reference Body Axis (𝑥𝑏, 𝑦𝑏, 𝑧𝑏) of the drone 16

Figure 3-3: Examples of the ground truth labelled in the images. The yellow boxes are

the labelled bounding boxes to represent the tree trunks in the images. 18

Figure 3-4: Architecture of the CNN network of Detector A and B. Conv. represents the

convolutional layers, whereas FC represents a fully connected layer. 23

Figure 3-5: (a) First inception module where the convolution size is 3x3. (b) Second

inception module after the factorization of the n x n convolutions. (c) Third

inception module with expanded the filter bank outputs. (Ioffe and Szegedy,

2015) 26

Figure 3-6: Architecture of one residual block of Resnet. (He et al., 2016) 27

Figure 3-7: Visualization of the definition of Intersection over Union (IoU). The

predicted bounding box is drawn in yellow while the ground truth bounding

box is drawn in green. The black shaded areas on the right represent the

area of overlap and area of union, respectively. 29

Figure 3-8: Illustration of a precision-recall curve which represents the ideal performance

of object detection. The area under the curve is computed as average

precision. 32

xi

Figure 3-9: Image coordinate axes with the coordinates of the bounding box detected.

 34

Figure 3-10: The drone body reference axis from the top view. The shaded area shows

the 0.5 m radius safety boundary of the drone. The horizontal field of view

of the camera onboard is 80⁰. The length of the horizontal view when the

scene is 1 m ahead of the camera is determined as 1.678 m by using

trigonometry method. 36

Figure 3-11: Example of the determination of optimum path direction that is represented

by the green line in the field of view of the camera. 39

Figure 3-12: Algorithm framework to determine the steering angle from the raw image

received from the drone to avoid the critical obstacle detected. 40

Figure 3-13: Algorithm framework to decide the motion of the drone from the detection

result received to avoid the critical obstacle detected. 41

Figure 3-14: Communication between ROS nodes and the driver. 42

Figure 4-1: The precision-recall result of the detectors when the drone is flying in the (a)

𝑥𝑏-direction and (b) 𝑦𝑏-direction, respectively. 44

Figure 4-2 (to be continued): Comparison of the detection results from different detectors

in the different testing images. From the left is the result detected by

Detector A followed Detector B, C and D. The yellow boxes represent the

predicted bounding boxes with their confidence score, respectively,

whereas the red boxes represent the false positive result that tends to predict

by the detector on the upper part of an image. 47

Figure 4-3: Plot of precision- recall curves of the result of Detector A, B, C and D,

respectively. 49

xii

Figure 4-4: Selected random examples of the tree trunk detection results on the testing

images using the (a) scratch model, (b) pre-trained Faster R-CNN with

Resnet-50 and (c) Inception v2. Each output box indicated by a green box

with the category label and confidence score. The blue boxes represent the

bounding boxes that did not bound the closed obstacle fully, whereas the

orange boxes shows the weakness of the detector which tends to detect an

obstacle with two separate boxes 52

Figure 4-5: Precision- Recall Curve plotted to evaluate the performance of the scratch

model trained 54

Figure 4-6: Precision- Recall Curve plotted to evaluate the performance of the pre-trained

models: (a) Resnet-50 (b) Inception v2 55

Figure 4-7: The examples of the scenes in (a) Location 1 and (b) Location 2 58

Figure 4-8: The scenes with only the far obstacles that labelled with green boxes with

their confidence scores. The white line represents the direction of the

optimum heading. The white line remains in the center of the image as there

is no closed frontal obstacle ahead and the drone is safe to continue its

forward motion. This scenarios indicate the safe conditions that the drone

is allowed to move forward. 59

Figure 4-9: Examples of the detection result when the warning obstacles (yellow boxes)

were detected, but the obstacles did not trigger the system to stop the drone

as they were outside of the 1 m diameter safety boundary of the drone. The

white line shows the optimum heading direction. 60

Figure 4-10: Examples of the detection result when a critical obstacle was detected. The

white line shows the desired heading direction for the drone with the widest

free space. 60

xiii

Figure 4-11: The examples result of the desired heading direction represented by a white

vertical line when both red and yellow labelled boxes are detected in a

frame. 61

Figure 4-12: Examples of the false positive result detected by the detection model. 61

Figure 4-13: The examples of scenes with the objects that have a similar feature as the

tree trunk. In these images, the detection model did not output false positive

result by labelling them as the tree trunk. 62

Figure 4-14: The GPS routes of the drone travelled in each autonomous navigation

experiment in (top) Location 1 and (bottom) Location 2, respectively. 64

Figure 4-15: Graph of the changes in the pitch (blue line) and heading angle (red line) of

the drone in the 6th experiment in Location 1. The detection results for each

case that triggers the system to stop the drone motion are attached. The red

bounding boxes in the images represent the critical obstacles detected 66

Figure 4-16: The detection result at the starting point. The optimum path direction

indicated with the white line was at the center of the image to allow the

drone to navigate forward. The yellow boxes represented the warning

obstacles that are approaching but not critical to stop the drone. 67

Figure 4-17: (Left) The detection results obtained and (right) the position of the drone

from an observer’s view (a) before and (b) after the drone steered when the

system detected a critical obstacle at 50.5 s. 68

Figure 4-18: The output detection results (left) before and (right) after the drone steering

as it detected the (a) second and (b) third critical obstacle in the navigation,

respectively. 69

xiv

Figure 4-19: The detection result after the drone stops and hovers for 5 s. The false

positive critical obstacle is no longer present and the drone is commanded

to resume its forward navigation. 70

Figure 4-20: The images on the left show the detection result after the drone stopped for

the 5th time, and the images on the right show the images of the drone from

an observer’s view (a) before steering, (b) after the first and (c) the second

steering of the drone, respectively. In the image (c), there was no critical

obstacle in the image thus the optimum heading direction was at the center

of the image. 71

xv

LIST OF TABLES

Table 3-1: The CNN architecture of Detector A and B 21

Table 3-2: The outline of Inception v2 architecture. 26

Table 3-3: Architecture of Resnet-50. The first column of each matrix represents the size

of the kernel, whereas the second column of each matrix represents the

number of the filters. 27

Table 3-4: Confusion Matrix that shows the definition of each result class. The columns

represent the actual class of the image, whereas the rows represent the result

predicted by the detector. True is 1, while false is 0. 30

Table 3-5: The distance of an object from the drone when the height ratio appears in the

image is equal to 0.52 at the different flying height 37

Table 4-1: Differences in parameters among four detectors trained 45

Table 4-2: Detection performance of the scratch model and two pre-trained models:

Resnet-50 and Inception v2 55

xvi

 LIST OF ABBREVIATIONS

UAV : Unmanned Aerial Vehicle

CNN : Convolutional Neural Network

R-CNN : Region-based Convolutional Neural Network

WI-FI : Wireless Fidelity

ROS : Robot Operating System

GPU : Graphic Processing Unit

COCO : Common Objects in Context

RBG : Red-Green-Blue

ReLU : Rectified Linear Units

TP : True Positive

FP : False Positive

TN : True Negative

FN : False Negative

HFOV : Horizontal Field of View

VFOV : Vertical Field of View

xvii

LIST OF SYMBOLS

𝑂𝑛 : Output of a neuron

w : Weight value of the neuron

b : Biases value of the neuron

 : learning rate

IoU : Intersection over Union

P : Precision

R : Recall

N : Number

AP : Average Precision

ℎ𝑜𝑏𝑗𝑒𝑐𝑡 : Height ratio of an object appears in the image

𝑤𝑖 : Width between bounding boxes and image borders [pixel]

𝑥𝑜𝑝𝑡 : X-coordinate of the optimum path direction line

𝜑𝑜𝑝𝑡 : Steering angle to head the optimum path direction [deg]

𝜑𝑑𝑒𝑠𝑖𝑟𝑒𝑑 : Desired Heading angle [deg]

 𝜑ℎ𝑒𝑎𝑑𝑖𝑛𝑔 : Current Heading angle [deg]

𝐾𝑝 : Proportional gain in control

(𝑥𝑏, 𝑦𝑏, 𝑧𝑏) : Drone body reference axes

(𝑥𝑖 , 𝑦𝑖) : Image coordinate axes

xviii

(𝑥𝑖𝑗,𝑚𝑖𝑛
, 𝑦𝑖𝑗,𝑚𝑖𝑛

) : Coordinates of the upper left corner of the jth bounding box

(𝑥𝑖𝑗,𝑚𝑎𝑥
, 𝑦𝑖𝑗,𝑚𝑎𝑥

) : Coordinates of the bottom right corner of the jth bounding box

1

CHAPTER 1

1 INTRODUCTION

 An unmanned aerial vehicle (UAV), generally known as a drone, is defined as an

aircraft without a human pilot onboard for the navigation control. A drone is a remotely

controlled aircraft that is either flown by a human pilot at the ground or navigated

autonomously by the pre-programmed automation systems. Originally, drones are

designed to be used in the operations which are conducted in the remote, dull or

dangerous situations, especially for the military defence purposes. With continuous

research and developments, nowadays, drones are utilized widely in the military and

civilian applications, such as military real-time monitoring, resource exploration, civil

surveillance, cargo transportation and agricultural planning.

In recent years, drones are started to be applied in precision agricultural (Zhang

and Kovacs, 2012, Mogili and Deepak, 2018) due to the flexibility and capability of a

drone compared to the labour dependent techniques. Furthermore, the ground sensing

and advanced technology of satellite remote sensing (Drusch et al., 2012) that were

applied in smart plantations previously, are very useful but the operation and equipment

costs are too high, especially for the small to medium scale enterprises. Hence, the

implementations of drones with the onboard cameras or sensors become the relatively

low cost alternatives to the small scale enterprises to perform precision agricultural

missions without comprising the required performances.

The drones can be used to collect images and other information from the onboard

sensors. A mission can be performed efficiently and effectively by processing the data

obtained from the drones. Using the data gathered and processed, drones can assist in

2

many tasks in the plantations, such as the plantation analysis and planning (Chebrolu et

al., 2018), plantation surveillance (Herwitz et al., 2004), and the subsequent monitoring

of fields to ascertain health and growth which include the crop monitoring (Lelong et al.,

2008) and soil sampling analysis (Demattê et al., 2018, Huuskonen and Oksanen, 2018,

Ivushkin et al., 2018).

 In Malaysia, agriculture sector, especially the oil palm plantation, is one of the

important sectors that contribute to the country economy. Malaysia is known as the

second largest palm oil producer in the world after Indonesia (Alam et al., 2015). With

the current technology developed, in Malaysia, the drones are utilised in the smart oil

palm plantations by flying the drone at a high altitude to perform precision agriculture

missions, such as tree counting and monitoring (Li et al., 2016, Tugi et al., 2015, Chong

et al., 2017). However, to obtain a high-resolution image from a high altitude in order to

observe the soil conditions for the health assessments, the drone tends to carry a heavy

and costly multispectral or hyperspectral camera (Chong et al., 2017) which causes a

high power consumption as well. The high power consumption of the instruments will

affect the flight endurance and range of the drone.

At a low-altitude or near the ground flight, the drone can captures the images at

a nearer distance to the target objects, such as the soil or crop. Hence, a commercially

available camera is sufficient to capture clear images for the further data processing and

analysis. In addition, compared to the applications of the drone at a high altitude, the

drone in a low-altitude flight can be used to perform more missions, such as crop

monitoring, and fertiliser spraying with a suitable quantity based on the condition of the

soil. The applications of drone at a low altitude offer more cost-effective and efficient

solutions compared to the labour in a vast field.

3

However, the greatest challenge to overcome in a low-altitude flight is the ability

of the drone to avoid collision from the obstacles in order to prevent the drone crashes.

Traditionally, the drone navigations are dependent on the pilots which might prone to

have human errors in the operations. To achieve autonomous navigation, the capability

of obstacle detection is a significant key in order to identify and feedback the information

of the surrounding environment to the system. The system will produce a motion

command based on the environment information to avoid the detected obstacles. This

reduces the risk of collisions caused by the human operation handling errors.

 Commonly, the drone obstacle avoidance systems are performed by using the

active sensing sensors (Fasano et al., 2008), such as LIDAR (Ramasamy et al., 2016),

inertial sensors, ultrasonic and infrared range finders (Gageik et al., 2015) or the passive

sensors, such as RGB-D camera (Iacono and Sgorbissa, 2018), stereo camera (Barry et

al., 2018) or multiple cameras, etc. The cost, weight, and power consumption of these

instruments become a great constraint to the drone mission. Therefore, a single camera

is preferable in an obstacle avoidance system as it is light-weight, commercially available,

and low power consumption.

 Generally, monocular vision-based obstacle detection methods can be divided

into two categories: motion-based and knowledge-based methods. Optical flow (Lee et

al., 2010, Yoo et al., 2011, Eresen et al., 2012) is a typical approach used to detect and

estimate the depth based on the motion information. The obstacle may be missed due to

the wrong detection of feature points, or there is no feature point available in the image.

Since monocular vision does not allow accurate and robust distance geometric

measurement, often machine learning-based solutions or the approaches which are

combined with the optical flow methods (Ho et al., 2018) have been proposed.

4

Since Alexnet (Krizhevsky et al., 2012) won ImageNet competition in 2012,

Convolutional Neural Network (CNN) became the gold standard for image classification.

Since then, CNN approaches were improved until now they outperform humans in the

ImageNet challenge (Alom et al., 2018). Lately, CNN has been applied with a great

success to the detection, segmentation and recognition of objects in images (LeCun et al.,

2015). For instance, CNN approaches were applied in the vehicle detection from aerial

images (Qu et al., 2017), the medical image detection (Hoo-Chang et al., 2016) and the

fruit detection from images by Faster Region-based CNN (Faster R-CNN) (Sa et al.,

2016), etc. Thus, CNN is a good option to be trained as a detector in an obstacle

avoidance system for drone autonomous navigation.

 Nowadays, there are few models that demonstrated object detections with CNN

approaches. Deformable Parts Models (DPM) (Felzenszwalb et al., 2010) used the

sliding window approach (Vedaldi et al., 2009) which the classifier was run at evenly

spaced locations over the entire image, to detect the presence of the targets in the image.

To bypass the problem of selecting a huge number of regions when using sliding window

algorithm, the selective search method (Uijlings et al., 2013) was proposed to extract just

2000 regions from the image which were used as region proposals in R-CNN model

(Girshick et al., 2014). The other demonstrated approaches for region proposal were the

Edgebox (Zitnick and Dollár, 2014) and the grouping superpixels (Rantalankila et al.,

2014).

 CNN acted as a feature extractor to feed the features into a Support Vector

Machine (SVM) to classify the presence of the objects within the candidate region

proposals. However, R-CNN model need a long computational time as it required a

forward pass of the CNN for every single region proposal in every single image. Hence,

Spatial Pyramid Pooling networks (SPPnets) (He et al., 2014) were proposed to speed up

5

the R-CNN model by sharing computation with spatial pyramid pooling. However, the

fine-tuning algorithm proposed in SPPnets cannot update the convolutional layers and

affect the accuracy. Fast R-CNN model (Girshick, 2015) achieved a higher detection

quality and shorter test time by introducing the RoI (Region of Interest) Pooling which

allowed every RoIs to share the forward pass of a CNN for an image. Despite all, the

slow external region proposals in the models were affecting the test time performances.

 To overcome the limitations, the Fast R-CNN and Region Proposal Network

(RPN) were merged in the Faster R-CNN model (Ren et al., 2015) to share the

computations and use neural networks instead of external region proposal methods to

propose regions. With the advantage of short test time, the Faster R-CNN model was

proposed to use for real-time object detections. Next, the evolution of You Only Look

Once (YOLO) models up to YOLOv3 model (Redmon et al., 2016, Redmon and Farhadi,

2017, Redmon and Farhadi, 2018) had brought the object detection algorithms to another

higher performance level by modelling detection as a regression problem. YOLO

algorithms eliminated the need for the region proposal method and used the entire image

during the training and testing process. Thus, it implicitly encoded contextual

information about classes as well as their appearance. However, the accuracy of a single

shot detector, YOLO, had a lower accuracy compared to the region-based algorithms.

Furthermore, currently, the open source algorithm of the model is not publicly available

in the online resources yet.

 From the other side, Faster R-CNN algorithm is publicly available in the open

sources which the users can either construct the network from scratch or import a pre-

trained network to be trained as an obstacle detector. The outstanding performance of

Faster R-CNN model was proved in ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) and Common Object in Context (COCO) 2015 competitions.

6

Faster R-CNN was the foundation of the first place winning entries in several tracks of

these competitions. To the best of the knowledge, this research is the first approach to

adapt Faster R-CNN in drone navigation.

In this research, by using the monocular vision, a machine learning approach is

proposed to allow the drone to recognise the features of the tree trunks in the images then

perform the obstacle detection and avoidance control in an oil palm trees field. The

approach involves the configuration of Faster Region-based Convolutional Neural

Network model (Faster R-CNN) as the detector to localise the frontal obstacle. The

system is divided into two main stages: vision-based obstacle detection, in which the

obstacles in the images captured by the front single camera are detected, and motion

control, in which the avoidance decisions are taken based on the result from the first stage

and sent back to the drone.

1.1 Problem Statement

Commonly, a small multi-rotors drone, such as a micro aerial vehicle, has a limited

flight endurance which is around 15 to 30 minutes only. This is due to the limitation of

the battery and the power consumption by the rotors to provide the thrust to the drone.

Hence, the additional payloads, such as sensors or multi-camera, applied on the drone to

detect the presence of obstacles will reduce the flight endurance and range of the drone

significantly. This will be a constraint for the further development and applications of

drone in precision agriculture. Hence, it is essential to develop an obstacle avoidance

algorithm which eliminates the needs of sensors in object detection for the autonomous

navigation purpose. A single camera onboard of the drone is an alternative replacement

to the sensors.

7

Furthermore, although Faster R-CNN performs well in the common object

detection in different competitions and challenges, it is necessary to verify its practicality

in a real-life scenario and practical implementation on the drone navigation. Besides, the

factors that affect the performance of a Faster R-CNN model need to be investigated to

construct a scratch detector model and optimise the performance in the detection of the

tree trunks.

Lastly, in a real flight, the environment factors might affect the stability of the

drone. When flying in the plantation, the drone might not able to fly at a constant height

from the ground due to the external issues, such as the ground might be soft after rain

and unexpected gust, which can cause the drone to become unstable. This also causes the

view of the camera is different from time to time. Thus, this is a challenge to overcome

in a vision-based obstacle avoidance system.

1.2 Objective

The research work in this thesis is performed to achieve the following objectives:

1. To study the performance of a CNN-based detector on different flight motions.

2. To construct and optimise the performance of a scratch Faster R-CNN model with

different specifications.

3. To compare the performance of a scratch model and the pre-trained Faster R-

CNN models in the tree trunks detection.

4. To develop an obstacle avoidance algorithm and implement in drone autonomous

navigation in oil palm plantation.

8

1.3 Thesis Layout

This thesis consists of 5 main chapters which are Introduction, Literature Review,

Methodology, Result and Discussion, Conclusion and Recommendation. Each chapter is

further divided into several sub-chapters as appropriate.

Chapter 1 introduces the applications of drones, especially in the agricultural sector,

followed by the background of the evolution of the CNN approach in the detection task.

The problem statement and objective of this research work are also presented in the first

chapter. Chapter 2 focuses on the review of approaches done by the previous researchers

on the drone autonomous navigation.

Chapter 3 is divided into 2 main sections to discuss the approaches used in obstacle

detection and avoidance Motion Control, respectively. The methods used to train and

implement the Faster R-CNN model in the drone image processing and the flight control

are discussed.

Chapter 4 shows the results of the performance of the detector models and the

results from the real flight tests of the drone in the oil palm trees fields. Finally, the

findings of the work are concluded and recommendations to improve the performance in

the drone autonomous navigation in the future are done in Chapter 5.

9

CHAPTER 2

2 LITERATURE REVIEW

Nowadays, many researchers use monocular images as the inputs to control the

drone in the autonomous navigation. However, with monocular vision, the depth

information is not available directly. Hence, there were few approaches proposed to

overcome this limitation to utilise a single camera in the drone autonomous navigation.

Firstly, using a single camera, the movement of the drone was used to reconstruct

the scenes in the Structure from Motion (SfM) approaches. From a small set of

consecutive images, a regularized depth map was computed and subsequently used for

the waypoint generation (Alvarez et al., 2016). A direct depth estimation approach was

proposed by enabling real-time computation of dense depth maps and navigation in a

cluttered outdoor environment (Daftry et al., 2016). However, in the SfM-based obstacle

avoidance scheme, the drone was not able to avoid dynamic obstacles which were moved

during mapping or between mapping cycles. Moreover, the mapping cycle required the

computational memory to store and compare the consecutive frames of the scene in order

to obtain the depth information.

Most of the monocular vision obstacle avoidance research focused on the

demonstration of the accurate depth measurements as the monocular vision cannot

provide depth information directly. The common methods are optical flow-based

methods and SLAM-based methods. An optical flow method was proposed to obtain the

tested structure in a 3D space environment based on the gradient method of Lukas-

Kanade (Gosiewski et al., 2011). By comparing the sequential images, the model found

10

out whether the obstacle was getting closer. Hence, the movement of the drone were

controlled by producing a steering command which was inversely proportional to the

optical flow difference between the two sides of the image (Agrawal et al., 2017).

Moreover, a variety of bio-inspired optical flow navigation methods have also been

proposed (Zufferey and Floreano, 2006). For instance, the translational optic flow that

was inspired by the method that the insects employ for the collision-free navigation, was

demonstrated (Serres and Ruffier, 2017). However, the optical flow-based method

cannot acquire precise distance, which may limit the usages in some specific missions.

By contrast, SLAM-based methods were proposed to provide precise metric maps

with a sophisticated SLAM algorithm. With the algorithm proposed, the drones

navigated and avoided obstacles with more environment information obtained from the

low-cost ultrasonic and infrared range finders (Gageik et al., 2015). For instance, the

application of Scanning LIDARs for SLAM on the drone navigation was demonstrated

successfully in the indoor environments (Bachrach et al., 2009). As the instruments

proposed previously were heavy to the drone, a method based on Oriented fast and

Rotated Brief SLAM (ORB-SLAM) was proposed to process the video stream of the

front camera (Esrafilian and Taghirad, 2016). First, it computed the 3D locations of the

drone and generated a sparse point cloud map. Then, it enriched the spare map to denser.

Finally, it generated a collision-free roadmap by applying potential field method and

quickly exploring the Random Tree (RRT). These SLAM-based obstacle avoidance

systems performed much more complex tasks though, but usually fail at high speeds

since they reconstructed the environment from frame to frame triangulations.

Some approaches detected the presence of the frontal obstacles and then adjusted

the motion control to avoid them. These approaches are commonly categorised as the

11

sense-and-avoid mechanism. The classification algorithms were used to detect the types

of environment, and then for each environment perspective cue, the desired direction for

the drone to fly was extracted (Bills et al., 2011). However, this approach was limited to

the simple indoor environment only, and it cannot be applied in complex and clustered

outdoor condition.

Moreover, the changes in the size area of the obstacles were proposed to predict

the depths (Al-Kaff et al., 2016, Al-Kaff et al., 2017). Furthermore, a feature point

detector, Speeded Up Robust Features (SURF) was proposed for the fast obstacle

detection (Aguilar et al., 2017). Lastly, the outline of obstacles from Multi-Scale

Oriented Patches (MOPS) and the spatial coordinates of feature points from the Scale

Invariant Feature Transformation (SIFT) algorithm were proposed to merge in order to

show the 3D information of the obstacles (Lee et al., 2011). However, the drawback of

these algorithms is they only work for the obstacles stored in the database.

There were several approaches which were applied to the similar environment as

our research. The Dagger algorithm was presented to learn and predict the control from

the human expert through dense forest environments (Ross et al., 2012). Furthermore, a

hybrid collision avoidance scheme which consists of the Rapidly exploring Random Tree

(RRT) as the global path planner and a fuzzy logic method, was proposed as the local

collision avoidance mechanism. For the development of the proposed path following

scheme, the extended Kalman filter was utilized for estimating the cross-track error of

the flight in the hazardous environment (Liu et al., 2018).

Recently, deep learning-based solutions have proposed to improve real-time

performance in a complex unknown environment. Firstly, Convolutional Neural

Network (CNN) was used to learn a control strategy that mimics an expert pilot's choice

12

of action to navigate autonomously at the indoor (Kim and Chen, 2015) and outdoor

environment (Giusti et al., 2016), respectively. For instance, in a navigation approach

demonstrated at the outdoor environment (Giusti et al., 2016), the camera orientation

estimation was framed as a three-class motion classifications which were Left, Front and

Right. A set of forest trail images was captured with three head-mounted cameras, each

pointing in one direction. Given one frame input, the model decided the next optimal

move. However, this work was demonstrated to follow a specific path, but this research

is working on the general navigation.

There were few researchers who presented deep learning solutions to predict the

depth of the scenes (Liu et al., 2016, Jia et al., 2016, Chakravarty et al., 2017). A fully

convolutional network which was fed with both images and optical flows, was designed

to obtain fast and robust depth estimation (Mancini et al., 2016). In addition, a two-stage

obstacle avoidance deep reinforcement learning system was proposed. It was composed

of a depth predictor fully convolutional neural network followed by a double-Q network

(D3QN) which consists of a convolutional network and a duelling network to predict the

Q-value of angular actions and linear actions in parallel (Xie et al., 2017).

Most recent, J-MOD2 which was a novel CNN architecture, was proposed to

jointly learn the task of the depth estimation, and the obstacle detection from the image

feature extracted by the fine-tuned VGG19 network (Mancini et al., 2018). The approach

was tested and evaluated in a virtual forest scenario on the Unreal Engine software

environment. Furthermore, a saliency detection algorithm was developed by using a deep

CNN to extract monocular visual cues and Radial Basis Function (RBF) neural network

in an actor–critic reinforcement learning module to control the motion of the drone (Ma

et al., 2018). The types of the state-of-the-art drone sensing and detection methods are

summarised in Figure 2-1.

13

Figure 2-1: Summary of Drone Detection and Sensing Methods (Aswini et al., 2018)

This research proposes to adapt Faster R-CNN model as the tree trunk detector.

This is because Faster R-CNN model has shown a short computational time and high

mean Average Precision (mAP) in other robust applications. The drone is proposed to

avoid the frontal obstacles when it detects the approaching obstacles by estimating the

distance from obstacles. In contrast to the approaches that compared the consecutive

frame of images to estimate the distance of obstacles, the heights of the bounding boxes

are used to indicate the estimated distance. Hence, the computational memory for the

previous image frames is not needed. This algorithm aims to have a high mAP and low

computational time in order to be suitable for the drone vision-based navigation

application.

14

CHAPTER 3

3 METHODOLOGY

 In this study, a commercially available quadrotor, namely the Parrot Bebop Drone

2 is used as the airborne platform to collect the dataset and involve in the flight test to

evaluate the result. The performance of a scratch model and pre-trained models of Faster

R-CNN with different convolutional bases trained for the tree trunk detection, are

compared. The trained model with the best performance is selected to adopt in the

obstacle avoidance system.

 The Robot Operating System (ROS) framework is used to communicate with the

software development kit (SDK) of the Parrot Bebop Drone 2 using the developed

bebop_autonomy package. The drone sends the data collected onboard, such as the

images and attitude information, to the ground control station through Wi-Fi connection.

After the ground control station makes the motion control decision based on the detection

result, the command is sent back to the drone to avoid the critical obstacle if it is

necessary.

 This system was run within ROS Kinetic on Linux Ubuntu 16.04 with Intel Core

i7-7500U MB CPU and 32GB RAM. Nvidia 940MX GPU was used for extensive

mathematical computations in detection algorithm to free up CPU cycles for other jobs

and speed up the computation time for the detection. This is because the detection

algorithm deals with the complex convolutional computation and the large size data as

the input is an image. At the end of the project, the real field environment flight tests are

carried by using Parrot Bebop Drone 2 in several oil palm tree fields to evaluate the

performance of the obstacle avoidance system.

15

3.1 Object Detection

3.1.1 Data Collection and Annotation

 In order to train and validate a detection model, a large dataset which consists of

the images taken from the target environment is required. In this research, Parrot Bebop

Drone 2 is used as the airborne platform to fly and record the flight videos in an oil palm

trees field in Engineering Campus of University Sains Malaysia. The Bebop Drone 2

features 14 megapixels with a fish-eye lens and can produce a 3-axes full HD 1080p

video at 30 frames per second. The exact dataset collection location is shown in Figure

3-1.

Figure 3-1: Map of USM Engineering Campus. The red rectangle with icon shows the

area of the location of the dataset collected, whereas the blue rectangles with

icons show the test flight locations which labelled as Location 1 (L1) and

Location 2 (L2), respectively.

 There are two types of dataset collected in the form of flight videos captured

using the front looking camera onboard of the drone. During the flight to collect both

types of dataset, the drone is flown at a constant flying height of 1.5 m from the ground

in the oil palm trees field. The built-in autopilot functions with the inputs from the

16

onboard sensors including a 3-axes gyroscope and an ultrasonic sensor which can

analyzes the flight altitude up to 8 meters, are able to control and maintain the drone in a

constant height during the flight.

 Figure 3-2 shows the body axis reference system fixed to the centre of gravity of

the drone. The 𝑥𝑏-axis is positive toward the direction of the forward movement, whereas

the 𝑧𝑏-axis is aligned with the gravitational force. The 𝑦𝑏-axis is perpendicular to both

axes and is directed in such a way that (𝑥𝑏, 𝑦𝑏, 𝑧𝑏) is a right-hand triad.

Figure 3-2: Reference Body Axis (𝑥𝑏, 𝑦𝑏, 𝑧𝑏) of the drone

 The first type of dataset is collected by alternating positions of the drone along

the 𝑥𝑏-axis and 𝑦𝑏-axis, separately in the oil palm trees field to compare the performance

of the networks in detecting the obstacles in the different motions. The second dataset

consists of the flight videos of the drone random navigation in the oil palm trees field to

train the detector with a real flight scenario. The data collection is conducted in three

different lighting conditions in the same environment to ensure the model can detects the

obstacles in any lighting condition.

 The videos recorded by the drone are originally in size of 1920 x1080 pixels. The

videos are resized to 426 x240 pixels before proceeding to the object annotation. This is

𝒚𝒃

𝒛𝒃

𝒙𝒃

17

because the original input image size is too large, and it causes the training process of

the detector becomes expensive in terms of computational time and specifications of the

hardware needed. These images are resized to suit with the memory size of the available

GPU in the laptop to train the detector. Furthermore, this can reduce the training process

time to a reasonable period.

Before the detection model is trained, the ground truth annotations are needed for

both training and validation dataset. A ground truth represents the correct position and

class of the object interested in the image. The dataset is labelled manually in Video

Labeler application in MATLAB. All the oil palm tree trunks are labelled with

rectangular Regions of Interest (RoI) labels in every frame of the videos with the aids of

the built-in automated algorithms in the application, such as Point Tracker and Temporal

Automation Algorithms.

In this scenario, the only type of object of interest is the tree trunk of the oil palm

tree in the image. Therefore, there are only two classes of object in an image which are

a tree trunk or the background. All the bounding boxes are defined by the coordinates of

the upper left point in the image together with the width and height of the boxes. Figure

3-3 shows the example images with the rectangle RoI labelled around the object of

interest, “tree_trunk”. Finally, the labelled ground truth is exported to a table form and

used in detector performance validation or training.

18

Figure 3-3: Examples of the ground truth labelled in the images. The yellow boxes are

the labelled bounding boxes to represent the tree trunks in the images.

19

3.1.2 Network Architecture and Training

 Next, the detector network is constructed and trained. There are two types of

models trained to compare their performances. The first type of the model is a scratch

model, in which the architecture of the Convolutional Neural Network base need to be

defined by the user. This includes the number of layers, type of the activation function,

size of the filter, padding and stride in each convolutional layer that need to be considered

before constructing the scratch model. The weight and bias of each node in each layer is

trained from zero to a value that can fit to the dataset. The training process is done with

MATLAB algorithm.

 The second type of the model is the pre-trained model that imported from the

online resource. The architecture of the model is well defined, and it has been trained in

a large dataset previously. In order to transfer the ability of the feature extraction and

classification from the previous tasks to the identification of the tree trunks in oil palm

trees field, the training method is different from that of a scratch model as the transfer

learning technique is needed. The training process is done with Tensorflow algorithm in

Python language under Linux environment.

3.1.2.1 Scratch Models

The first step is done by defining the CNN network architecture. There is a total

of four different detectors created to investigate the effect of the amount of training data

and the number of the convolutional layers on the performance of the detectors. This can

be a guideline to construct and train a scratch model with the specifications that are the

most suitable to solve this detection problem, before it is implemented in the obstacle

avoidance system.

20

There were four detectors trained with different specifications. The first parameter

manipulated was the number of training images. Firstly, Detector A was trained with

more than 4,000 images, whereas the other 3 detectors were trained with 1,500 images

only. The images in the training dataset of the other 3 detectors were extracted from the

training dataset of Detector A. In other words, the training data of Detector B, C and D

are the same and are the subset of training data of Detector A.

Secondly, the parameter manipulated is the number of repeating blocks that

consists of convolutional and activation function ReLU layers. The convolutional layer

is the important part of a detection model as it extracts the features and produces the

convolutional feature map to feed into the last layer and identify the presence and

location of the tree trunk in the images. As a deep architecture of the convolutional neural

network is computationally expensive in training a new model in terms of training time

and GPU memory space required, the architecture of the scratch model created needs to

keep simple and shallow. Therefore, there were 3 detectors, Detector B, C and D created

with the different number of repeating convolutional blocks in the range of 2 to 5 layers.

Table 3-1 shows the summary of the architecture of CNN of Detector A and B.

The architecture of the CNN is started with an image input layer. The image input

layer feeds the images to a network and applies data normalization. The type and size of

the input layer are defined. For common classification tasks, the input size is typically

the size of the training images. But in the detection tasks, the CNN need to analyse the

smaller sections of the whole image which is the image of the object of interest, so the

input size must be similar to the size of the smallest tree trunk in the dataset. Since RBG

images are fed into the network, an input size of [32 32] with the depth of 3 is selected.

Furthermore, the data transformation is applied when the data is forward propagated

through the input layer by subtracting the average image in training.

21

Table 3-1: The CNN architecture of Detector A and B

No. Layer Name Description

1 Image Input 32x32x3 images with 'zero-center' normalization

2 Convolutional layer 32 3x3 convolutions with stride [1 1] and

padding [1 1 1 1]

3 ReLU ReLU activation layer

4 Convolutional layer 32 3x3 convolutions with stride [1 1] and

padding [1 1 1 1]

5 ReLU ReLU activation layer

6 Max Pooling 3x3 max pooling with stride [2 2] and

padding [0 0 0 0]

7 Fully Connected 64 fully connected layer

8 ReLU ReLU activation layer

9 Fully Connected 2 fully connected layer

10 Softmax Softmax activation layer

11 Classification Output Classification

Next, the middle layers are made up of repeated blocks of convolutional, Rectified

Linear Units (ReLU), and maximum pooling layers. These layers form the core building

blocks of the convolutional neural networks. The convolutional layers apply a

convolution operation to the input with the use of filters or kernels and produce a feature

map. In the convolutional layer, 32 filters with the size of 3 x 3 are used to scan along

the images with a stride [1 1]. The number of filters is equal to the number of neurons

that are connected to the same region of the input which determines the number of feature

maps. Moreover, a stride of padding is added to the input feature map borders to ensure

that the spatial output size is the same as the input size.

Then, the activation step applies a transformation to the output of each neuron by

using activation functions. In here, ReLU is selected as the activation function to perform

a threshold operation to each element of the input from the convolutional layer as shown

22

in Equation (3.1). This function takes the output of a neuron, 𝑂𝑛 and maps it to the

highest positive value, or maps it to zero if the output is negative.

𝑓(𝑥) = {
𝑂𝑛 , 𝑂𝑛 > 0
0, 𝑂𝑛 ≤ 0

. (3.1)

Afterward, the max pooling layer is introduced in the architecture of CNN to

reduce the dimensionality of the feature map. This is done by taking the maximum value

from each 3 x 3 patch area of an image, and then placing it in a new matrix next to the

maximum values from other patches. The rest of the information contained in the

activation maps are discarded. This can help to simplify the following layers and reduce

the number of parameters that the model needs to learn. However, to avoid down-

sampling the data prematurely, the number of pooling layer is kept as low as 1 layer only.

This is because down-sampling in the network might discard image information that is

useful for the training.

The final part of the network is composed of two fully connected layers and a

softmax layer. A fully connected layer combines all of the features extracted by the

previous layers across the image to identify the larger patterns. The last fully connected

layer combines the features to classify the images. Hence, the output size of the last fully

connected layer of the network is equal to the number of the object classes in the image

which are the tree trunk and the background.

At this point, the network produces outputs that can be used to predict whether the

input region of interest belongs to the tree trunk or the background. Then, the softmax

function calculates a probability for the object on the image being predicted which known

as a confidence score. Finally, the classification layer uses the probabilities returned by

the softmax activation function for each input to assign the input to the class of objects.

Figure 3-4 illustrates the architecture of the CNN network of Detector A and B.

23

Figure 3-4: Architecture of the CNN network of Detector A and B. Conv. represents

the convolutional layers, whereas FC represents a fully connected layer.

After the architecture of the network is defined, the Faster R-CNN detector is

trained in four steps. The first and second step train the Region Proposal Network (RPN)

and CNN network defined above in a Faster R-CNN, respectively. The third and fourth

step combine both networks from the weight resulted from the first two steps, such that

a single network is created for detection. In detail, the RPN training is initiated by fixing

the shared convolutional layers, and only fine-tuning the unique layers of RPN in the

third step. On the other hand, in the fourth step, the unique layers of detector network are

fine-tuned, while the convolutional layers are fixed.

The algorithm used in the training is Stochastic Gradient Descent with Momentum

(SGDM) optimizer. The stochastic gradient descent algorithm evaluates the gradient and

updates the parameters using a subset of the training set. For Faster R-CNN training, the

mini batch size must be equal to 1 as the training algorithm creates a training batch by

sampling multiple regions within an image. At each iteration, the algorithm takes one

step towards minimizing the loss function, 𝐽(𝑤𝑙).

24

The gradient descent algorithm updates the network parameters which are the

weights, w and biases, b of each neuron to minimize the loss function by taking small

steps in the direction of the negative gradient of the loss. Equation (3.2) and (3.3) show

the gradient descent algorithm applied to update weight and bias of each neuron during

the training process.

𝑤𝑙+1 = 𝑤𝑙 − 𝛼∇𝐽(𝑤𝑙). (3.2)

𝑏𝑙+1 = 𝑏𝑙 − 𝛼∇𝐽(𝑏𝑙). (3.3)

The learning rate,  determines the size of the steps taken to reach a minimum loss.

In here, a value of 0.001 is selected as the optimum learning rate as a large value of 

may miss the global minimum and caused it fail to converge to a solution, whereas a

small value will take too long time before the minimum point is reached.

3.1.2.2 Pre-trained Model by Transfer Learning

 Transfer learning is one of the techniques in machine learning, which reuses a

model that trained for a general task by transferring the outcome in the previous training

to another similar target task. The model is known as the pre-trained model which has

been trained on a large benchmark dataset for a mission, such as classification,

localization or segmentation, which should be similar to the target task. The model

contains the weights and biases in each layer that represent the features of dataset trained

initially, and can be transferred to a different type of data. These models are available in

the online resources, and can be imported then trained to solve the target problem.

 There are two pre-trained models selected to be trained for the tree trunk detection.

Both pre-trained models were trained previously on the COCO dataset which has a total

	Obstacle avoidance using convolutional neural network for drone navigation in oil palm plantation_Lee Hui Yin_A2_2019_MJMS - Copy

