

 i

DESIGN OF ROBOT MOTION PLANNING ALGORITHM FOR WALL

FOLLOWING ROBOT

Oleh

Muhamad Khairul Bin Ali Hassan

(72488)

Disertasi ini dikemukakan kepada

UNIVERSITI SAINS MALAYSIA

Sebagai memenuhi syarat pengijazahan dengan kepujian dalam bidang

Kejuruteraan Mekatronik bagi ijazah

SARJANA MUDA KEJURUTERAAN (KEJURUTERAAN MEKATRONIK)

Pusat Pengajian Kejuruteraan

Elektrik dan Elektronik

Universiti Sains Malaysia Mei 2006

 ii

ABSTRACT

This project demonstrates the use of Wall Following Algorithm for the

development of mobile robot wall-following behaviors. Algorithms are developed for a

simulated mobile robot that uses an array of range finders for navigation. Navigation

algorithms are tested in a variety of differently shaped environments to encourage the

development of robust solutions, and reduce the possibility of solutions based on

memorization of a fixed set of movements. A typical wall-following robot evolutionary

cycle is analyzed, and results are presented. Wall Following Algorithm is shown to be

capable of producing robust wall-following navigation algorithms that perform well in

each of the test environments used. In this project, i need to control the Robot to follow the

wall. The robot is controlled by a BASIC Stamp microcontroller. The microcontroller is

used to sequence the movement of the robot body sections via servos. The microcontroller

also monitors the infrared sensor so that the ROBOT will avoid obstacles and wall as it

explores. It can be automatically or manually control led through the internet/LAN. A user

friendly GUI is developed using VISUAL BASIC to interface the user commands with the

Robot controller. Computer A will be sent the data to computer B through the

internet/LAN using JAVA program. Computer B will send the data to the BASIC Stamp

and the BASIC Stamp will check their program. Then, the ROBOT will move depend on

the program. The data will be sent to the ROBOT through the parallel port.

 iii

ABSTRAK

Bagi membangunkan projek ROBOT ini, ia dilaksanakan dengan menggunakan

“Algoritma Menyusuli Dinding”. Algoritma ini telah dibangunkan untuk simulasi robot

dengan menggunakan susunan mencari jarak bagi mengemudikan Robot. Algoritma ini

telah diuji dengan pelbagai bentuk keadaan untuk pembangunan penyelesaian Robot dan

mengurangkan kemungkinan dalam penyelesaian untuk mengingat setiap pergerakan.

Kebiasaannya, perkembangan peredaran “Robot Menyusuli Dinding” telah dianalisa dan

keputusannya dipersembahkan. Algoritma Menyusuli Dinding berupaya mengemudikan

Robot untuk menyusuli dinding dengan baik pada setiap suasana keadaan yang diuji.

Dalam projek ini, saya perlu mengawal Robot untuk menyusuli dinding dengan sempurna.

Robot ini dikawal dengan menggunakan pengawalmikro BASIC Stamp. Pengawalmikro

ini digunakan untuk mengawal pergerakan berturutan badan robot yang disambung dengan

servo motor. Pengawalmikro juga digunakan untuk memantau sinaran infra merah pada

robot. Maka, ROBOT akan mengelak halangan atau dinding apabila infra merah

mengesannya. Robot ini dapat dikawal secara automatik dan manual. Gambaran

antaramuka pengguna (GUI) dibangunkan dengan menggunakan VISUAL BASIC untuk

kegunaan pengguna bagi memberi arahan pengawalan ROBOT. Dengan menggunakan

antaramuka VISUAL BASIC, komputer A akan menghantar data kepada komputer B

melalui internet/LAN. Kemudian komputer B akan menghantar data yang diterima dan

menterjemahkannya kepada BASIC Stamp untuk melaksanakan program yang dipilih.

Kemudian ROBOT akan bergerak berdasarkan aturcara yang telah ditulis pada BASIC

Stamp. Data daripada komputer B akan dihantar kepada ROBOT melalui port selari.

 iv

ACKNOWLEDGMENT

I would like to express my deepest appreciation to my supervisor, Dr G. Andal for her

invaluable ideas and advice, particularly for discussion of design ideas and software

relating to this project. I would also thank her for guidance and support throughout the

course of the project.

Besides, I would like to thank technical staff in mechatronic lab for their guidance

and help in using lab tools. My friends help who offered assistance in many and varied

ways is greatly appreciated too.

Thank you.

You’re sincerely,

--

(Muhamad Khairul bin Ali Hassan)

 v

LIST OF FIGURES

FIGURE PAGE

1 ROBOT 5

2 Cutting for ROBOT body 8

3 Bending and drilling guide for ROBOT body 8

4a Back view for ROBOT body 9

4b Side view for ROBOT body 9

4c Front view for ROBOT body 9

5a Body Section 10

5b Standoffs 10

5c ¼” 4-40 Screws 10

6 Servo Motor 11

7 Step to modify the servo 11

8 Battery pack and Servo installed. 12

9 BASIC Stamp2 12

10a Wheel attached to the Robot Chassis with a cotter pin 13

10b One of the front wheels attached to a servo’s output shaft 13

11a Servo Circuit 15

11b Pulse Train 17

12a Basic Stamp II 22

12b Breadboard 23

13a Circuit 24

13b Constructed on the breadboard 24

14a BASIC Stamp 2 Components and Their Functions 25

14b Pins of BASIC Stamp2 25

15 The BS2-IC must be powered and the "straight-through" 28

serial cable must be connected

 vi

16 Control the ROBOT 34

17 General Block Diagram 36

18 Flow Chart at Computer A 37

19 Flow Chart at Computer B 38

20 Flow Chart for Automatic system 39

21 Flow Chart for Manual system 40

22 Flow Chart for BASIC Stamp 41

23a Interface at Computer A 43

23b Interface2 at Computer A 43

24 Visual Basic Program for the first interface 44

25 Visual Basic Program for the second interface 45

26 VB Program to control port 46

27 Create standard EXE 47

28 Add the “Module” 48

29 Completed add the “module” 48

30 Copy input32.dll file 49

31 Visual Basic interface 49

32 VB program to control port 50

33 Page of Environment Variables 51

34 Page Edit System Variable 52

35 Using MS-DOS Prompt to check Java file 52

36 Using MS-DOS Prompt to compile Java file 53

37 Using MS-DOS Prompt to waiting another program 53

38 Results from movement of the ROBOT 54

39 Infrared object sensor 60

40 Schematic of Infrared sensor 61

 vii

LIST OF TABLES

TABLE PAGE

1 List of Parts Required to build the ROBOT 7

2 Voltage and Board Labels 16

3 Address for Data lines, Control Lines and Status Lines 30

LIST OF PROGRAM

PROGRAM PAGE

1 Automatic Control Mode Program 63

2 Manual Control Mode Program 66

3 Combination Program 70

4 JAVA Program 75

 viii

TABLE OF CONTENTS

ABSTRACT…………………………………………………………………….. i

ACKNOWLEDGEMENT……………………………………………………... iii

LIST OF FIGURES……………………………………………………………...iv

LIST OF TABLES…………………………………………………………….....vi

LIST OF PROGRAM……………………………………………………………vi

TABLE OF CONTENTS………………………………………………………...vii

CHAPTER PAGE

CHAP. 1 INTRODUCTION

 1.1 INTRODUCTION 2

 1.2 OBJECTIVE 3

 1.3 GANTT CHART 4

 1.4 OVERVIEW OF THE ROBOT PROJECT. 5

CHAP.2 MECHANICAL CONSTRUCTION

 2.1 MECHANICAL CONSTRUCTION OF ROBOT 7

 2.2 CONSTRUCTING THE BODY SECTIONS 7

 2.3 ASSEMBLING THE ROBOT STRUCTURE 10

 2.4 SERVO MOTOR 11

 2.5 SOCKETING THE BASIC STAMP 2 12

 2.6 THE WHEELS 13

CHAP.3 TESTING THE SERVOS INDIVIDUALLY

3.1 HOW THE SERVOS WORK 15

3.2 CALIBRATION OF THE SERVOS IN SOFTWARE 17

 ix

CHAP.4 SOFTWARE

4.1 INTRODUCTION TO BASIC STAMP 2 22

4.1.1 USING THE BASIC STAMP BREADBOARD 23

4.1.2 EXAMPLE CIRCUIT 24

4.1.3 BASIC STAMP 2 COMPONENTS AND THEIR

 FUNCTIONS 25

4.1.4 QUICK START GUIDE 28

4.2 VISUAL BASIC 28

 4.2.1 PROGRAMMING THE PARALLEL PORT IN VISUAL

 BASIC 29

 4.3 JAVA PROGGRAM 32

CHAP.5. OPERATION OF THE ROBOT

5.1 HOW TO START WITH ROBOT? 34

5.2 GENERAL BLOCK DIAGRAM TO CONTROL THE ROBOT 36

5.3 FLOW CHART for the Process in COMPUTER A 37

 5.4 FLOW CHART for the Process in COMPUTER B 38

5.5 FLOW CHART FOR “AUTOMATIC” MODE 39

 5.6 FLOW CHART FOR “MANUAL” MODE 40

 5.7 FLOW CHART FOR “BASIC STAMP” PROGRAM 41

CHAP.6 STEPS TO OPERATE THE ROBOT

6.1 STEPS TO OPERATE THE ROBOT 43

6.2 STEPS TO SEND SIGNALS TO THE PRINTER PORT 47

6.3 STEPS TO SEND SIGNALS THROUGH INTERNET 51

 /LAN.

6.4 PARALLEL PORT COMMUNICATION 55

 x

CHAP.7 SENSOR

7.1 SENSOR 59

7.2 INFRARED SENSOR 60

CHAP.8 RESULTS

8.1 BASIC STAMP PROGRAMMING 63

8.2 JAVA PROGRAMMING 75

CHAP.9 CONCLUSION AND DISCUSSION 82

CHAP.10 APPENDIX 84

CHAP.11 REFERENCE 87

- 1 -

CHAPTER 1

INTRODUCTION

- 2 -

1.1 INTRODUCTION

Real-time wall following and obstacle avoidance is one of the key issues to successful

applications of mobile robot systems. All mobile robots feature some kind of collision

avoidance, ranging from primitive algorithms that detect an obstacle and stop the robot in

order to avoid a collision, through sophisticated algorithms, that enable the robot to detour

obstacles. The latter algorithms are much more complex, since they involve not only the

detection of wall and an obstacle, but also some kind of quantitative measurements

concerning the wall and obstacle's dimensions. Once these have been determined, the wall

following algorithm needs to steer the robot along the wall and resume motion toward the

original target.

One approach to autonomous navigation is the wall-following method. Here the robot

navigation is based on moving alongside walls at a predefined distance. If an obstacle is

encountered, the robot regards the obstacle as just another wall, following the obstacle's

contour until it may resume its original course. This kind of navigation is technologically

less demanding, since one major problem of mobile robots the determination of their own

position is largely facilitated. Naturally, robot navigation by the wall-following method is

less versatile and is suitable only for very specific applications. One recently introduced

commercial system uses this method on a floor cleaning robot for long hallways

Wall following was selected for the initial problem domain because it is a fairly simple

problem to set up and evaluate. It also lays the groundwork for more complex problem

domains, such as maze traversal, mapping, and full coverage navigation (i.e., vacuuming

and lawn mowing). The development process for these behaviors is described, and the

results of the experiments are presented.

- 3 -

1.2 OBJECTIVES

 Make the ROBOT move based on moving alongside walls by using the sensor.

 If an obstacle is encountered, the robot regards the obstacle as just another wall,

following the obstacle's contour until it may resume its original course.

 Make the ROBOT move by manual control and automatic control through

internet/LAN.

 To make the robot more intelligence to sense the wall and avoidance obstacles.

 Learn how to send the data from one computer to another computer through the

internet/LAN.

 Make the microcontroller serve as the robot’s “brain” controlling and managing all

functions, sensors, and reflexes

- 4 -

1.3 GANTT CHART

Project Schedule Chart

Task Duration JUN JUL. AUG. SEPT OCT. NOV DEC. JAN. FEB. MAR APR

1. Title of the

project.

1 month

2. Send proposal 1 month

3. List of

components

2 weeks

4. Hardware

design

2 month

5. Find of

components

2 month

6. Software

development

2 month

7. Analysis of

the ROBOT

3 month

8. ROBOT

development

5 month

9. REPORT 4 month

10. VIVA 2 weeks

- 5 -

1.4 Overview of the ROBOT Project

The robot that is built and programmed consists of a base, tire, R/C servo, battery pack,

aluminum and electronics part. Here the robot navigation is based on moving alongside

walls at a predefined distance. If an obstacle is encountered, the robot regards the obstacle

as just another wall, following the obstacle's contour until it may resume its original

course. Naturally, robot navigation by the wall-following method is less versatile and is

suitable only for very specific applications. One recently introduced commercial system

uses this method on a floor cleaning robot for long hallways (i.e., vacuuming and lawn

mowing). The ROBOT is shown in Figure 1 below

The robot is controlled by a BASIC Stamp microcontroller. The microcontroller is used to

sequence the movement of the robot body sections via servos. The microcontroller also

monitors an infrared sensor so that the ROBOT will avoid obstacles and wall as it

explores.

Figure 1: ROBOT

- 6 -

CHAPTER 2

MECHANICAL PARTS

- 7 -

2.1 Mechanical Construction of Robot

The construction of the robot will begin with the mechanical construction of the body. The

parts needed for the mechanical construction are listed in Table 1

Table 1: List of Parts Required to build the ROBOT

Parts Quantity

 Part list for mechanical construction

1/16-inch thick aluminum stock

8feet x

10 feet

piece

3/8inch machine screws 10

1/2 screws 10

Rod 4

Standard R/C servo and hardware 2

Battery pack 1

Standoffs 4

9/32” Rubber Grommets 2

13/32” Rubber Grommets 1

2.2 Constructing the Body Sections

Start by cutting a piece of the 1/16-inch aluminum to a size of 7-1/2 inches x 2-1/2 inches.

These pieces will be identified as pieces A of the body sections. Use Figure 2 as a guide to

cut a piece to the dimensions shown.

File any rough edges from the pieces.

- 8 -

Figure 2: Cutting for ROBOT body.

When the piece is cut, use a 3/8-inch drill bit to drill the holes, as indicated in the diagram.

A piece should look like the one pictured in Figure 3

Figure 3: Bending and drilling guide for ROBOT body.

- 9 -

Bend each piece in a table vise/on the edge of a table, as indicated. A piece should look

like the one pictured in Figure 4a,4b and 4c

Figure 4a: Back view for ROBOT body

Figure 4b: Side view for ROBOT body

Figure 4c: Front view for ROBOT body

- 10 -

2.3 Assembling the Robot Structure

This section breaks assembling the Robot into steps. Now that all of the individual pieces

that make up Robot mechanical body have been constructed, it is time to put them all

together.

Parts List:

1) Body Section as shown in Figure 5a

2) Standoffs as shown in Figure 5b

3) ¼” 4-40 Screws as shown in Figure 5c

4) 9/32” Rubber Grommets

5) 13/32” Rubber Grommets

 Figure 5a Figure 5b Figure 5c

• Start by connecting the 13/32” rubber grommet into in the center of the body.

• Insert the two 9/32” rubber grommets into corner holes as shown.

• Use four ¼” 4-40 screws to attach the four standoffs to the body as shown in

Figure below.

- 11 -

2.4 Servo Motor

Get the two servos as shown in Figure 6. The servo must be modifying first.

Figure 6: Servo Motor

 This is the step to modify the servo as shown in Figure 7 below. Unscrew each of the

screws, then pull each components part by part as shown in figure below. Servo must be

modification for a fully-rotational Servo (360°)

Figure 7: Step to modify the servo

- 12 -

Now, use the eight 3/8” 4-40screws and locknuts to attach each servo to the Body of the

Robot. Also plug the battery pack back into the body of the Robot as shown in Figure 8.

Use flathead screw and locknuts to attach the battery pack to underside of the robot body.

Make sure to insert the screw through the battery pack then tighten down the locknuts on

the topside of the chassis. As shown in figure below.

Figure 8: Battery pack and Servo installed.

2.5 Socketing the Basic Stamp 2.

Figure 9 shows the Basic Stamps attached to the Robot chassis with the servo plugged into

the servo ports. Make sure the white breadboard on the board is above where the servos are

mounted on the chassis. Use the four ¼” machine screws to attach the board to the

standoffs.

Figure 9: BASIC Stamp2

- 13 -

The numbers along the top indicate the servo port number. If we connect a servo to the

servo port 12, it means the servo’s control line is connected to I/O line P12. I/O line P12 is

a metal trace on the board that connected the top servo port pin to the BASIC Stamp’s I/O

pin P12.

2.6 The Wheels

Figure 10a shows the wheel attached to the Robot Chassis with a cotter pin and Figure

10b shows one of the front wheels attached to a servo’s output shaft.

The plastic ball used as the Robot rear, and cotter pin is its axle. Each plastic wheel has a

recess that fits on a servo output shaft. Press each plastic wheel onto a servo output shaft

making sure what shaft lines up with and sinks into the recess.

Figure 10a: Wheel attached to the Robot Chassis with a cotter pin

Figure 10b: one of the front wheels attached to a servo’s output shaft

- 14 -

CHAPTER 3

TESTING THE SERVOS

INDIVIDUALLY

- 15 -

3.0 TESTING THE SERVOS INDIVIDUALLY

3.1 How the servos work

Normally, these servos are designed to control the position of something such as a steering

flap on radio-controlled airplane. Their range of motion is typically 90 or 180, and they are

great for applications where inexpensive, accurate high-torque positioning motion is

required. The position of these servos is controlled by an electronic signal called a pulse

train, which you’ll get some first hand experience with shortly. An un-modified hobby

servo has build-in mechanical stoppers to prevent it from turning beyond its 90 or180

range of motion. It also has internal mechanical linkages for position feedback so that the

electronic circuit that controls the Dc motor inside the servo knows where to turn to in

response to a pulse train.

Figure 11a shows the circuit that is established when a servo is plugged into the servo port

labeled 12 on the board. The red and black wires connect to the servo’s power source and

the white (or sometimes yellow) wire is connected to a signal source. When a servo is

plugged into servo port 12, the servo’s signal is BASIC Stamp I/O pin P12.

Figure 11a: Servo Circuit

Amount of time will be reoffered to in units of seconds (s), milliseconds (ms) and

microseconds (us). Seconds are abbreviated with the lower-case letter s. So,,one second is

written as 1 s. Milliseconds are abbreviated as ms and it means one one-thousandth of a

second. The milliseconds and Microseconds box below shows these equalities in terms of

both fractions and scientific notation.

- 16 -

A voltage level is measured in volts, which is abbreviated with an upper case V. The Board

has sockets labeled Vss,Vdd and Vin as shown in Table 2 below.. Vss is called the system

ground or reference voltage. When the battery pack is plugged in, Vss is connected to its

negative terminal. As far as the Board, BASIC Stamp and serial connections to the

computer are concerned, Vss is always 0 V. Vin is unregulated 6 V, and it’s connected to

the positive terminal of the battery pack. Vdd is regulated to 5 V by the Board onboard

voltage regulator, and it will be used with Vss to supply power to circuits built on the

Board breadboard.

Table 2 : Voltage and Board Labels

The control signal the BASIC Stamp sends to the servo’s control line is called “pulse train”

and an example of one is shown in Figure 11b The BASIC Stamp can be programmed to

produce this waveform using any of its I/O pins. In this activity, we’ll start with I/O pin

P12, which is already connected to servo port 12 by a metal trace built into the Board.

First, the BASIC Stamp sets the voltage at P12 to 0 V (low) for 20ms. Then\, it sets the

voltage at P12 to 5V (high) for 1.0 ms. Then, it starts over with a low output for another 20

ms, and high output for another 1.0ms, and so on.

- 17 -

Figure 11b: Pulse Train

This pulse train has 1.0ms high time and a 20ms low time. The high time is the main

ingredient for controlling a servo’s motion, and it is most commonly referred to as the

pulse width. Since these pulse go from low to high (0 V to 5 V) fro a certain amount of

time, they are called positive pulse. Negative pulses would involve a resting state that’s

high with pulses that drop low. Pulse trains have some other technical descriptions duty

and duty cycle. These are described in BASIC Analog and Digital.

A pre-modified servo can be pulsed to make its output shaft turn continuously. The pulse

widths for pre-modified servos range between 1.0 and 2.0ms for full speed clockwise and

counterclockwise respectively. If we give ser 1.25ms pulses, it will turn clockwise at rough

half of full speed. If we give servo 1.90 ms pulses, the servo will turn at almost full speed

counterclockwise. The “center pulse width” is 1.5 ms, and that makes the servo stay still

3.2 Calibration of the Servos in Software

The servos can adjust a pulsout command’s period argument to straighten out the Robot

travel. This practice is called “calibration in software. If the Robot veers to the right when

is programmed to go straight forward, either the left wheel needs to slow down, or the right

wheel needs to speed up. Since the servos are pretty close to top speed as it is, slowing the

left wheel down will work better. You can do this by making the pulse period to the left

servo, which connected to P13, smaller. For example, instead of using the command

pulsout 13, 1000, we might try pulsout 13,900. Keep in mind that the adjustment is

different if we need to slow the right wheel’s rotation. In that case, use a pulsout period

- 18 -

argument larger than 500, such as 560 for starters. By trying different values, we can home

in on the value that will get the Robot wheels turning forward at the same speed, then the

Robot will move forward in the straight line.

We can also make the same corrections to get the Robot travel in a straight line backward.

We must modify Program to make the Robot travel full speed backward. Then, test to

figure out which wheel needs to slow down. Since the pulsout period values have to be

swapped to make the Robot travel full speed reverse, we will also need to adjust the

pulsout period argument differently. For a given wheel, slowing it down involves taking

the full speed pulsout period argument, and adjusting it so that is slightly closer to the

center pulsout period of 750.

• Make the necessary changes in Program so that it makes the Robot go full speed

backward.

• Make the additional adjustment to one of the two pulsout commands to slow down

the wheel that’s turning too fast to cause the Robot to travel backwards in a straight

line.

• Make notes of the fine-tuned pulsout period values you came up with for full speed

straight forward and full speed straight backward.

This calibration involves testing each servo at pulse periods around the predicted center

pulsout period value of 750(1.5ms). What we will be looking for s the best period value to

really make the servo stay still.

First, run Program. If the servos don’t move, they are calibrated. If the servos rotate

slowly, follow the instruction below. If the servos turn rapidly, check the program for

clerical errors. Program below is using to check the servo.

- 19 -

By viewing the slowly turning Robot wheel from the side, you can decide whether to

search for the true center pulsout period using values above or below 750.

• If the wheel is turning clockwise, that means that its true center pullout period is

somewhere above 750.

• If the wheel is turning counterclockwise, it means the true center pulsout period is

somewhere below 750.

The test for finding the correct center pulse width for each servo involves finding the range

of values that make the servo stay still. If the servo is turning slowly clockwise, try pulsout

period values of 751,752,753…To figure out where are true center is, we will need to keep

on increasing the pulsout period argument. Make a note of the first value that causes the

servo to stay still. Then, keep increasing the pulsout period until the servo starts turning the

opposite direction. Make a note of that value as well. Keep in mind that this process works

almost the same fro a servo that is turning counterclockwise, simply look for a true center

pulse width somewhere below 750. Your search will begin at 749, then continue

downwards until the servo stops turning, then starts turning the opposite direction.

 '{$STAMP BS2} 'Stamp directive

 LOW 12 'set P12 to output-low
 LOW 13 'ser P13 to output-low

 loop:

PULSOUT 12,750 'sent 1.5ms pulses to P12
PULSOUT 13,750 'sent 1.5ms pulses to P13

 PAUSE 20 'every 20ms

 GOTO loop 'sent program to "loop:" label

- 20 -

After finding the upper and lower pulsout period values that na\make your servo stay still,

you can take the average of those two values the true center pulsout period argument. This

calculated value is the one you should use in place of 750 in Program Listing.

Here’s an example that’s a little more difficult. What if the servo doesn’t stop until it gets a

period argument of 752? Then, what if it doesn’t start turning again until gets a period

argument of 757? The true period to center this modified servo is would be somewhere

between 752 and 757, but where? By taking the average of the two numbers, the period

would be:

So, 754.5 can not be used as a valid period argument. The average pulsout period needs to

be rounded, but which way? Although the standard practice is to round up if the decimal

value is 0.5 or above, the servo might not really behave according to that practice.

- 21 -

CHAPTER 4

SOFTWARE

- 22 -

4.0 SOFTWARE

4.1 Introduction of Basic Stamp II

The BASIC Stamp is a microcontroller developed by Parallax, Inc. which is easily

programmed using a form of the BASIC programming language. It is called a “Stamp”

simply because it is close to the size of an average postage stamp, except for the

BS2p40 which is much longer due to it's additional I/O pins as shown in Figure 12a.

Basic Stamp II will be employed throughout the lab. Basic Stamp II (from Parallax) is a

microcontroller module based on Microchip PIC16C57. Basic Stamp II (BS2) module NX-

1000

Figure 12a: Basic Stamp II.

- 23 -

4.1.1 Using the BASIC Stamp Breadboard

The breadboard has many strips of copper which run underneath the board in a

horizontal fashion. These strips connect the sockets to each other. This makes it easy to

connect components together to build circuits. To use the breadboard, the legs of

components or wires are placed in the sockets. The sockets are made so that they will hold

the component in place. Each hole is connected to one of the metal strips running

underneath the board. Each metal strip forms a node. A node is a point in a circuit where

two components are connected. Connections between different components are formed by

putting their legs in a common node. There are two columns of 17 nodes on the

breadboard. Each node contains five holes as shown in Figure 12b.

For chips with many legs (ICs), place them in the middle of the board so that half of the

legs are on the left side and half are on the right side. Nodes on the left side are not

connected to nodes on the right side.

Figure 12b: Breadboard

- 24 -

4.1.2 Example Circuit

On the left is a simple circuit used to monitor light levels. The illustration on the right

shows how this circuit (Figure 13a) can be constructed on the breadboard as shown in

Figure 13b

Figure 13a: Circuit

Figure 13b: Constructed on the breadboard

	Design of robot motion planning algorithm for wall following robot_Muhamad Khairul Ali Hassan_E3_2006_NI
	ISI KANDUNGAN DAN PENGHARGAAN
	2.1 Mechanical Construction of Robot 7

	LAPORAN PROJEK TAHUN AKHIR
	OUT address, data (out &h378,25)

