SIMULTANEOUS DETERMINATION OF METHANOL AND ETHANOL IN LOCAL AND FOREIGN ALCOHOLIC DRINKS BY GC-FID

MANJA MURNI BINTI CHE KALID

UNIVERSITI SAINS MALAYSIA

2022

SIMULTANEOUS DETERMINATION OF METHANOL AND ETHANOL IN LOCAL AND FOREIGN ALCOHOLIC DRINKS BY GC-FID

by

MANJA MURNI BINTI CHE KALID

Thesis submitted in partial fulfilment of the requirements for the degree of Master of Science (Forensic Science)

September 2022

ACKNOWLEDGEMENTS

Praise the All Mighty, I successfully completed my thesis on time. First and foremost, I would like to express my heartfelt gratitude to my supervisor, Associate Professor Dr. Nik Fakhuruddin bin Nik Hassan, for his constant wisdom throughout my studies. It's a lesson I'll keep in mind for the rest of my life. I would also like to thank the Faculty of Health Science, Universiti Sains Malaysia, particularly Dr. Nurasmat binti Mohd Shukri, for their contributions, as well as my colleagues at KIMIA Pahang, especially Dr. Faridah binti Mohd Marsin, for their guidance when needed.

I am also grateful to the Malaysia Department of Chemistry (Kimia Malaysia) for providing me with the opportunity to further my education. A special thanks goes out to the staff at the forensic toxicology laboratory at KIMIA Malaysia for giving me the time and space to use scientific tools throughout my laboratory work. I would also like to thank the Public Service Department for approving me to continue my studies through the CBBPTB programme. Tuition fees are also acknowledged as part of the MOU programme between Universiti Sains Malaysia (USM) and KIMIA Malaysia.

My deepest appreciation goes to my family, particularly my wonderful mother, Wan Jah binti Wan Salleh, who has been my entire life, supported, inspired, and contributed so much to the making of this dissertation. My siblings, my aunt Wan Hasmah binti Wan Salleh, who never fails to support me in every way, and my friends, who put up with me through thick and thin. My final dedication is to my late father, Che Khalid bin Ismail, who has been my driving force to continue moving forward.

TABLE OF CONTENTS

CER	RTIFICAT	ΥЕ	ii	
DEC	CLARATI	ON	iii	
ACK	KNOWLE	DGEMENTS	iv	
TAB	BLE OF C	ONTENTS	V	
LIST	Г OF TAE	BLES	ix	
LIST	r of fig	URES	X	
LIST	Г OF SYM	1BOLS	xi	
LIST	Г OF ABE	BREVIATIONS	xiii	
ABS	TRAK		XV	
ABS	TRACT.		xvii	
CHA	APTER 1	INTRODUCTION	19	
1.1	Backgro	ound of Study	19	
1.2	Problen	Problem Statement		
1.3	Aims a	nd Objectives	23	
1.4	Signific	ance of the Study	23	
CHA	APTER 2	LITERATURE REVIEW	24	
2.1	Overvie	2W	24	
2.2	Methan	ol and Ethanol	24	
	2.2.1	Alcoholic Beverages	27	
	2.2.2	Production of Methanol	30	
	2.2.3	Limits of Methanol in Alcoholic Beverages		
	2.2.4	Methanol Intoxication	34	
2.3	Analysi	s of Methanol and Ethanol		
	2.3.1	Gas chromatography Techniques	41	
2.4	Challen	ges and Issues in Alcohol Analysis	44	

CHAPTER 3 METH		METHO	DOLOGY	46
3.1	Overview	W		46
3.2	Reagent	s and chem	icals	46
3.3	Apparate	us and instr	rumentations	47
3.4	Beverag	e samples.		48
3.5	Method	developme	nt	48
	3.5.1	Preparati	on of working solution	48
	3.5.2	Instrume	ntal conditions	49
		3.5.2(a) hold tin	Optimisation of initial oven temperature and me	
		3.5.2(b)	Optimisation of final temperature	50
		3.5.2(c)	Optimisation of heating rate	50
		3.5.2(d)	Optimisation of mode of inlet	51
		3.5.2(e)	Optimisation of flow rate of carrier gas	51
		3.5.2(f)	Optimisation of injection volume	51
3.6	Method	validation.		52
	3.6.1	Preparati	on of standard solutions	52
		3.6.1(a)	Preparation of stock solutions	52
		3.6.1(b)	Preparation of calibration standard solutions	52
		3.6.1(c)	Preparation of internal standard	53
		3.6.1(d)	Preparation of quality control	53
	3.6.2	Validatio	n procedures	53
		3.6.2(a)	Specificity	54
		3.6.2(b)	Limit of detection and quantification	55
		3.6.2(c)	Linearity	55
		3.6.2(d)	Precision	56
		3.6.2(e)	Accuracy	56
		3.6.2(f)	Recovery	57

		3.6.2(g) Suitability system	57
3.7	Method	Application	58
3.8	Operatio	onal flowchart of study	61
CHA	PTER 4	RESULTS AND DISCUSSION	62
4.1	Overviev	W	62
4.2	Experim	iental GC Conditions	62
	4.2.1	Stationary phase	63
	4.2.2	Initial oven temperature and initial time	63
	4.2.3	Final oven temperature	66
	4.2.4	Heating rate	67
	4.2.5	Mode of inlet	68
	4.2.6	Flow rate of carrier gas	71
	4.2.7	Injection volume	73
	4.2.8	Selection of internal standard	74
	4.2.9	Summary of the GC Method Development	76
4.3	Perform	ance of Validation Parameters	77
	4.3.1	Specificity	77
	4.3.2	LOD and LOQ	79
	4.3.3	Linearity	80
	4.3.4	Precision	82
	4.3.5	Accuracy	82
	4.3.6	Recovery	83
	4.3.7	Summary of Validated Performance Report	85
	4.3.8	Suitability of the system	86
4.4	Applicat	tion of the Established Method	87
	4.4.1	Sample Analysis	87
	4.4.2	Quality Control	90

4.4	.3	Carryover91	
СНАРТЕ	R 5	CONCLUSION AND FUTURE RECOMMENDATIONS	92
5.1 Ov	erview	v92	
5.2 Co	nclusio	on92	
5.3 Lin	nitatio	ons of the Study94	
5.4 Red	comm	endations for Future Research95	
REFERE	NCES	5	97
	lineari	Raw experimental data from GC method optimization for ity study of mixed standards (methanol and ethanol) at ent concentration levels	
APPENDI		Raw experimental data from GC method optimization for and LOQ studies of methanol and ethanol	
APPENDI		Raw experimental result from GC method optimization for ion study of mixed standard (methanol and ethanol)	
APPENDI		Raw experimental result from GC method optimization for acy study of mixed standard (methanol and ethanol)	
	the rec	Raw experimental result from GC method optimization for covery study of a mixed standard (methanol and ethanol) in olic and non-alcoholic beverage samples	
		Performance report on the established GC method's system ility check	
APPENDIX G: Raw experimental results from a well-established GC method for the simultaneous determination of methanol and ethanol in alcoholic beverage samples.			

LIST OF TABLES

Page

Table 2.1	Physical properties of methanol and ethanol	26
Table 2.2	Methods of alcohol analysis utilised in previous research for the	
	determination of adulterated substances	40
Table 2.3	The performance of various gas chromatography techniques in	
	alcohol analysis	43
Table 3.1	Optimisation of GC parameters	49
Table 3.2	Calibration of a series mixed standard working solutions	53
Table 3.3	Validation requirements for UNODC regulation	54
Table 3.4	Description of collected samples	60
Table 4.1	Parameters of GC-FID method developed in this study	76
Table 4.2	LOD and LOQ of analytes	80
Table 4.3	Precision of developed GC method	82
Table 4.4	Accuracy of the developed GC method	83
Table 4.5	Recovery of target substances in beverage samples	84
Table 4.6	Validation parameters performed in developed method	85
Table 4.7	Performance of the GC suitability system	86
Table 4.8	Summary of the mean concentrations of methanol and ethanol in	
	the analysed alcoholic beverages	88

LIST OF FIGURES

Figure 2.1	Ethanol fermentation process
Figure 2.2	PME breakdowns pectin in fruits to methanol in the fermentation process
Figure 2.3	Metabolism pathway of methanol and its resulting toxicity in humans
Figure 3.1	The operational flowchart of the methodology in this study
Figure 4.1	Representative chromatograms associated with the increase of the initial oven temperature and the initial hold time. 1: Methanol; 2: Ethanol and 3: IS
Figure 4.2	Impact of the final oven temperature on runtime analysis and the peak separation
Figure 4.3	Representative chromatograms were made as the rate of heating increased from 15 to 25 °C/min. 1: Methanol; 2: Ethanol and 3: IS.
Figure 4.4	
Figure 4.4	Effect of inlet selection mode on analytes' peak area
Figure 4.5	Representative chromatogram associated with increasing the flow rate of carrier gas and split ratio. 1: Methanol; 2: Ethanol and 3: IS.
Figure 4.6	Effects of injection volume on peak area response of analytes73
Figure 4.7	Chromatograms of representative different IS and analyte peaks. 1: Methanol; 2: Ethanol and 3: IS
Figure 4.8	Representative chromatograms for specificity study (a) health drink, (b) beer sample and (c) spiked sample. 1: Methanol; 2: Ethanol and 3: IS
Figure 4.9	Calibration curves of analytes by using GC-FID using optimal

LIST OF SYMBOLS

°C	Degree Celsius
%	Percent
°C/min	Degree Celsius per minute
μL	Microliter
μm	Micrometer
As	Peak asymmetric factor
С	Peak area
g	Gram
g/cm ³	Gram per cubic centimeter
g/mol	Gram per mol
k	Retention factor
L/kg	Liter per kilogram
m	Meter
m mg/dL	Meter Milligram per deciliter
mg/dL	Milligram per deciliter
mg/dL mg/L	Milligram per deciliter Milligram per liter
mg/dL mg/L MHz	Milligram per deciliter Milligram per liter Megahertz
mg/dL mg/L MHz min	Milligram per deciliter Milligram per liter Megahertz Minute
mg/dL mg/L MHz min mL	Milligram per deciliter Milligram per liter Megahertz Minute Milliliter
mg/dL mg/L MHz min mL mL/min	Milligram per deciliter Milligram per liter Megahertz Minute Milliliter Milliliter per minute
mg/dL mg/L MHz min mL mL/min mm	Milligram per deciliter Milligram per liter Megahertz Minute Milliliter Milliliter per minute Millimeter
mg/dL mg/L MHz min mL mL/min mm mΩ/cm	Milligram per deciliter Milligram per liter Megahertz Minute Milliliter Milliliter per minute Millimeter Megaohm per centimeter

r² Correlation of coefficient R_f Resolution rpm Rate per minute Rt Retention time v/v Volume per volume w/v Weight per volume

LIST OF ABBREVIATIONS

ABV	Alcohol by volume
ADH	Alcohol dehydrogenase
ADP	Adenosine di-phosphate
ATP	Adenosine tri-phosphate
CNS	Central nerve system
CV	Coefficient of variance
DART-MS	Direct analysis in real time mass spectrometry
EU	European union
FTIR	Fourier transform infrared spectroscopy
GC	Gas chromatography
GC-FID	Gas chromatography flame ionization detector
GC-FTIR	Gas chromatography-Fourier transform infrared spectroscopy
GC-MS	Gas chromatography mass spectrometry
GC-TCD	Gas chromatography thermal conductivity detector
Н	High
HS-GC-FID	Headspace gas chromatography with flame ionisation detection
IS	Internal standard
IUPAC	International Union of Pure and Applied Chemistry
L	Lower
LC	Liquid chromatography
LOD	Limit of detection
LOQ	Limit of quantification
М	Medium
MRL	Maximum residue limit

MTC	Maximum tolerable concentration
NCADD	National Council on Alcoholism and Drug Dependence
NIR	Near infrared
NMR	Nuclear magnetic resonance
PME	Pectin methyl esterase
PTFE	Polytetrafluoroethylene
QC	Quality control
RM	Ringgit Malaysia
RSD	Relative standard deviation
S/N	Signal to noise ratio
SPE	Solid phase extraction
SST	System suitability test
ТА	Total acidity
UNODC	United Nations Office on Drugs and Crime
UV-VIS	Ultraviolet-visible
WHO	World Health Organization

SIMULTANEOUS DETERMINATION OF METHANOL AND ETHANOL IN LOCAL AND FOREIGN ALCOHOLIC DRINKS BY GC-FID

ABSTRAK

Keracunan metanol akibat daripada pengambilan minuman beralkohol adalah isu di seluruh dunia yang semakin berkembang. Metanol boleh menyebabkan masalah kesihatan yang teruk dan membawa kepada kematian. Atas sebab-sebab ini, banyak kaedah untuk mengukur kepekatan metanol dalam minuman beralkohol telah dibangunkan. Matlamat kajian ini adalah untuk membangunkan kaedah yang tepat, sensitif dan mudah dengan menggunakan GC-FID untuk penentuan serentak metanol dan etanol dalam minuman beralkohol jenama tempatan dan asing. Kaedah ini dibangunkan dengan pengoptimuman parameter GC. Parameter yang dioptimumkan termasuk suhu ketuhar awal 40°C yang ditahan selama 2 minit, kenaikan pada 25°C/min sehingga suhu ketuhar 100°C dicapai, kadar aliran gas pembawa 4.5 mL/min, nisbah pisah 2:1 dengan isipadu suntikan 10 μ L. Kaedah yang dioptimumkan telah disahkan mengikut garis panduan UNODC dari segi spesifisiti, lineariti, had pengesanan dan pengukuran, kejituan dan ketepatan. Kedua-dua keluk penentukuran metanol dan etanol menawarkan kelinearan yang baik, dengan $r^2 > 0.99$ sepanjang julat 0.001-0.625% untuk metanol dan 5-25% untuk etanol. LOQ masing-masing untuk metanol dan etanol ialah 1.72 mg/L dan 1.76 mg/L dengan ketepatan dan pemulihan yang baik. Kaedah ini memerlukan 5.40 minit untuk menghasilkan keputusan. Kaedah yang telah ditetapkan ini kemudiannya digunakan dengan menganalisis 19 minuman beralkohol yang berbeza dengan menyuntiknya terus ke dalam GC-FID selepas asetonitril ditambah sebagai piawai dalaman. Kajian ini mendedahkan bahawa 36.8% daripada sampel yang diperiksa mengandungi kepekatan metanol antara 0-0.0198%,

manakala etanol dikesan dalam setiap sampel. Kaedah yang dicadangkan adalah sensitif, mudah, dan tidak memerlukan sebarang pra-rawatan, menjadikannya sesuai untuk analisis sampel rutin forensik toksikologi. Yang penting, jumlah surih metanol dapat dikesan dengan pasti tanpa gangguan daripada kepekatan etanol yang jauh lebih tinggi. Kesimpulannya, penyelidikan ini telah menunjukkan bahawa kapilari lajur DB ALC 1 dalam GC-FID dengan parameter yang dioptimumkan adalah sangat selektif dan sangat sensitif dalam pengesanan dan pengukuran serentak metanol dan etanol dalam minuman beralkohol.

SIMULTANEOUS DETERMINATION OF METHANOL AND ETHANOL IN LOCAL AND FOREIGN ALCOHOLIC DRINKS BY GC-FID

ABSTRACT

Intoxication with methanol resulting from the consumption of alcoholic beverages is a worldwide issue that is growing. Methanol can cause severe health issues and lead to fatality. Due to these reasons, numerous methods for measuring methanol concentrations in alcoholic beverages had been developed. The aim of this study was to develop an accurate, sensitive and simple method by using GC-FID for simultaneous determination of methanol and ethanol in local and foreign brands of alcoholic beverages. The method was developed by optimisation of the GC parameters. Optimised parameters included an initial oven temperature of 40°C held for 2 minutes, ramping at 25 °C/min until an oven temperature of 100°C was reached, a carrier gas flow rate of 4.5 mL/min, a split ratio of 2:1 with injection volume of 10 μ L. The optimised method was validated in accordance with UNODC guidelines in terms of specificity, linearity, detection and quantification limits, precision and accuracy. Both methanol and ethanol calibration curves offered good linearity, with r^2 > 0.99 throughout ranges of 0.001-0.625% for methanol and 5-25% for ethanol. The respective LOQs for methanol and ethanol were 1.72 mg/L and 1.76 mg/L with good precision and recoveries. This method required 5.40 minutes to yield results. This established method was then applied by analysing 19 different alcoholic beverages by injecting them directly into the GC-FID after acetonitrile was added as an internal standard. This study revealed that 36.8% of the samples examined contained methanol concentrations ranging from 0-0.0198%, whereas ethanol was present in every sample. The proposed method was sensitive, straightforward, and did not require any pretreatment, making it suitable for routine toxicological forensic sample analysis. Importantly, trace amounts of methanol were reliably detected without interference from significantly higher concentrations of ethanol. In conclusion, this research had demonstrated that the DB ALC 1 column capillary in GC-FID with optimised parameters is very selective and highly sensitive in the simultaneous detection and measurement of methanol and ethanol in alcoholic beverages.

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Malaysia is a Muslim country that follows Islamic law. As a result, most Malay eateries do not serve alcohol. Non-Muslims, on the other hand, can still buy alcoholic drinks at hotels, pubs, and restaurants with a western style. These sales contribute to Malaysia's high rate of alcohol use. According to Code Blue, alcohol consumption in Malaysia is becoming more severe and has gradually increased over time (CodeBlue, 2020). In May 2011, the World Health Organization (WHO) ranked Malaysia as the world's tenth biggest consumer of alcohol, even though it has a small population, is small in size, and has a large Muslim population (The Star, 2011).

According to Statista, which was last updated in May 2021, beer is the most popular alcoholic drink in Malaysia. Beer, in fact, is taxed far higher than other alcoholic beverages, with the world's second highest excise duty after Norway (World, 2017). If the excise duty is increased further, the price of the product will rise, which will encourage the illegal market. Hard-core drinkers who can't afford beer will drink traditional or locally made alcoholic drinks or alcohol that was made illegally because it is cheaper.

The primary concern with these illicit alcoholic beverages is whether they are homemade or produced by an unregistered distillery. Typically, they either produce new toxic alcohol or refill and repackage popular brands with cheaper alternatives or a mixture of water, alcohol, and unidentified compounds. One of the unrecorded compounds added to those brews is methanol, a type of alcohol that is sweeter than the usual ethanol found in alcoholic beverages but it is more harmful. Methanol is actually naturally found in very small amounts in fruit juices products. Pectin consists of methoxy poly-galacturonic acids and is believed to be the source of methanol in plant-based products (Oh, 2020). Methanol is also formed simultaneously with ethanol during improper fermentation and distillation processes (Sirhan *et al.*, 2019). Therefore, most fermented alcoholic beverages contain methanol in addition to ethanol.

Excess methanol in alcoholic beverages can cause poisoning and seriously affect human health, such as blindness or death. Health problems associated with mass poisoning have been observed in recent years. Also, in Malaysia in early 2013, 27 deaths out of 41 victims have been documented as the first outbreak of methanol poisoning in Malaysia (Rahimi *et al.*, 2021). When methanol poisoning reoccurs in Malaysia in September 2018, it will be crucial to have a method for simultaneously detection of methanol and ethanol in alcoholic beverages. In this study, gas chromatography technique was used to develop the simultaneous quantitative determination of methanol and ethanol in imported brands as well as locally produced alcoholic beverages in Malaysia.

1.2 Problem Statement

Toxic alcohol poisoning, such as methanol poisoning, is a global problem that is getting worse. Consumption of non-commercial alcoholic beverages is the most common cause of methanol poisoning. This kind of poisoning can also be caused by ingesting methanol itself or drinking alcoholic beverages containing high levels of methanol. Methanol poisoning is a rare occurrence, but it is a very severe poisoning. According to the WHO, methanol poisoning outbreaks have been documented in a number of countries, including India, Norway, Turkey, Australia, and Iran. In Malaysia, the issue of methanol poisoning was raised in 2018, when a total of 64 people had died after drinking cheap alcohol bought from the black market (Md Noor *et al.*, 2020; Rahimi *et al.*, 2021).

Alcoholic beverages are frequently contaminated with methanol. Ethanol and methanol are both colourless liquids with similar tastes, smells, and appearances that are difficult to distinguish by visual inspection. They have similar physicochemical properties and are present as by-products after distillation (Kofi Tulashie *et al.*, 2017). Methanol may be produced in alcoholic beverages as a result of improper distillation or fermentation, or it may be intentionally added to boost alcohol level. Methanol can originate naturally from the degradation of pectins during fermentation (Pineau *et al.*, 2021a).

Illegal production of alcoholic beverages for commercial gain is a severe problem in various countries around the world. There is an issue when non-agricultural ethanol or methanol is mixed into these low-cost drinks to increase the amount of alcohol while lowering the prices. Many cases were reported pertaining to methanol poisoning when the less expensive and easy-to-obtain methanol was substituted for ethanol in alcoholic beverages (Vaskova, 2014). This method of counterfeiting alcoholic drinks was also the cause of widespread methanol poisoning in Malaysia.

The counterfeit or adulterated alcoholic drinks contain much higher amounts of methanol, which can cause headaches, dizziness, and even blindness among other symptoms, and of course, death as well. Methanol becomes hazardous in the body when its metabolites to formaldehyde and formic acid. Methanol has maximum residual limits (MRL) and maximum tolerable concentrations (MTC), and exceeding these limits can result in toxicity. The legal limits that were established by the EU of methanol in alcoholic beverages are 0.4% (v/v) (4000 mg/L) (Paine and Dayan, 2001a). The ingestion of as little as 10 mL of methanol can cause permanent blindness and 30 mL can be fatal (Kofi Tulashie *et al.*, 2017).

Recently, a large number of potentially lethal alcoholic beverages containing methanol in concentrations exceeding legal limits were unlawfully distributed as well as sporadic cases (Arslan *et al.*, 2015). This activity will result in a greater number of people being poisoned and dying. Because of this issue, this study focused on the detection of methanol and ethanol concentrations in both local and foreign alcoholic beverages, as not all dangerous beverages have been evaluated in previous studies, particularly in Malaysia. This study will lead to the measurement of alcohol concentration in alcoholic beverage samples, which can be utilised to prevent indirectly unlawful methanol manufacturing.

1.3 Aims and Objectives

The aim of this research was to develop a simple, sensitive, and direct method for determination of methanol and ethanol in local and foreign alcoholic beverages using a gas chromatography system coupled with a flame ionisation detector.

The specific objectives of this study were:

- 1. To develop and validate a gas chromatographic method for determination of methanol and ethanol simultaneously.
- 2. To apply the established method for determination of the methanol and ethanol concentrations in local and foreign alcoholic beverage samples.

1.4 Significance of the Study

As the number of cases of methanol poisoning from alcoholic beverages rises, there is a growing demand for good sensitive and faster methods of simultaneously measuring the concentrations of methanol and ethanol in alcoholic beverages. The new method is anticipated to be applicable for routine analysis at the Chemistry Department of Malaysia in place of the current method (Kimia Malaysia). It is also expected that the results of this study will be used to support clinical cases of deaths caused by methanol. Additionally, this study could initiate further research on methanol levels detection in local beverages in order to set a maximum residue limit in Malaysia's food regulations, which would subsequently affect the licensing of alcohol manufacturing.

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

This chapter provides a compilation of previous studies on the methanol and ethanol concentrations in various types of alcoholic beverages, as well as their most recent detection and quantification techniques. This chapter also focuses on the efficiency and sensitivity of a method for the preparation, separation, and simultaneous determination of methanol and ethanol.

2.2 Methanol and Ethanol

The word "alcohol" comes from the Arabic word al-kuhul, which means "kohl" (Hamdan- Mansour, 2016). This word has nothing to do with liquids or intoxicating substances. However, the term "kohl" originally referred to a fine black powder similar to eye shadow that was used to colour the eyes darkly. Tapsoba and his colleagues reported that kohl was mostly made up of four chemicals: galena, cerussite, laurionite, and phosgenite (Tapsoba *et al.*, 2010). Kohl was made by a process called sublimation, in which a solid is turned into a vapor and then back into a solid to make a very fine black powder. Around the 16th century, the term was adopted into English to describe any fine powder (Erict, 2016). Later, the word "alcohol" was used to describe anything made through distillation and sublimation, including fluids. And now, the word "alcohol" just means spirit-based ethanol or alcoholic drinks.