
 

DEVELOPMENT OF ARTIFICIAL INTELLIGENCE 

(AI) FOR IMAGE PROCESSING AND CONCEPTUAL 

DISTANCE COMPUTATION FROM CAMERA FOR PICK 

AND PLACE OF OIL PALM FRESH FRUIT BUNCH (FFB) 

by 

 

SITI ADAWIYYAH SIDDIQA BINTI SAIFUDDIN 

(Matrix no: 131208) 

 

Supervisor: 

 

Dr. Khairuddin Mohamed 

 

May 2019 

 
This dissertation is submitted to  

Universiti Sains Malaysia  

As partial fulfillment of the requirement to graduate with honors degree in BACHELOR 

OF ENGINEERING (MANUFACTURING ENGINEERING WITH MANAGEMENT) 

 

School of Mechanical Engineering 

Engineering Campus  

Universiti Sains Malaysia 

 



ii 
 

DECLARATION 

This work has not previously been accepted in substance for any degree and is not being 

concurrently submitted in candidature for any degree.  

Signed_____________________________________ (SITI ADAWIYYAH SIDDIQA 

BINTI SAIFUDDIN) 

Date _______________________________________ 

 

Statement 1 

This thesis is the result of my own investigation, except where otherwise stated. Other 

sources are acknowledged by giving explicit references. Bibliography/references are 

appended. 

Signed_____________________________________ (SITI ADAWIYYAH SIDDIQA 

BINTI SAIFUDDIN) 

Date _______________________________________ 

 

Statement 2 

I hereby give consent for my thesis, if accepted, to be available for photocopying and for 

interlibrary loan, and for title and summary to be made available outside organizations. 

Signed_____________________________________ (SITI ADAWIYYAH SIDDIQA 

BINTI SAIFUDDIN) 

Date _______________________________________ 

 



iii 
 

ACKNOWLEDGEMENT 

Foremost, I want to offer this endeavour to The God Almighty for the wisdom He 

bestowed upon me, the strength, peace of my mind and good health in order to finish this 

project. 

Firstly, I would like to take this opportunity to express my gratitude to my 

supervisor, Dr. Khairudin Mohamed for his patience, enthusiasm, insightful comments, 

invaluable suggestions, helpful information, practical advice and unceasing ideas which 

have helped me tremendously at all times in my research and writing of this thesis. 

Next, I am also thankful to Dr. Zahurin Samad for his invaluable guidance, 

continuous encouragement and constant support in making this research possible while my 

supervisor is not available in USM for the first semester. They are great professors and 

lecturers to have as an advisor and mentor throughout my education at Universiti Sains 

Malaysia (USM). 

I would also like to thank Assoc. Prof. Dr. Jamaluddin Abdullah, Dean of School of 

Mechanical Engineering, Universiti Sains Malaysia for giving me the opportunity to carry 

out this meaningful project. I would like to express my sincere gratitude to several 

individuals for supporting me throughout my final year project especially Mr. Hadi for 

giving me technical support along the journey. He was very accommodating and generous 

with helping me when I was stucked in problems. 

Last but not least, I would like to express my gratitude towards my friends, family 

and most importantly both of my parents for their kind cooperation and encouragement 

which give me motivation in the completion of this project. I have no words to express my 

thanks, but my heart is full of favors received from every person. 

 

 

 



iv 
 

TABLE OF CONTENT 

 

DECLARATION ................................................................................................................ ii 

ACKNOWLEDGEMENT ................................................................................................. iii 

TABLE OF CONTENT ..................................................................................................... iv 

LIST OF FIGURE............................................................................................................... v 

LIST OF TABLE .............................................................................................................. vii 

ABSTRAK ....................................................................................................................... viii 

ABSTRACT ....................................................................................................................... ix 

CHAPTER I INTRODUCTION ......................................................................................... 1 

1.1 OVERALL STRUCTURE OF THE PROJECT .................................................. 2 

1.2 PROBLEM STATEMENT .................................................................................. 3 

1.3 OBJECTIVES ...................................................................................................... 4 

1.4 SCOPE OF WORK .............................................................................................. 4 

CHAPTER II LITERATURE REVIEW ............................................................................ 5 

2.1 ECONOMIC PERFORMANCE OF OIL PALM FRUIT ................................ 5 

2.2 YOLO SOFTWARE......................................................................................... 6 

2.3 TENSORFLOW ............................................................................................... 7 

2.4 IMAGE PROCESSING TECHNIQUES.......................................................... 8 

2.5 ULTRASONIC SENSOR FOR REVERSE PARKING APPLICATION ....... 9 

CHAPTER III RESEARCH METHODOLOGY ............................................................. 11 

3.1 APPLICATION .............................................................................................. 11 

3.2 OBJECT RECOGNITION ............................................................................. 11 

3.3 YOLO SET UP ON WINDOWS ................................................................... 12 

3.4 TENSORFLOW SET UP ON WINDOWS .................................................... 18 

3.5 SET UP TENSORFLOW OBJECT DETECTION API ON RASPBERRY PI

 25 

3.6 DETERMINING CONFIDENCE LEVEL WITH DIFFERENT 

PARAMETERS ......................................................................................................... 29 

3.7 COMPUTING THE DISTANCE OF CAMERA TO OIL PALM FRUIT FOR 

PICK AND PLACE ................................................................................................... 29 



v 
 

CHAPTER IV RESULTS AND DISCUSSION ........................................................... 30 

4.1 CONFIDENCE LEVEL AND TIME TO PROCESS IMAGE OF YOLO 

AND TENSORFLOW SAMPLES ............................................................................ 30 

CHAPTER V CONCLUSION AND FUTURE WORK .................................................. 50 

5.1 CONCLUSION .............................................................................................. 50 

5.2 FUTURE WORK AND RECOMMENDATION .......................................... 51 

REFERENCES ................................................................................................................. 53 

APPENDICES .................................................................................................................. 56 

APPENDIX A – PYTHON SCRIPT TO PROCESS IMAGE (YOLO) ....................... 56 

APPENDIX B – PYTHON SCRIPT TO PROCESS VIDEO (YOLO) ........................ 57 

APPENDIX C – PYTHON SCRIPT TO RENAME IMAGES .................................... 58 

APPENDIX D – PYTHON SCRIPT TO GENERATE ANNOTATIONS XML FILES 

(YOLO) ......................................................................................................................... 58 

APPENDIX E – PYTHON SCRIPT TO PROCESS IMAGE (TENSORFLOW) ....... 60 

APPENDIX F – PYTHON SCRIPT TO PROCESS VIDEO (TENSORFLOW) ........ 63 

APPENDIX G – PYTHON SCRIPT TO PROCESS REAL TIME IMAGE ON 

WEBCAM/PI CAMERA (TENSORFLOW) ............................................................... 66 

 

LIST OF FIGURE 

Figure 1: Framework of pick and place motion[8] ............................................................. 2 

Figure 2.1: Oil palm planted area in Malaysia[9] ............................................................... 5 

Figure 2.2: Image detection using YOLO [11] ................................................................... 6 

Figure 2.3: How Tensorflow Algorithms works[15] .......................................................... 8 

Figure 2.5: Reverse Camera system displayed on monitor of Myvi................................. 10 

Figure 3.2: Workflow of algorithm ................................................................................... 11 

Figure 3.3(a): Workflow of YOLO Object Detection ...................................................... 12 

Figure 3.3(b): Example of oil palm pictures used for training ......................................... 13 

Figure 3.3.1(a): Result after running the command. ......................................................... 14 

Figure 3.3.1(b): The dog image (Obtained from Google image) is then detected with 

bounding box and label. .................................................................................................... 14 

Figure 3.3.2(a): Result of processing video using YOLO trained weights ....................... 15 

Figure 3.3.2(b): Bounding box and labels appeared in the video processed[10] .............. 15 

Figure 3.3.3(a): The red box shows the bounding box drawn .......................................... 16 

Figure 3.3.3(b):  The dataset is being trained. .................................................................. 17 



vi 
 

Figure 3.3.3(c): Training stopped after 300 epoch(es) ..................................................... 18 

Figure 3.4: Files in object_detection folder ...................................................................... 19 

Figure 3.4.5: LabelImg application to label and draw bounding box of object ................ 21 

Figure 3.4.9(a): The command window shows the training started .................................. 23 

Figure 3.4.9(b): The command window shows the recording summary .......................... 24 

Figure 3.4.9(c): The command window shows the completion of training ...................... 24 

Figure 3.4.11: Summary of Tensorflow Object Detection API installation ..................... 25 

Figure 3.5.1(a): Raspberry Pi 3, Model B+, 1GB Ram .................................................... 26 

Figure 3.5.1(b): SD Card .................................................................................................. 26 

Figure 3.5.1(c):Pi Camera ................................................................................................. 26 

Figure 3.5.2(a): Rasperry pi is being updated ................................................................... 27 

Figure 3.5.2(b): Wheel file is being updated .................................................................... 27 

Figure 3.5.2(c): Camera features is enabled on Raspberry Pi ........................................... 28 

Figure 3.5.2(d): Python script to detect objects and live feeds from Pi Camera .............. 28 

Figure 3.5.2(e): Real-time object  detection via Pi camera............................................... 28 

Figure 4.1.1(a): Graph of confidence value vs sample no of YOLO ................................ 34 

Figure 4.1.1(b): Graph of confidence value vs sample no. of Tensorflow ....................... 34 

Figure 4.1.1(c): Graph of time taken to process vs sample no. ........................................ 35 

Figure 4.1.2(a): Graph of confidence value vs sample no. of YOLO ............................... 39 

Figure 4.1.2(b): Graph of confidence value vs sample no. of Tensorflow ....................... 39 

Figure 4.1.2(c): Graph of time taken to process vs sample no. ........................................ 40 

Figure 4.1.3(a): Graph of confidence value of vs sample no. of YOLO .......................... 44 

Figure 4.1.3(b): Graph of confidence value vs sample no. of Tensorflow ....................... 44 

Figure 4.1.3(c): Graph of time taken to process vs test image ......................................... 45 

Figure 4.1.4(a) Graph of confidence value vs sample no. for 3 parameters of YOLO ..... 46 

Figure 4.1.4(b): Graph of confidence value vs sample no. for 3 parameters of Tensorflow

........................................................................................................................................... 46 

Figure 4.1.4(c): Graph of Time taken to Process vs Sample No. ..................................... 47 

 

 

 

 



vii 
 

LIST OF TABLE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 TITLE PAGE 

Table 4.1.1(a) Image processing of YOLO and Tensorflow Test 

Samples (A) 

39 

Table 4.1.1(b) Confidence value and time taken to process the test 

samples of images of YOLO and Tensorflow (A) 

40 

Table 4.12(a) Image processing of YOLO and Tensorflow Test 

Samples (B) 

43 

Table 4.1.2(b) Confidence value and time taken to process the test 

samples of images of YOLO and Tensorflow (B) 

45 

Table 4.1.2(a) Image processing of YOLO and Tensorflow Test 

Samples (C)  

48 

Table 4.1.2(b) Confidence value and time taken to process the test 

samples of images of YOLO and Tensorflow (C)  

50 



viii 
 

ABSTRAK 

Di Malaysia, aktiviti pertanian merupakan sektor yang penting kepada manusia 

terutamanya terhadap industri makanan. Setiap hari, para penyelidik telah melakukan 

penyelidikan dalam pertanian demi peningkatan kualiti, produktiviti serta mengehadkan 

kadar kesalahan manusia. Malaysia dikategorikan sebagai pengeluar dan pengeksport 

kelapa sawit terbesar di  dunia. Untuk meningkatkan produktiviti buah kelapa sawit, 

pelbagai teknik penglihatan mesin dan sistem mekanisasi boleh diaplikasikan. Hal ini adalah 

untuk mengurangkan penggunaan buruh manusia mengutip hasil tanaman dengan hanya 

menggunakan sabit. Masalah kekurangan buruh dapat dikurangkan kerana kebanyakan 

pekerja tidak sanggup melakukan kerja keras tersebut dengan bayaran gaji yang tidak 

berpatutan. Oleh itu, idea projek ini adalah untuk mewujudkan satu sistem untuk sebuah 

mesin memilih dan meletakkan hasil tanaman menggunakan bot automatik yang dipasang 

di trak dengan bantuan kamera langsung. Sebagai langkah awal, satu sistem pengesanan 

kelapa sawit dicipta menggunakan dua algoritma pemprosesan imej, YOLO dan 

Tensorflow. Prestasi kedua-dua algoritma ini kemudian ditentukan dari segi tahap 

keyakinan dan kelajuan untuk memproses imej menggunakan tiga parameter yang berbeza. 

Kemudian, satu kajian bagaimana kamera mengetahui jarak kelapa sawit yang dikesan dari 

kamera juga dilakukan dalam projek ini. Sepanjang projek ini, perkara yang dapat 

disimpulkan ialah algoritma YOLO menyediakan kelajuan yang lebih tinggi sementara 

Tensorflow mempunyai ketepatan yang lebih baik dalam mengesan kelapa sawit. Konsep 

untuk mengira jarak antara kamera dan buah kelapa sawit kemudian dicadangkan dalam 

kajian ini untuk aplikasi dan eksperimen pada masa hadapan. 
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ABSTRACT 

In Malaysia, agriculture activities are the major sector that provides importance to 

the entire human beings especially in the food industry. Most of the researchers have done 

research in agriculture every day to aim for development in quality, productivity and 

limiting probability of human error. Malaysia is categorized as the largest producer and 

exporter of oil palm globally. In order to increase the productivity of palm oil fruits, various 

machine-vision techniques and mechanization systems can be applied. This is to reduce the 

human labor of picking the crops by simply using sickles. The labor shortage problems can 

be minimized as not many labors are willing to do the hard job while the salary is not 

reasonable. Therefore, the idea of this project is to create a system for a machine to pick and 

place the crops using an automated bot mounted at the truck with the aid of live feed camera.    

As early steps, a system of oil palm FFB detection is being created using two algorithms of 

image processing, YOLO and Tensorflow Object Detection API. The performance of both 

algorithms are then determined in terms of confidence level and speed to process the image 

in three different parameters. Then, a study of how the camera computes the distance of 

detected oil palm FFB from the camera is done in this project. Throughout this project, it 

can be deduced that YOLO provides higher speed while Tensorflow performs better 

accuracy in detecting the oil palm FFB. A concept to compute the distance between camera 

and the respective oil palm fruit is proposed in this research for future work application and 

experiment.   

 

 

 

 



CHAPTER I INTRODUCTION 

At present, automation of agricultural operations seems to be in demand in order to 

improve productivity with the help of tools and technology. In recent years, the development 

of autonomous vehicles in agriculture has become very important significantly. Malaysia is 

facing a labour shortage in oil palm plantations, estimated to account for 46% of the total 

industrial workforce. Initiatives are being made to increase the productivity of workers by 

utilising a wide range of intensive mechanisation technologies[1]. Researchers started to 

develop more rational and adaptable vehicles for agricultural operations[2]. For example, 

robots performing agriculture operations such as pick and place of crops by applying the 

Artificial Intelligence (AI) on them. With the presence of this system, the robotic system 

will be able to act and react by itself [3].  

AI also known as a neural network is an electronic model of the human brain 

resemblance that is made up of interconnected simple processors. It approaches image 

processing and pattern recognition that are comprehended as alternatives or improvements 

from the traditional statistically-based procedures[3]. This system can be implemented in 

the image processing of the crops in agriculture such as the oil palm fruit to be 

comprehended by robots for agriculture operations. 

The development of AI for image processing is studied by programming the image 

detection of the oil palm fresh fruit bunch. This image detection can be developed by using 

a network that predicts a single bounding box and confidence score for each oil palm fruit 

category in the image. The model captures the whole-image context around the oil palm 

fruit. However, it cannot handle multiple instances of the same object in the image without 

replicating the number of outputs for each instance [4].  

Next, robotics plays an important role in agricultural production and management. 

The demand for autonomous and time-saving technology in agriculture is to have efficient 

farm management[5]. In this experiment too, motion control of the pick and place of oil 

palm fresh fruit bunch (FFB) are studied which is the distance from the camera to the 

detected oil palm. In automated control system, motion control can provide advanced 

machine functionality. It provides the functionality to move the machine tooling or the part 
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itself in a controlled, precision, rotary or linear manner[7].  Figure 1 shows the pick and 

place motion framework of a robot which starts with input, image processing, motion 

planning, robot control and ended with the operations of pick and place of the robots using 

sensors and actuators.  

 

Figure 1: Framework of pick and place motion[8] 

 

1.1 OVERALL STRUCTURE OF THE PROJECT 

In this project, two types of framework of neural network are going to be tested 

under the development of artificial intelligence in image processing system. These two 

frameworks are named YOLO and Tensorflow Object Detection API. In YOLO, 

Tensorflow are also being used for pretrained Object Detection models. So, Tensorflow is 

a part of the models while YOLO is one such model for object detection. The performance 

of both frameworks are going to be determined with same training set of data which includes 

700 mixture of oil palm fruit images captured with real life images as well as Google images. 

By having the same training data set, the confidence level of the samples for testing purpose 

can be obtained under different type of conditions (non-scientific). The confidence level of 

every testing image will vary under different light intensity, environment and appearance of 

the oil palm FFB. 

The Tensorflow framework will be installed in a microprocessor, Raspberry Pi B+ 

using Python script.  The performance of the Tensorflow will be tested to see whether the 
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objects can be detected in a real-time camera which is the Pi Camera mounted in 

RaspberryPi. However, YOLO framework is still in discussion of machine learning team 

worldwide to be implemented in microprocessor as the power is not efficient to support the 

fast algorithms. 

A research will be done on how a ‘Sawit bot’ will find the distance of the oil palm 

fruit and use the claw to pick and place the oil palm FFB on the truck. An ultrasonic sensor 

will be used because the same concept of car reverse parking sensor will be used. The sensor 

will detect the location of the oil palm fruit and the camera will start executing the object 

detection before the ‘Sawit bot’ apply the pick and place operations. A ‘Sawit bot’ is 

basically a robot to pick and place the oil palm fruit with a claw mounted on the truck with 

sensor and camera attached to it.  

 

1.2 PROBLEM STATEMENT 

In the recent years, crops of oil palm FFB are picked and placed onto the truck 

manually which involves labor activities. However, labor shortage is the crisis of the recent 

agriculture production specifically the oil palm FFB industries. Therefore, machine-vision 

techniques and mechanization systems can be applied as a solution to this problem. For the 

first step, an image processing system is important to detect the oil palm FFB before the 

mechanization takes place. Different algorithms of image processing frameworks provide 

different performance. Besides that, computation of the distance from the camera to the 

respective oil palm fruit plays an important role in this mechanization of pick and place for 

the bot to precisely do its operations. In this project, two different algorithms are being 

compared for the oil palm FFB detection as well as do a research on the concept to find the 

distance of the camera from the respective oil palm FFB in real situations.  
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1.3 OBJECTIVES 

1. To create a system using open-source softwares for object detection of oil palm FFB 

using YOLO and Tensorflow Object Detection API algorithms.  

2. To determine the performance of YOLO and Tensorflow Object Detection API 

algorithms using test images of oil palm FFB in three different parameters. 

3. To study the concept of distance computation of oil palm FFB from the camera 

aperture before pick and place operations.  

 

1.4 SCOPE OF WORK  

In this study, there are some works involved in making the program accomplish. 

First is to determine how the system of YOLO and Tensorflow software works. While doing 

that, basic Python language can be learned as it is used in order to execute the program. 

Then, the execution will show the image processing system by developing the image 

detection of the oil palm FFB. A hundred of images of the mentioned fruit will be used to 

test the running of the program. Next, the performance of state of the art Tensorflow system 

is tested on the Raspberry Pi device. The concept to find the distance from camera to oil 

palm FFB that has been detected is then studied in order for mechannization of pick and 

place to function.  
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CHAPTER II LITERATURE REVIEW 

2.1 ECONOMIC PERFORMANCE OF OIL PALM FRUIT 

Balu et al.[9] did an analysis on the industry performance of the oil palm planted 

area in Malaysia that has shown dramatic growth from a mere 55 000 ha in 1960 to 193 000 

ha in 1970. The development was remarkable with the planted area reaching 1.02 million 

hectares in 1990 and further to 5.74 million hectares in 2016. In recent years, most of the 

expansion took place in Sabah and Sarawak due to declining availability of suitable land in 

Peninsular Malaysia. In 2016, about 47% of the planted area in Peninsular Malaysia, 27% 

in Sabah and 26% in Sarawak. 

They also expected the adoption of mechanization to address the issue of labour 

shortage to increase oil palm productivity that ensure the sustainability of oil palm industry 

in Malaysia. The operation of oil palm plantation in the future are also expected to be more 

efficient, fully mechanized and automated. The use of drones, robotics, advanced sensors 

and digital technologies as well as user-friendly machineries and equipment are expected to 

minimize the manpower requirements. 

This suits with the project of recognizing the image of the oil palm fruit itself by a 

camera to be built in the robot for pick and place operation purpose. This will cut the usage 

of labour, increase efficiency and also save time and cost in order to increase the capacity 

of oil palm fruit to be harvested or transported in the future. Figure 2.1 shows the increase 

in hectares through the years started from 1960 to 2016 across Malaysia. 

 

Figure 2.1: Oil palm planted area in Malaysia[9] 
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2.2 YOLO SOFTWARE 

Redmon et al.[10] studied on YOLO (You Only Look Once) software, a new 

approach to object detection. The software frame object detection acts as a regression 

problem to spatially separated bounding boxes and associated class probabilities. A single 

neural network estimates bounding boxes and class probabilities directly from full images 

in one evaluation. It can be optimized end-to-end directly on detection performance since 

the whole detection pipeline is a single network. The YOLO model processes images in 

real-time at 45 frames per second. YOLO model is also simple to construct and can be 

trained directly on full images.  

In this research, YOLO software will be used in order to detect images of oil palm 

FFB. This is one application of development of AI in image processing. It is an easy 

approach as in earlier detection frameworks, looked at different parts of the image multiple 

times at different scales and repurposed image classification technique to detect objects. 

This approach is slow and inefficient. Therefore, YOLO takes a different approach by 

looking at the entire image only once and goes through the network once and detects objects 

which is very quick and chosen in this experiment. Figure 2.1 is the example of image 

detection using YOLO software of a dog, a bicycle and a truck in their own bounding box 

with labels on top of it. 

 

Figure 2.2: Image detection using YOLO [11] 
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YOLO is chosen because it is extremely fast. The neural network is run on a new 

image at test time to predict detections. Thus, the base network runs at 45 frames per second 

with no batch processing on a Titan X GPU and a fast version runs at more than 150 fps. 

This means streaming video can be processed in real-time with less than 25 milliseconds of 

latency. Furthermore, YOLO achieves more than twice the mean average precision of other 

real-time systems. Second, YOLO reasons globally about the image when making 

predictions. Unlike sliding window and region proposal-based techniques, YOLO sees the 

entire image during training and test time so it implicitly encodes contextual information 

about classes as well as their appearance. Fast R-CNN, a top detection method [14], 

mistakes background patches in an image for objects because it cannot see the larger 

context. YOLO makes less than half the number of background errors compared to Fast R-

CNN. Third, YOLO learns generalizable representations of objects. When trained on natural 

images and tested on artwork, YOLO outperforms top detection methods like DPM and R-

CNN by a wide margin. Since YOLO is highly generalizable it is less likely to break down 

when applied to new domains or unexpected inputs. YOLO still lags behind state-of-the-art 

detection systems in accuracy. While it can quickly identify objects in images it struggles 

to precisely localize some objects, especially small ones.  

 

2.3 TENSORFLOW 

Tensorflow is a machine learning system [12],13] that operates by using dataflow 

graphs to represent computation, shared state, and the operations that mutate that state. The 

nodes of a dataflow graph are mapped across many machines in a cluster, and within a 

machine across many devices such as CPUs, GPUs, and custom designed ASICs known as 

Tensor Processing Units (TPUs). A graph is usually constructed using a front-end language 

such as Python[12]. TensorFlow also providess production prediction at scale, with the same 

models used for training. TensorFlow can train and run deep neural networks for image 

recognition which what this project will be focused on, recurrent neural networks, PDE 

(partial differential equation) based simulations and many more[14]. Figure 2.3 a cycle of 

how tensorflow algorithms works generally starting from a loss function until the output. 
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Figure 2.3: How Tensorflow Algorithms works[15] 

 

2.4 IMAGE PROCESSING TECHNIQUES 

Fadilah et al. [16] had undergone a study on image processing techniques of oil palm 

FFB by using a grading system. Their paper presents the application of color vision for 

automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP 

Yangambi were collected and analyzed using digital image processing techniques. Then the 

color features were extracted from those images and used as the inputs for Artificial Neural 

Network (ANN) learning. The performance of the ANN for ripeness classification of oil 

palm FFB was investigated using two methods: training ANN with full features and training 

ANN with reduced features based on the Principal Component Analysis (PCA) data 

reduction technique. The algorithm for the ripeness classification of oil palm FFB has been 

successfully implemented. The developed ripeness classifier can serve as a color sensor for 

automated oil palm FFB ripeness classification. 

Shah and Kapdi [5] studied about the convolutional neural networks that achieved 

state-of-the-art performance on a number of image recognition benchmarks, including the 

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC-2012). The winning model 

on the localization sub-task was a network that predicts a single bounding box and a 

confidence score for each object category in the image. Such a model captures the whole-

image context around the objects but cannot handle multiple instances of the same object in 

the image without naively replicating the number of outputs for each instance. They 
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proposed a saliency-inspired neural network model for detection, which predicts a set of 

class-agnostic bounding boxes along with a single score for each box related to any object 

of interest. Based on the result obtained in their research, it can be concluded that the region 

based convolution neural network is more optimized at a very basic level. It is in dispute 

whether it can be said as the best form of solution to the problem or not. This result is valid 

only in a certain parameter.  

The image processing technique of the study mentioned above can be implemented 

too in the experiment by using YOLO software. It is slightly different from the first image 

processing study because it is based on the grading system while the experiment is from the 

mesh of the graphics.  The second study for the image processing technique is basically the 

application of the YOLO software that I am going to implement. The software can apply a 

single neural network to the full image. This network divides the image into regions and 

predicts bounding boxes and probabilities for each region. These bounding boxes are 

weighted by the predicted probabilities[11]. The program that will be used looks at the 

whole image at test time so it can be informed by global context in the image by the 

predictions that has been made. 

 

2.5 ULTRASONIC SENSOR FOR REVERSE PARKING APPLICATION 

Road vehicles use parking sensors as proximity sensors to alert the driver of 

obstacles while parking[17]. Ultrasonic parking sensors use high-frequency sound waves to 

detect objects. These sensors produces sound pulses that reflect off of nearby objects. A 

receiver detects the reflected waves and calculates the distance from the vehicle to the 

object. Ultrasonic proximity sensors are connected to an alarm system that warns the driver 

of nearby obstacles with sounds. Advanced  ultrasonic sensors translate to a pictograph on 

a vehicle’s infotainment screen that uses color blocks to represent the vehicle and possible 

obstacles.[18] 

Moreover, backup cameras provides drivers to park more quickly and safely. Rear-

facing cameras give the driver a much clearer and more accurate view of obstacles behind 

https://en.wikipedia.org/wiki/Proximity_sensor
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the car, and most backup systems include a warning tone when it is getting too close to an 

object.[19] 

Besides, the addition of reversing camera systems which are combined with 

conventional parking aid systems ease the parking actions. The area behind the vehicle 

appears in the camera image on the monitor of the radio or navigation system. The display 

shows the driver whether there is anything in the way in real time. The distances measured 

by the ultrasonic sensors are embedded in the camera image in the form of coloured bars. 

This is to help the drivers to get the information at a glance.[20]  

For the mechanization of the pick and place of the oil palm FFB, the same concept 

of reverse camera system can be used. The camera will detect the oil palm FFB and the 

image will appear in the camera as a real time view through ultrasonic sensors mounted at 

the truck. Based on Figure 2.5, it is how reverse camera system displayed on monitor of a 

Myvi car. For this project, oil palm FFB which has been detected will appear in the monitor 

and the distance will be shown using colour blocks to alert the operations of the pick and 

place of the bot.  

 

Figure 2.5: Reverse Camera system displayed on monitor of Myvi 

1 
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CHAPTER III RESEARCH METHODOLOGY 

3.1 APPLICATION 

This chapter describes the programming environment that involves the application 

of object detection. The application used in this project is to identify the oil palm FFB at 

different conditions. Once oil palm FFB are detected, the application will use coloured 

bounding box to mark out the detected fruit on screen.  

There are two versions of softwares/algorithms used in this project which are YOLO 

and Tensorflow. For YOLO, it displays extra feeds such as the coordinates of the bounding 

box, label coordinates and the confidence level. Confidence level is the probability of the 

trained object is in the image. In Tensorflow, the extra feed displayed is only the confidence 

level in the form of percentage. The trained datasets are then implemented in RaspberryPi 

to detect real-time oil palm fruit.  

3.2 OBJECT RECOGNITION 

Object recognition algorithms are required for identifying a specific oil palm fruit 

as an object in a digital image. In this project, object recognition algorithms are used based 

on supervised machine learning which uses training data with labels to learn a model of the 

data. Object recognition algorithms are implemented in OpenCV using Python as the 

programming language. Figure 3.2 shows the workflow of object detection algorithms 

starting from input image until its output of image recognition with frames, image label and 

confidence value.  

 

Figure 3.2: Workflow of algorithm 
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3.3 YOLO SET UP ON WINDOWS 

Figure 3.3(a) shows the summary of the workflow of YOLO Object detetection to 

process images. The workflow starts with collection of samples images followed with its 

requirements as stated until the execution of Python script to process the image.  

 

 

 

 

 

 

 

 

 

Figure 3.3(a): Workflow of YOLO Object Detection 

Collection of Samples: An average of 700 sample images are gathered for each 

target object representing an oil palm fruit. Around 500 images are captured of a real oil 

palm fruit with different backgrounds and distances. Then, 200 images are of oil palm fruits 

are downloaded randomly from Google images. The images that are downloaded are 

ensured to be clear so the training will be effective. The number of sample images are varied 

in terms of distance, quantity and backgrounds because different images have different 

features. Figure 3.3(b) is the example of collection of sample images used for training. On 

the left side, it is the image of a single oil palm FFB. While on the right side shows the 

image of abundance of the respective fruits. Both types of images are used as training data 

sets.  
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  Figure 3.3(b): Example of oil palm pictures used for training 

Requirements to run YOLO: In this experiment, Python 3.5 and 3.6 Anaconda are 

being used. Anaconda installation of Python has been done instead of traditional Python 

installation because it simplifies the install process. It includes ton of packages all at once. 

There is no need to waste time install and configure all the packages. Anaconda python is 

installed from website with the version Python 3.6. Once it is installed, the Anaconda Python 

are then setup.  

Next, Tensorflow CPU version on Windows 10 is required to run YOLO. By 

running the script “pip install tensorflow”, it is installed. OpenCV is also installed from a 

website of Unofficial Windows Binaries for Python Extension Packages. Darkflow 

Repository is then downloaded to run YOLO. YOLO is written in framework called Darknet 

which is a deep learning framework. A Tensorflow version of darknet is created called 

Darkflow. Darkflow is downloaded from github repository where a zip file is downloaded. 

Then, a directory is created in a folder located in Desktop named darkflow-master. 

A library is build by opening a CMD window in the darkflow-master directory and 

python script are inserted: pip install -e. Lastly, weights for the model is downloaded. 

Weights of 608x608 are downloaded from YOLO official webpage. A new folder is created 

in the Darkflow-master directory called ‘Bin’. The downloaded weights are put into the Bin 

folder.  
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3.3.1 Process image using trained weights from YOLO website 

To test whether YOLO works or not, a random image is processed. A dog image is 

downloaded from Google images and saved it as dog.jpg in darkflow-master folder. Then, 

a Cmd window is opened in the folder and coding script to process image is run. The coding 

script to process image is shown in Appendix A. After running the command, the time taken 

to process the image are shown in the window command as in Figure 3.3.1(a). At the same 

time, a picture of dog with bounding box appeared showing that the image processing for 

YOLO works as shown in Figure 3.3.1(b). 

 

Figure 3.3.1(a): Result after running the command. 

 

 

Figure 3.3.1(b): The dog image (Obtained from Google image) is then detected with 

bounding box and label.  
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3.3.2 Processing a video file using the trained weights from YOLO webpage 

Same as process image stated before, a video processing can also be done using 

YOLO. A video of car video game is downloaded from Youtube in mp4 format and save in 

the Darkflow-master folder. Then, a Cmd window is opened in the folder and coding script 

to process video is run. The coding script to process video is shown in Appendix B. In the 

command window as shown in Figure 3.3.2(a), the finished time to process the video and 

the frame per second (FPS) are shown. Then, the video is processed showing bounding 

boxes on the trained images of the weights that has been downloaded before in Figure 

3.3.2(b).  

 

Figure 3.3.2(a): Result of processing video using YOLO trained weights 

 

Figure 3.3.2(b): Bounding box and labels appeared in the video processed[10] 
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3.3.3 Train new models of oil palm fruit 

To start training the new models which is the oil palm fruit, there are several steps 

to be followed. All the images collected are renamed with increasing numbers to 

synchronize for drawing the bounding box. They are renamed for easy tracking purpose 

when bounding box are drawn later. The Python script to rename the images are shown in 

Appendix C. 

Next, annotation XML files are generated for each of the images collected as the 

training dataset. In this XML file, there are a bunch of information specifically the size of 

the bounding box drawn in the term of height and width all measured in pixels. To generate 

the file of each image, a script is being executed shown in Appendix D. Once the script is 

run, the collection of oil palm images popped up one by one, and bounding box are drawn 

at every image as shown in Figure 3.3.3(a). The bounding box are drawn from top left to 

bottom right as coordinates can be obtained from the script.  

 

Figure 3.3.3(a): The red box shows the bounding box drawn  

When all the images are drawn with bounding boxes where the oil palm fruits are 

located, model can now be trained. All the annotations XML files of every images are 

present with the coordinates of the bounding boxes. Next, weights can be loaded and model 

trained can be tested. A copy of configuration file tiny-yolo-voc.cfg is created and change 

the class of the region layer which is 1 because only one class type of oil palm fruit is 

available. In the tiny-yolo-voc-1c.cfg, filters in the convolutional layers is changed by num 
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* (classes + 5). Since the num is 5 and classes are 1 so 5 * (1 + 5) = 30. Therefore, the filters 

is changed to 30.  

Labels.txt is changed where it includes the label(s) to train on (number of labels 

should be the same as the number of classes set in  tiny-yolo-voc-1c.cfg file). In this 

case, labels.txt will contain only one label.  

Lastly, a CMD window is opened in darkflow-master directory, flow --model 

cfg/tiny-yolo-voc-1c.cfg --load bin/tiny-yolo-voc.weights --train --annotation 

train/Annotations --dataset train/Images is typed and executed. This execution will train the 

dataset of the collected oil palm fruit images. Figure 3.3.3(b) shows dataset has started its 

training when the list of steps are shown in the command window.   

 

Figure 3.3.3(b):  The dataset is being trained.  

During the training, the command window shows the statistics of the training, step 

by step with moving average loss. The traning will stop once it reached 300 epoch number. 

For every checkpoint, the data will be stored in a folder in the darkflow-master directory 

called ‘ckpt’. Figure 3.3.3(c) shows the end of training after 300 epoches that has been set 

and the checkpoint is at step 10200. 
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Figure 3.3.3(c): Training stopped after 300 epoch(es) 

3.4 TENSORFLOW SET UP ON WINDOWS 

Same as YOLO, Tensorflow also requires Tensorflow and Anaconda Python 

environment to be set up. Next, TensorFlow Object Detection API repository is downloaded 

from GitHub of Edge Electronics. A folder is created directly in C: and name it 

“tensorflow1”. This working directory contains the full TensorFlow object detection 

framework, training images, training data, trained classifier, configuration files, and 

everything else needed for the object detection classifier. TensorFlow object detection 

repository is downloaded which is located at https://github.com/tensorflow/models and the 

zip file is downloaded. The downloaded zip file is opened and the “models-master” folder 

is extracted directly into the C:\tensorflow1 directory that is just created. The “models-

master” is renamed to just “models”. 

  Then, Faster-RCNN-Inception-V2-COCO model is downloaded from 

TensorFlow's model zoo. TensorFlow provides several object detection models (pre-trained 

classifiers with specific neural network architectures) in its model zoo. 

Faster_rcnn_inception_v2_coco_2018_01_28 folder is extracted to the 

C:\tensorflow1\models\research\object_detection folder. From Figure 3.4, the 

object_detection folder should have all of these files.  

 

https://github.com/tensorflow/models
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
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Figure 3.4: Files in object_detection folder 

This repository contains the images, annotation data, .csv files, and TFRecords 

needed to train a playing card detector. It has scripts to test out the object detection classifier 

on images, videos, or a webcam feed.  

3.4.1 Set up new Anaconda virtual environment 

From the Start menu in Windows, Anaconda Prompt utility is searched and right 

click on it, and “Run as Administrator” is clicked. The command terminal will pop up and 

a new virtual environment called “tensorflow1” is created by issuing the following 

command: 

C:\> conda create -n tensorflow1 pip python=3.6 

Then, the environment is activated by issuing: 

C:\> activate tensorflow1 

Other necessary packages are installed by issuing the following commands: 

(tensorflow1) C:\> conda install -c anaconda protobuf 
(tensorflow1) C:\> pip install pillow 
(tensorflow1) C:\> pip install lxml 
(tensorflow1) C:\> pip install Cython 
(tensorflow1) C:\> pip install jupyter 
(tensorflow1) C:\> pip install matplotlib 
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(tensorflow1) C:\> pip install pandas 
(tensorflow1) C:\> pip install opencv-python 
 

3.4.2 Configure PYTHONPATH environment variable 

A PYTHONPATH variable is created that points to the \models, \models\research, 

and \models\research\slim directories. The PYTHONPATH need to be set up everytime 

‘tensorflow1’ virtual environment is excited.  The following commands are issued from any 

directory: 

(tensorflow1) C:\> set 
PYTHONPATH=C:\tensorflow1\models;C:\tensorflow1\models\research;C:\tensorflow1
\models\research\slim 

 

3.4.3 Compile Protobufs and Run setup.py 

Protobuf files are compiled which are used by TensorFlow to configure model and 

training parameters. Every .proto file in the \object_detection\protos directory is called out 

individually by the command. In the Anaconda Command Prompt, directories are changed 

to the \models\research directory and the following command is run into the command line: 

protoc --python_out=. .\object_detection\protos\anchor_generator.proto 
.\object_detection\protos\argmax_matcher.proto 
.\object_detection\protos\bipartite_matcher.proto 
.\object_detection\protos\box_coder.proto 
.\object_detection\protos\box_predictor.proto 
.\object_detection\protos\eval.proto 
.\object_detection\protos\faster_rcnn.proto 
.\object_detection\protos\faster_rcnn_box_coder.proto 
.\object_detection\protos\grid_anchor_generator.proto 
.\object_detection\protos\hyperparams.proto 
.\object_detection\protos\image_resizer.proto 
.\object_detection\protos\input_reader.proto 
.\object_detection\protos\losses.proto .\object_detection\protos\matcher.proto 
.\object_detection\protos\mean_stddev_box_coder.proto 
.\object_detection\protos\model.proto 
.\object_detection\protos\optimizer.proto 
.\object_detection\protos\pipeline.proto 
.\object_detection\protos\post_processing.proto 
.\object_detection\protos\preprocessor.proto 
.\object_detection\protos\region_similarity_calculator.proto 
.\object_detection\protos\square_box_coder.proto 
.\object_detection\protos\ssd.proto 
.\object_detection\protos\ssd_anchor_generator.proto 
.\object_detection\protos\string_int_label_map.proto 
.\object_detection\protos\train.proto 
.\object_detection\protos\keypoint_box_coder.proto 
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.\object_detection\protos\multiscale_anchor_generator.proto 

.\object_detection\protos\graph_rewriter.proto 

Then, the following commands is run from the C:\tensorflow1\models\research 

directory: 

(tensorflow1) C:\tensorflow1\models\research> python setup.py build 

(tensorflow1) C:\tensorflow1\models\research> python setup.py install 

3.4.4 Gather Images 

TensorFlow needs hundreds of images of an object to train a good detection. The 

training dataset are taken from the collection of samples from YOLO which total around 

700 of oil palm fruit images. After all the images are ready, 20% of them are moved to the 

\object_detection\images\test directory, and 80% of them to the 

\object_detection\images\train directory. There are a variety of pictures in both the \test and 

\train directories. 

3.4.5 Label Images 

For drawing a bounding box around the oil palm fruit of every image, LabelImg is 

used as shown in Figure 3.4.5. It is downloaded online. It is pointed to  \images\train 

directory, and then a box is drawn around each object in each image. The process is repeated 

for all the images in the \images\test directory.  

 

Figure 3.4.5: LabelImg application to label and draw bounding box of object 
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LabelImg saves a .xml file containing the label data for each image. These .xml files 

are used to generate TFRecords, which are one of the inputs to the TensorFlow trainer. Thus, 

there is one .xml file for each image in the \test and \train directories. 

3.4.6 Generate Training Data 

With the images labeled, TFRecords are generated to serve as input data to the 

TensorFlow training model. First, the image .xml data are used to create .csv files containing 

all the data for the train and test images. From the \object_detection folder, following 

command is entered in the Anaconda command prompt: 

(tensorflow1) C:\tensorflow1\models\research\object_detection> python 

xml_to_csv.py 

This creates a train_labels.csv and test_labels.csv file in the 

\object_detection\images folder. Then, TFRecord files are generated by issuing these 

commands from the \object_detection folder: 

python generate_tfrecord.py --csv_input=images\train_labels.csv --

image_dir=images\train --output_path=train.record 

python generate_tfrecord.py --csv_input=images\test_labels.csv --

image_dir=images\test --output_path=test.record 

These generate a train.record and a test.record file in \object_detection. These will 

be used to train the new object detection classifier. 

3.4.7 Label map 

The label map tells the trainer what each object is by defining a mapping of class 

names to class ID numbers. A text editor is used to create a new file and save it as 

labelmap.pbtxt in the C:\tensorflow1\models\research\object_detection\training folderIn 

the text editor, copy or type in the label map in the format below: 

item { 
  id: 1 

  name: 'sawit' 
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3.4.8 Configure Training 

Finally, the object detection training pipeline is configured. It defines which model 

and what parameters will be used for training. This is the last step before running training. 

C:\tensorflow1\models\research\object_detection\samples\configs is navigated and the 

faster_rcnn_inception_v2_pets.config file is copied into the \object_detection\training 

directory. Then, the file is opened with a text editor.  

3.4.9 Run the Training 

From the \object_detection directory, the following command is issued to begin 

training: 

python train.py --logtostderr --train_dir=training/ --

pipeline_config_path=training/faster_rcnn_inception_v2_pets.config 

If everything has been set up correctly, TensorFlow initialize the training. The 

initialization take up to 30 seconds before the actual training begins. When training begins, 

the command windows will show ouput as shown in Figure 3.4.9(a). During the training, 

the command windows shows the recoding summary as in Figure 3.4.9(b). 

 

Figure 3.4.9(a): The command window shows the training started 
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Figure 3.4.9(b): The command window shows the recording summary 

 

Figure 3.4.9(c): The command window shows the completion of training 

Each step of training reports the loss. It will start high and get lower and lower as 

training progresses. For the training on the Faster-RCNN-Inception-V2 model, it started 

from loss at about 1.6 and let it dropped below 0.03, which will take about 39796 steps. 

Figure 3.4.9(c) shows the completion of the training with the number of steps stated.  

3.4.10 Export Inference Graph 

The last step is to generate the frozen inference graph (.pb file). From the 

\object_detection folder, the following command is entered where “XXXX” in “model.ckpt-

XXXX” is replaced with the highest-numbered .ckpt file in the training folder: 

python export_inference_graph.py --input_type image_tensor --

pipeline_config_path training/faster_rcnn_inception_v2_pets.config --
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