

DEVELOPMENT OF ARTIFICIAL INTELLIGENCE

(AI) FOR IMAGE PROCESSING AND CONCEPTUAL

DISTANCE COMPUTATION FROM CAMERA FOR PICK

AND PLACE OF OIL PALM FRESH FRUIT BUNCH (FFB)

by

SITI ADAWIYYAH SIDDIQA BINTI SAIFUDDIN

(Matrix no: 131208)

Supervisor:

Dr. Khairuddin Mohamed

May 2019

This dissertation is submitted to

Universiti Sains Malaysia

As partial fulfillment of the requirement to graduate with honors degree in BACHELOR

OF ENGINEERING (MANUFACTURING ENGINEERING WITH MANAGEMENT)

School of Mechanical Engineering

Engineering Campus

Universiti Sains Malaysia

ii

DECLARATION

This work has not previously been accepted in substance for any degree and is not being

concurrently submitted in candidature for any degree.

Signed_____________________________________ (SITI ADAWIYYAH SIDDIQA

BINTI SAIFUDDIN)

Date _______________________________________

Statement 1

This thesis is the result of my own investigation, except where otherwise stated. Other

sources are acknowledged by giving explicit references. Bibliography/references are

appended.

Signed_____________________________________ (SITI ADAWIYYAH SIDDIQA

BINTI SAIFUDDIN)

Date _______________________________________

Statement 2

I hereby give consent for my thesis, if accepted, to be available for photocopying and for

interlibrary loan, and for title and summary to be made available outside organizations.

Signed_____________________________________ (SITI ADAWIYYAH SIDDIQA

BINTI SAIFUDDIN)

Date _______________________________________

iii

ACKNOWLEDGEMENT

Foremost, I want to offer this endeavour to The God Almighty for the wisdom He

bestowed upon me, the strength, peace of my mind and good health in order to finish this

project.

Firstly, I would like to take this opportunity to express my gratitude to my

supervisor, Dr. Khairudin Mohamed for his patience, enthusiasm, insightful comments,

invaluable suggestions, helpful information, practical advice and unceasing ideas which

have helped me tremendously at all times in my research and writing of this thesis.

Next, I am also thankful to Dr. Zahurin Samad for his invaluable guidance,

continuous encouragement and constant support in making this research possible while my

supervisor is not available in USM for the first semester. They are great professors and

lecturers to have as an advisor and mentor throughout my education at Universiti Sains

Malaysia (USM).

I would also like to thank Assoc. Prof. Dr. Jamaluddin Abdullah, Dean of School of

Mechanical Engineering, Universiti Sains Malaysia for giving me the opportunity to carry

out this meaningful project. I would like to express my sincere gratitude to several

individuals for supporting me throughout my final year project especially Mr. Hadi for

giving me technical support along the journey. He was very accommodating and generous

with helping me when I was stucked in problems.

Last but not least, I would like to express my gratitude towards my friends, family

and most importantly both of my parents for their kind cooperation and encouragement

which give me motivation in the completion of this project. I have no words to express my

thanks, but my heart is full of favors received from every person.

iv

TABLE OF CONTENT

DECLARATION .. ii

ACKNOWLEDGEMENT ... iii

TABLE OF CONTENT ... iv

LIST OF FIGURE... v

LIST OF TABLE .. vii

ABSTRAK ... viii

ABSTRACT ... ix

CHAPTER I INTRODUCTION ... 1

1.1 OVERALL STRUCTURE OF THE PROJECT .. 2

1.2 PROBLEM STATEMENT .. 3

1.3 OBJECTIVES .. 4

1.4 SCOPE OF WORK .. 4

CHAPTER II LITERATURE REVIEW .. 5

2.1 ECONOMIC PERFORMANCE OF OIL PALM FRUIT 5

2.2 YOLO SOFTWARE... 6

2.3 TENSORFLOW ... 7

2.4 IMAGE PROCESSING TECHNIQUES.. 8

2.5 ULTRASONIC SENSOR FOR REVERSE PARKING APPLICATION 9

CHAPTER III RESEARCH METHODOLOGY ... 11

3.1 APPLICATION .. 11

3.2 OBJECT RECOGNITION ... 11

3.3 YOLO SET UP ON WINDOWS ... 12

3.4 TENSORFLOW SET UP ON WINDOWS .. 18

3.5 SET UP TENSORFLOW OBJECT DETECTION API ON RASPBERRY PI

 25

3.6 DETERMINING CONFIDENCE LEVEL WITH DIFFERENT

PARAMETERS ... 29

3.7 COMPUTING THE DISTANCE OF CAMERA TO OIL PALM FRUIT FOR

PICK AND PLACE ... 29

v

CHAPTER IV RESULTS AND DISCUSSION ... 30

4.1 CONFIDENCE LEVEL AND TIME TO PROCESS IMAGE OF YOLO

AND TENSORFLOW SAMPLES .. 30

CHAPTER V CONCLUSION AND FUTURE WORK .. 50

5.1 CONCLUSION .. 50

5.2 FUTURE WORK AND RECOMMENDATION .. 51

REFERENCES ... 53

APPENDICES .. 56

APPENDIX A – PYTHON SCRIPT TO PROCESS IMAGE (YOLO) 56

APPENDIX B – PYTHON SCRIPT TO PROCESS VIDEO (YOLO) 57

APPENDIX C – PYTHON SCRIPT TO RENAME IMAGES 58

APPENDIX D – PYTHON SCRIPT TO GENERATE ANNOTATIONS XML FILES

(YOLO) ... 58

APPENDIX E – PYTHON SCRIPT TO PROCESS IMAGE (TENSORFLOW) 60

APPENDIX F – PYTHON SCRIPT TO PROCESS VIDEO (TENSORFLOW) 63

APPENDIX G – PYTHON SCRIPT TO PROCESS REAL TIME IMAGE ON

WEBCAM/PI CAMERA (TENSORFLOW) ... 66

LIST OF FIGURE

Figure 1: Framework of pick and place motion[8] ... 2

Figure 2.1: Oil palm planted area in Malaysia[9] ... 5

Figure 2.2: Image detection using YOLO [11] ... 6

Figure 2.3: How Tensorflow Algorithms works[15] .. 8

Figure 2.5: Reverse Camera system displayed on monitor of Myvi................................. 10

Figure 3.2: Workflow of algorithm ... 11

Figure 3.3(a): Workflow of YOLO Object Detection .. 12

Figure 3.3(b): Example of oil palm pictures used for training ... 13

Figure 3.3.1(a): Result after running the command. ... 14

Figure 3.3.1(b): The dog image (Obtained from Google image) is then detected with

bounding box and label. .. 14

Figure 3.3.2(a): Result of processing video using YOLO trained weights 15

Figure 3.3.2(b): Bounding box and labels appeared in the video processed[10] 15

Figure 3.3.3(a): The red box shows the bounding box drawn .. 16

Figure 3.3.3(b): The dataset is being trained. .. 17

vi

Figure 3.3.3(c): Training stopped after 300 epoch(es) ... 18

Figure 3.4: Files in object_detection folder .. 19

Figure 3.4.5: LabelImg application to label and draw bounding box of object 21

Figure 3.4.9(a): The command window shows the training started 23

Figure 3.4.9(b): The command window shows the recording summary 24

Figure 3.4.9(c): The command window shows the completion of training 24

Figure 3.4.11: Summary of Tensorflow Object Detection API installation 25

Figure 3.5.1(a): Raspberry Pi 3, Model B+, 1GB Ram .. 26

Figure 3.5.1(b): SD Card .. 26

Figure 3.5.1(c):Pi Camera ... 26

Figure 3.5.2(a): Rasperry pi is being updated ... 27

Figure 3.5.2(b): Wheel file is being updated .. 27

Figure 3.5.2(c): Camera features is enabled on Raspberry Pi ... 28

Figure 3.5.2(d): Python script to detect objects and live feeds from Pi Camera 28

Figure 3.5.2(e): Real-time object detection via Pi camera... 28

Figure 4.1.1(a): Graph of confidence value vs sample no of YOLO 34

Figure 4.1.1(b): Graph of confidence value vs sample no. of Tensorflow 34

Figure 4.1.1(c): Graph of time taken to process vs sample no. .. 35

Figure 4.1.2(a): Graph of confidence value vs sample no. of YOLO 39

Figure 4.1.2(b): Graph of confidence value vs sample no. of Tensorflow 39

Figure 4.1.2(c): Graph of time taken to process vs sample no. .. 40

Figure 4.1.3(a): Graph of confidence value of vs sample no. of YOLO 44

Figure 4.1.3(b): Graph of confidence value vs sample no. of Tensorflow 44

Figure 4.1.3(c): Graph of time taken to process vs test image ... 45

Figure 4.1.4(a) Graph of confidence value vs sample no. for 3 parameters of YOLO 46

Figure 4.1.4(b): Graph of confidence value vs sample no. for 3 parameters of Tensorflow

... 46

Figure 4.1.4(c): Graph of Time taken to Process vs Sample No. 47

vii

LIST OF TABLE

 TITLE PAGE

Table 4.1.1(a) Image processing of YOLO and Tensorflow Test

Samples (A)

39

Table 4.1.1(b) Confidence value and time taken to process the test

samples of images of YOLO and Tensorflow (A)

40

Table 4.12(a) Image processing of YOLO and Tensorflow Test

Samples (B)

43

Table 4.1.2(b) Confidence value and time taken to process the test

samples of images of YOLO and Tensorflow (B)

45

Table 4.1.2(a) Image processing of YOLO and Tensorflow Test

Samples (C)

48

Table 4.1.2(b) Confidence value and time taken to process the test

samples of images of YOLO and Tensorflow (C)

50

viii

ABSTRAK

Di Malaysia, aktiviti pertanian merupakan sektor yang penting kepada manusia

terutamanya terhadap industri makanan. Setiap hari, para penyelidik telah melakukan

penyelidikan dalam pertanian demi peningkatan kualiti, produktiviti serta mengehadkan

kadar kesalahan manusia. Malaysia dikategorikan sebagai pengeluar dan pengeksport

kelapa sawit terbesar di dunia. Untuk meningkatkan produktiviti buah kelapa sawit,

pelbagai teknik penglihatan mesin dan sistem mekanisasi boleh diaplikasikan. Hal ini adalah

untuk mengurangkan penggunaan buruh manusia mengutip hasil tanaman dengan hanya

menggunakan sabit. Masalah kekurangan buruh dapat dikurangkan kerana kebanyakan

pekerja tidak sanggup melakukan kerja keras tersebut dengan bayaran gaji yang tidak

berpatutan. Oleh itu, idea projek ini adalah untuk mewujudkan satu sistem untuk sebuah

mesin memilih dan meletakkan hasil tanaman menggunakan bot automatik yang dipasang

di trak dengan bantuan kamera langsung. Sebagai langkah awal, satu sistem pengesanan

kelapa sawit dicipta menggunakan dua algoritma pemprosesan imej, YOLO dan

Tensorflow. Prestasi kedua-dua algoritma ini kemudian ditentukan dari segi tahap

keyakinan dan kelajuan untuk memproses imej menggunakan tiga parameter yang berbeza.

Kemudian, satu kajian bagaimana kamera mengetahui jarak kelapa sawit yang dikesan dari

kamera juga dilakukan dalam projek ini. Sepanjang projek ini, perkara yang dapat

disimpulkan ialah algoritma YOLO menyediakan kelajuan yang lebih tinggi sementara

Tensorflow mempunyai ketepatan yang lebih baik dalam mengesan kelapa sawit. Konsep

untuk mengira jarak antara kamera dan buah kelapa sawit kemudian dicadangkan dalam

kajian ini untuk aplikasi dan eksperimen pada masa hadapan.

ix

ABSTRACT

In Malaysia, agriculture activities are the major sector that provides importance to

the entire human beings especially in the food industry. Most of the researchers have done

research in agriculture every day to aim for development in quality, productivity and

limiting probability of human error. Malaysia is categorized as the largest producer and

exporter of oil palm globally. In order to increase the productivity of palm oil fruits, various

machine-vision techniques and mechanization systems can be applied. This is to reduce the

human labor of picking the crops by simply using sickles. The labor shortage problems can

be minimized as not many labors are willing to do the hard job while the salary is not

reasonable. Therefore, the idea of this project is to create a system for a machine to pick and

place the crops using an automated bot mounted at the truck with the aid of live feed camera.

As early steps, a system of oil palm FFB detection is being created using two algorithms of

image processing, YOLO and Tensorflow Object Detection API. The performance of both

algorithms are then determined in terms of confidence level and speed to process the image

in three different parameters. Then, a study of how the camera computes the distance of

detected oil palm FFB from the camera is done in this project. Throughout this project, it

can be deduced that YOLO provides higher speed while Tensorflow performs better

accuracy in detecting the oil palm FFB. A concept to compute the distance between camera

and the respective oil palm fruit is proposed in this research for future work application and

experiment.

CHAPTER I INTRODUCTION

At present, automation of agricultural operations seems to be in demand in order to

improve productivity with the help of tools and technology. In recent years, the development

of autonomous vehicles in agriculture has become very important significantly. Malaysia is

facing a labour shortage in oil palm plantations, estimated to account for 46% of the total

industrial workforce. Initiatives are being made to increase the productivity of workers by

utilising a wide range of intensive mechanisation technologies[1]. Researchers started to

develop more rational and adaptable vehicles for agricultural operations[2]. For example,

robots performing agriculture operations such as pick and place of crops by applying the

Artificial Intelligence (AI) on them. With the presence of this system, the robotic system

will be able to act and react by itself [3].

AI also known as a neural network is an electronic model of the human brain

resemblance that is made up of interconnected simple processors. It approaches image

processing and pattern recognition that are comprehended as alternatives or improvements

from the traditional statistically-based procedures[3]. This system can be implemented in

the image processing of the crops in agriculture such as the oil palm fruit to be

comprehended by robots for agriculture operations.

The development of AI for image processing is studied by programming the image

detection of the oil palm fresh fruit bunch. This image detection can be developed by using

a network that predicts a single bounding box and confidence score for each oil palm fruit

category in the image. The model captures the whole-image context around the oil palm

fruit. However, it cannot handle multiple instances of the same object in the image without

replicating the number of outputs for each instance [4].

Next, robotics plays an important role in agricultural production and management.

The demand for autonomous and time-saving technology in agriculture is to have efficient

farm management[5]. In this experiment too, motion control of the pick and place of oil

palm fresh fruit bunch (FFB) are studied which is the distance from the camera to the

detected oil palm. In automated control system, motion control can provide advanced

machine functionality. It provides the functionality to move the machine tooling or the part

2

itself in a controlled, precision, rotary or linear manner[7]. Figure 1 shows the pick and

place motion framework of a robot which starts with input, image processing, motion

planning, robot control and ended with the operations of pick and place of the robots using

sensors and actuators.

Figure 1: Framework of pick and place motion[8]

1.1 OVERALL STRUCTURE OF THE PROJECT

In this project, two types of framework of neural network are going to be tested

under the development of artificial intelligence in image processing system. These two

frameworks are named YOLO and Tensorflow Object Detection API. In YOLO,

Tensorflow are also being used for pretrained Object Detection models. So, Tensorflow is

a part of the models while YOLO is one such model for object detection. The performance

of both frameworks are going to be determined with same training set of data which includes

700 mixture of oil palm fruit images captured with real life images as well as Google images.

By having the same training data set, the confidence level of the samples for testing purpose

can be obtained under different type of conditions (non-scientific). The confidence level of

every testing image will vary under different light intensity, environment and appearance of

the oil palm FFB.

The Tensorflow framework will be installed in a microprocessor, Raspberry Pi B+

using Python script. The performance of the Tensorflow will be tested to see whether the

3

objects can be detected in a real-time camera which is the Pi Camera mounted in

RaspberryPi. However, YOLO framework is still in discussion of machine learning team

worldwide to be implemented in microprocessor as the power is not efficient to support the

fast algorithms.

A research will be done on how a ‘Sawit bot’ will find the distance of the oil palm

fruit and use the claw to pick and place the oil palm FFB on the truck. An ultrasonic sensor

will be used because the same concept of car reverse parking sensor will be used. The sensor

will detect the location of the oil palm fruit and the camera will start executing the object

detection before the ‘Sawit bot’ apply the pick and place operations. A ‘Sawit bot’ is

basically a robot to pick and place the oil palm fruit with a claw mounted on the truck with

sensor and camera attached to it.

1.2 PROBLEM STATEMENT

In the recent years, crops of oil palm FFB are picked and placed onto the truck

manually which involves labor activities. However, labor shortage is the crisis of the recent

agriculture production specifically the oil palm FFB industries. Therefore, machine-vision

techniques and mechanization systems can be applied as a solution to this problem. For the

first step, an image processing system is important to detect the oil palm FFB before the

mechanization takes place. Different algorithms of image processing frameworks provide

different performance. Besides that, computation of the distance from the camera to the

respective oil palm fruit plays an important role in this mechanization of pick and place for

the bot to precisely do its operations. In this project, two different algorithms are being

compared for the oil palm FFB detection as well as do a research on the concept to find the

distance of the camera from the respective oil palm FFB in real situations.

4

1.3 OBJECTIVES

1. To create a system using open-source softwares for object detection of oil palm FFB

using YOLO and Tensorflow Object Detection API algorithms.

2. To determine the performance of YOLO and Tensorflow Object Detection API

algorithms using test images of oil palm FFB in three different parameters.

3. To study the concept of distance computation of oil palm FFB from the camera

aperture before pick and place operations.

1.4 SCOPE OF WORK

In this study, there are some works involved in making the program accomplish.

First is to determine how the system of YOLO and Tensorflow software works. While doing

that, basic Python language can be learned as it is used in order to execute the program.

Then, the execution will show the image processing system by developing the image

detection of the oil palm FFB. A hundred of images of the mentioned fruit will be used to

test the running of the program. Next, the performance of state of the art Tensorflow system

is tested on the Raspberry Pi device. The concept to find the distance from camera to oil

palm FFB that has been detected is then studied in order for mechannization of pick and

place to function.

5

CHAPTER II LITERATURE REVIEW

2.1 ECONOMIC PERFORMANCE OF OIL PALM FRUIT

Balu et al.[9] did an analysis on the industry performance of the oil palm planted

area in Malaysia that has shown dramatic growth from a mere 55 000 ha in 1960 to 193 000

ha in 1970. The development was remarkable with the planted area reaching 1.02 million

hectares in 1990 and further to 5.74 million hectares in 2016. In recent years, most of the

expansion took place in Sabah and Sarawak due to declining availability of suitable land in

Peninsular Malaysia. In 2016, about 47% of the planted area in Peninsular Malaysia, 27%

in Sabah and 26% in Sarawak.

They also expected the adoption of mechanization to address the issue of labour

shortage to increase oil palm productivity that ensure the sustainability of oil palm industry

in Malaysia. The operation of oil palm plantation in the future are also expected to be more

efficient, fully mechanized and automated. The use of drones, robotics, advanced sensors

and digital technologies as well as user-friendly machineries and equipment are expected to

minimize the manpower requirements.

This suits with the project of recognizing the image of the oil palm fruit itself by a

camera to be built in the robot for pick and place operation purpose. This will cut the usage

of labour, increase efficiency and also save time and cost in order to increase the capacity

of oil palm fruit to be harvested or transported in the future. Figure 2.1 shows the increase

in hectares through the years started from 1960 to 2016 across Malaysia.

Figure 2.1: Oil palm planted area in Malaysia[9]

6

2.2 YOLO SOFTWARE

Redmon et al.[10] studied on YOLO (You Only Look Once) software, a new

approach to object detection. The software frame object detection acts as a regression

problem to spatially separated bounding boxes and associated class probabilities. A single

neural network estimates bounding boxes and class probabilities directly from full images

in one evaluation. It can be optimized end-to-end directly on detection performance since

the whole detection pipeline is a single network. The YOLO model processes images in

real-time at 45 frames per second. YOLO model is also simple to construct and can be

trained directly on full images.

In this research, YOLO software will be used in order to detect images of oil palm

FFB. This is one application of development of AI in image processing. It is an easy

approach as in earlier detection frameworks, looked at different parts of the image multiple

times at different scales and repurposed image classification technique to detect objects.

This approach is slow and inefficient. Therefore, YOLO takes a different approach by

looking at the entire image only once and goes through the network once and detects objects

which is very quick and chosen in this experiment. Figure 2.1 is the example of image

detection using YOLO software of a dog, a bicycle and a truck in their own bounding box

with labels on top of it.

Figure 2.2: Image detection using YOLO [11]

7

YOLO is chosen because it is extremely fast. The neural network is run on a new

image at test time to predict detections. Thus, the base network runs at 45 frames per second

with no batch processing on a Titan X GPU and a fast version runs at more than 150 fps.

This means streaming video can be processed in real-time with less than 25 milliseconds of

latency. Furthermore, YOLO achieves more than twice the mean average precision of other

real-time systems. Second, YOLO reasons globally about the image when making

predictions. Unlike sliding window and region proposal-based techniques, YOLO sees the

entire image during training and test time so it implicitly encodes contextual information

about classes as well as their appearance. Fast R-CNN, a top detection method [14],

mistakes background patches in an image for objects because it cannot see the larger

context. YOLO makes less than half the number of background errors compared to Fast R-

CNN. Third, YOLO learns generalizable representations of objects. When trained on natural

images and tested on artwork, YOLO outperforms top detection methods like DPM and R-

CNN by a wide margin. Since YOLO is highly generalizable it is less likely to break down

when applied to new domains or unexpected inputs. YOLO still lags behind state-of-the-art

detection systems in accuracy. While it can quickly identify objects in images it struggles

to precisely localize some objects, especially small ones.

2.3 TENSORFLOW

Tensorflow is a machine learning system [12],13] that operates by using dataflow

graphs to represent computation, shared state, and the operations that mutate that state. The

nodes of a dataflow graph are mapped across many machines in a cluster, and within a

machine across many devices such as CPUs, GPUs, and custom designed ASICs known as

Tensor Processing Units (TPUs). A graph is usually constructed using a front-end language

such as Python[12]. TensorFlow also providess production prediction at scale, with the same

models used for training. TensorFlow can train and run deep neural networks for image

recognition which what this project will be focused on, recurrent neural networks, PDE

(partial differential equation) based simulations and many more[14]. Figure 2.3 a cycle of

how tensorflow algorithms works generally starting from a loss function until the output.

8

Figure 2.3: How Tensorflow Algorithms works[15]

2.4 IMAGE PROCESSING TECHNIQUES

Fadilah et al. [16] had undergone a study on image processing techniques of oil palm

FFB by using a grading system. Their paper presents the application of color vision for

automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP

Yangambi were collected and analyzed using digital image processing techniques. Then the

color features were extracted from those images and used as the inputs for Artificial Neural

Network (ANN) learning. The performance of the ANN for ripeness classification of oil

palm FFB was investigated using two methods: training ANN with full features and training

ANN with reduced features based on the Principal Component Analysis (PCA) data

reduction technique. The algorithm for the ripeness classification of oil palm FFB has been

successfully implemented. The developed ripeness classifier can serve as a color sensor for

automated oil palm FFB ripeness classification.

Shah and Kapdi [5] studied about the convolutional neural networks that achieved

state-of-the-art performance on a number of image recognition benchmarks, including the

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC-2012). The winning model

on the localization sub-task was a network that predicts a single bounding box and a

confidence score for each object category in the image. Such a model captures the whole-

image context around the objects but cannot handle multiple instances of the same object in

the image without naively replicating the number of outputs for each instance. They

9

proposed a saliency-inspired neural network model for detection, which predicts a set of

class-agnostic bounding boxes along with a single score for each box related to any object

of interest. Based on the result obtained in their research, it can be concluded that the region

based convolution neural network is more optimized at a very basic level. It is in dispute

whether it can be said as the best form of solution to the problem or not. This result is valid

only in a certain parameter.

The image processing technique of the study mentioned above can be implemented

too in the experiment by using YOLO software. It is slightly different from the first image

processing study because it is based on the grading system while the experiment is from the

mesh of the graphics. The second study for the image processing technique is basically the

application of the YOLO software that I am going to implement. The software can apply a

single neural network to the full image. This network divides the image into regions and

predicts bounding boxes and probabilities for each region. These bounding boxes are

weighted by the predicted probabilities[11]. The program that will be used looks at the

whole image at test time so it can be informed by global context in the image by the

predictions that has been made.

2.5 ULTRASONIC SENSOR FOR REVERSE PARKING APPLICATION

Road vehicles use parking sensors as proximity sensors to alert the driver of

obstacles while parking[17]. Ultrasonic parking sensors use high-frequency sound waves to

detect objects. These sensors produces sound pulses that reflect off of nearby objects. A

receiver detects the reflected waves and calculates the distance from the vehicle to the

object. Ultrasonic proximity sensors are connected to an alarm system that warns the driver

of nearby obstacles with sounds. Advanced ultrasonic sensors translate to a pictograph on

a vehicle’s infotainment screen that uses color blocks to represent the vehicle and possible

obstacles.[18]

Moreover, backup cameras provides drivers to park more quickly and safely. Rear-

facing cameras give the driver a much clearer and more accurate view of obstacles behind

https://en.wikipedia.org/wiki/Proximity_sensor

10

the car, and most backup systems include a warning tone when it is getting too close to an

object.[19]

Besides, the addition of reversing camera systems which are combined with

conventional parking aid systems ease the parking actions. The area behind the vehicle

appears in the camera image on the monitor of the radio or navigation system. The display

shows the driver whether there is anything in the way in real time. The distances measured

by the ultrasonic sensors are embedded in the camera image in the form of coloured bars.

This is to help the drivers to get the information at a glance.[20]

For the mechanization of the pick and place of the oil palm FFB, the same concept

of reverse camera system can be used. The camera will detect the oil palm FFB and the

image will appear in the camera as a real time view through ultrasonic sensors mounted at

the truck. Based on Figure 2.5, it is how reverse camera system displayed on monitor of a

Myvi car. For this project, oil palm FFB which has been detected will appear in the monitor

and the distance will be shown using colour blocks to alert the operations of the pick and

place of the bot.

Figure 2.5: Reverse Camera system displayed on monitor of Myvi

1

11

CHAPTER III RESEARCH METHODOLOGY

3.1 APPLICATION

This chapter describes the programming environment that involves the application

of object detection. The application used in this project is to identify the oil palm FFB at

different conditions. Once oil palm FFB are detected, the application will use coloured

bounding box to mark out the detected fruit on screen.

There are two versions of softwares/algorithms used in this project which are YOLO

and Tensorflow. For YOLO, it displays extra feeds such as the coordinates of the bounding

box, label coordinates and the confidence level. Confidence level is the probability of the

trained object is in the image. In Tensorflow, the extra feed displayed is only the confidence

level in the form of percentage. The trained datasets are then implemented in RaspberryPi

to detect real-time oil palm fruit.

3.2 OBJECT RECOGNITION

Object recognition algorithms are required for identifying a specific oil palm fruit

as an object in a digital image. In this project, object recognition algorithms are used based

on supervised machine learning which uses training data with labels to learn a model of the

data. Object recognition algorithms are implemented in OpenCV using Python as the

programming language. Figure 3.2 shows the workflow of object detection algorithms

starting from input image until its output of image recognition with frames, image label and

confidence value.

Figure 3.2: Workflow of algorithm

12

3.3 YOLO SET UP ON WINDOWS

Figure 3.3(a) shows the summary of the workflow of YOLO Object detetection to

process images. The workflow starts with collection of samples images followed with its

requirements as stated until the execution of Python script to process the image.

Figure 3.3(a): Workflow of YOLO Object Detection

Collection of Samples: An average of 700 sample images are gathered for each

target object representing an oil palm fruit. Around 500 images are captured of a real oil

palm fruit with different backgrounds and distances. Then, 200 images are of oil palm fruits

are downloaded randomly from Google images. The images that are downloaded are

ensured to be clear so the training will be effective. The number of sample images are varied

in terms of distance, quantity and backgrounds because different images have different

features. Figure 3.3(b) is the example of collection of sample images used for training. On

the left side, it is the image of a single oil palm FFB. While on the right side shows the

image of abundance of the respective fruits. Both types of images are used as training data

sets.

Collection of Samples
Install requirements

of YOLO

Rename the

sample images

Draw bounding box from

top left to bottom right for

every sample images

collection

Generate

annotations of

XML files

Change number of

class and label’s

name in .cfg and

label.txt files

Train the new model

and .ckpt file is

updated

Run Python script

to process test

images

13

 Figure 3.3(b): Example of oil palm pictures used for training

Requirements to run YOLO: In this experiment, Python 3.5 and 3.6 Anaconda are

being used. Anaconda installation of Python has been done instead of traditional Python

installation because it simplifies the install process. It includes ton of packages all at once.

There is no need to waste time install and configure all the packages. Anaconda python is

installed from website with the version Python 3.6. Once it is installed, the Anaconda Python

are then setup.

Next, Tensorflow CPU version on Windows 10 is required to run YOLO. By

running the script “pip install tensorflow”, it is installed. OpenCV is also installed from a

website of Unofficial Windows Binaries for Python Extension Packages. Darkflow

Repository is then downloaded to run YOLO. YOLO is written in framework called Darknet

which is a deep learning framework. A Tensorflow version of darknet is created called

Darkflow. Darkflow is downloaded from github repository where a zip file is downloaded.

Then, a directory is created in a folder located in Desktop named darkflow-master.

A library is build by opening a CMD window in the darkflow-master directory and

python script are inserted: pip install -e. Lastly, weights for the model is downloaded.

Weights of 608x608 are downloaded from YOLO official webpage. A new folder is created

in the Darkflow-master directory called ‘Bin’. The downloaded weights are put into the Bin

folder.

14

3.3.1 Process image using trained weights from YOLO website

To test whether YOLO works or not, a random image is processed. A dog image is

downloaded from Google images and saved it as dog.jpg in darkflow-master folder. Then,

a Cmd window is opened in the folder and coding script to process image is run. The coding

script to process image is shown in Appendix A. After running the command, the time taken

to process the image are shown in the window command as in Figure 3.3.1(a). At the same

time, a picture of dog with bounding box appeared showing that the image processing for

YOLO works as shown in Figure 3.3.1(b).

Figure 3.3.1(a): Result after running the command.

Figure 3.3.1(b): The dog image (Obtained from Google image) is then detected with

bounding box and label.

15

3.3.2 Processing a video file using the trained weights from YOLO webpage

Same as process image stated before, a video processing can also be done using

YOLO. A video of car video game is downloaded from Youtube in mp4 format and save in

the Darkflow-master folder. Then, a Cmd window is opened in the folder and coding script

to process video is run. The coding script to process video is shown in Appendix B. In the

command window as shown in Figure 3.3.2(a), the finished time to process the video and

the frame per second (FPS) are shown. Then, the video is processed showing bounding

boxes on the trained images of the weights that has been downloaded before in Figure

3.3.2(b).

Figure 3.3.2(a): Result of processing video using YOLO trained weights

Figure 3.3.2(b): Bounding box and labels appeared in the video processed[10]

16

3.3.3 Train new models of oil palm fruit

To start training the new models which is the oil palm fruit, there are several steps

to be followed. All the images collected are renamed with increasing numbers to

synchronize for drawing the bounding box. They are renamed for easy tracking purpose

when bounding box are drawn later. The Python script to rename the images are shown in

Appendix C.

Next, annotation XML files are generated for each of the images collected as the

training dataset. In this XML file, there are a bunch of information specifically the size of

the bounding box drawn in the term of height and width all measured in pixels. To generate

the file of each image, a script is being executed shown in Appendix D. Once the script is

run, the collection of oil palm images popped up one by one, and bounding box are drawn

at every image as shown in Figure 3.3.3(a). The bounding box are drawn from top left to

bottom right as coordinates can be obtained from the script.

Figure 3.3.3(a): The red box shows the bounding box drawn

When all the images are drawn with bounding boxes where the oil palm fruits are

located, model can now be trained. All the annotations XML files of every images are

present with the coordinates of the bounding boxes. Next, weights can be loaded and model

trained can be tested. A copy of configuration file tiny-yolo-voc.cfg is created and change

the class of the region layer which is 1 because only one class type of oil palm fruit is

available. In the tiny-yolo-voc-1c.cfg, filters in the convolutional layers is changed by num

17

* (classes + 5). Since the num is 5 and classes are 1 so 5 * (1 + 5) = 30. Therefore, the filters

is changed to 30.

Labels.txt is changed where it includes the label(s) to train on (number of labels

should be the same as the number of classes set in tiny-yolo-voc-1c.cfg file). In this

case, labels.txt will contain only one label.

Lastly, a CMD window is opened in darkflow-master directory, flow --model

cfg/tiny-yolo-voc-1c.cfg --load bin/tiny-yolo-voc.weights --train --annotation

train/Annotations --dataset train/Images is typed and executed. This execution will train the

dataset of the collected oil palm fruit images. Figure 3.3.3(b) shows dataset has started its

training when the list of steps are shown in the command window.

Figure 3.3.3(b): The dataset is being trained.

During the training, the command window shows the statistics of the training, step

by step with moving average loss. The traning will stop once it reached 300 epoch number.

For every checkpoint, the data will be stored in a folder in the darkflow-master directory

called ‘ckpt’. Figure 3.3.3(c) shows the end of training after 300 epoches that has been set

and the checkpoint is at step 10200.

18

Figure 3.3.3(c): Training stopped after 300 epoch(es)

3.4 TENSORFLOW SET UP ON WINDOWS

Same as YOLO, Tensorflow also requires Tensorflow and Anaconda Python

environment to be set up. Next, TensorFlow Object Detection API repository is downloaded

from GitHub of Edge Electronics. A folder is created directly in C: and name it

“tensorflow1”. This working directory contains the full TensorFlow object detection

framework, training images, training data, trained classifier, configuration files, and

everything else needed for the object detection classifier. TensorFlow object detection

repository is downloaded which is located at https://github.com/tensorflow/models and the

zip file is downloaded. The downloaded zip file is opened and the “models-master” folder

is extracted directly into the C:\tensorflow1 directory that is just created. The “models-

master” is renamed to just “models”.

 Then, Faster-RCNN-Inception-V2-COCO model is downloaded from

TensorFlow's model zoo. TensorFlow provides several object detection models (pre-trained

classifiers with specific neural network architectures) in its model zoo.

Faster_rcnn_inception_v2_coco_2018_01_28 folder is extracted to the

C:\tensorflow1\models\research\object_detection folder. From Figure 3.4, the

object_detection folder should have all of these files.

https://github.com/tensorflow/models
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

19

Figure 3.4: Files in object_detection folder

This repository contains the images, annotation data, .csv files, and TFRecords

needed to train a playing card detector. It has scripts to test out the object detection classifier

on images, videos, or a webcam feed.

3.4.1 Set up new Anaconda virtual environment

From the Start menu in Windows, Anaconda Prompt utility is searched and right

click on it, and “Run as Administrator” is clicked. The command terminal will pop up and

a new virtual environment called “tensorflow1” is created by issuing the following

command:

C:\> conda create -n tensorflow1 pip python=3.6

Then, the environment is activated by issuing:

C:\> activate tensorflow1

Other necessary packages are installed by issuing the following commands:

(tensorflow1) C:\> conda install -c anaconda protobuf
(tensorflow1) C:\> pip install pillow
(tensorflow1) C:\> pip install lxml
(tensorflow1) C:\> pip install Cython
(tensorflow1) C:\> pip install jupyter
(tensorflow1) C:\> pip install matplotlib

20

(tensorflow1) C:\> pip install pandas
(tensorflow1) C:\> pip install opencv-python

3.4.2 Configure PYTHONPATH environment variable

A PYTHONPATH variable is created that points to the \models, \models\research,

and \models\research\slim directories. The PYTHONPATH need to be set up everytime

‘tensorflow1’ virtual environment is excited. The following commands are issued from any

directory:

(tensorflow1) C:\> set
PYTHONPATH=C:\tensorflow1\models;C:\tensorflow1\models\research;C:\tensorflow1
\models\research\slim

3.4.3 Compile Protobufs and Run setup.py

Protobuf files are compiled which are used by TensorFlow to configure model and

training parameters. Every .proto file in the \object_detection\protos directory is called out

individually by the command. In the Anaconda Command Prompt, directories are changed

to the \models\research directory and the following command is run into the command line:

protoc --python_out=. .\object_detection\protos\anchor_generator.proto
.\object_detection\protos\argmax_matcher.proto
.\object_detection\protos\bipartite_matcher.proto
.\object_detection\protos\box_coder.proto
.\object_detection\protos\box_predictor.proto
.\object_detection\protos\eval.proto
.\object_detection\protos\faster_rcnn.proto
.\object_detection\protos\faster_rcnn_box_coder.proto
.\object_detection\protos\grid_anchor_generator.proto
.\object_detection\protos\hyperparams.proto
.\object_detection\protos\image_resizer.proto
.\object_detection\protos\input_reader.proto
.\object_detection\protos\losses.proto .\object_detection\protos\matcher.proto
.\object_detection\protos\mean_stddev_box_coder.proto
.\object_detection\protos\model.proto
.\object_detection\protos\optimizer.proto
.\object_detection\protos\pipeline.proto
.\object_detection\protos\post_processing.proto
.\object_detection\protos\preprocessor.proto
.\object_detection\protos\region_similarity_calculator.proto
.\object_detection\protos\square_box_coder.proto
.\object_detection\protos\ssd.proto
.\object_detection\protos\ssd_anchor_generator.proto
.\object_detection\protos\string_int_label_map.proto
.\object_detection\protos\train.proto
.\object_detection\protos\keypoint_box_coder.proto

21

.\object_detection\protos\multiscale_anchor_generator.proto

.\object_detection\protos\graph_rewriter.proto

Then, the following commands is run from the C:\tensorflow1\models\research

directory:

(tensorflow1) C:\tensorflow1\models\research> python setup.py build

(tensorflow1) C:\tensorflow1\models\research> python setup.py install

3.4.4 Gather Images

TensorFlow needs hundreds of images of an object to train a good detection. The

training dataset are taken from the collection of samples from YOLO which total around

700 of oil palm fruit images. After all the images are ready, 20% of them are moved to the

\object_detection\images\test directory, and 80% of them to the

\object_detection\images\train directory. There are a variety of pictures in both the \test and

\train directories.

3.4.5 Label Images

For drawing a bounding box around the oil palm fruit of every image, LabelImg is

used as shown in Figure 3.4.5. It is downloaded online. It is pointed to \images\train

directory, and then a box is drawn around each object in each image. The process is repeated

for all the images in the \images\test directory.

Figure 3.4.5: LabelImg application to label and draw bounding box of object

22

LabelImg saves a .xml file containing the label data for each image. These .xml files

are used to generate TFRecords, which are one of the inputs to the TensorFlow trainer. Thus,

there is one .xml file for each image in the \test and \train directories.

3.4.6 Generate Training Data

With the images labeled, TFRecords are generated to serve as input data to the

TensorFlow training model. First, the image .xml data are used to create .csv files containing

all the data for the train and test images. From the \object_detection folder, following

command is entered in the Anaconda command prompt:

(tensorflow1) C:\tensorflow1\models\research\object_detection> python

xml_to_csv.py

This creates a train_labels.csv and test_labels.csv file in the

\object_detection\images folder. Then, TFRecord files are generated by issuing these

commands from the \object_detection folder:

python generate_tfrecord.py --csv_input=images\train_labels.csv --

image_dir=images\train --output_path=train.record

python generate_tfrecord.py --csv_input=images\test_labels.csv --

image_dir=images\test --output_path=test.record

These generate a train.record and a test.record file in \object_detection. These will

be used to train the new object detection classifier.

3.4.7 Label map

The label map tells the trainer what each object is by defining a mapping of class

names to class ID numbers. A text editor is used to create a new file and save it as

labelmap.pbtxt in the C:\tensorflow1\models\research\object_detection\training folderIn

the text editor, copy or type in the label map in the format below:

item {
 id: 1

 name: 'sawit'

23

3.4.8 Configure Training

Finally, the object detection training pipeline is configured. It defines which model

and what parameters will be used for training. This is the last step before running training.

C:\tensorflow1\models\research\object_detection\samples\configs is navigated and the

faster_rcnn_inception_v2_pets.config file is copied into the \object_detection\training

directory. Then, the file is opened with a text editor.

3.4.9 Run the Training

From the \object_detection directory, the following command is issued to begin

training:

python train.py --logtostderr --train_dir=training/ --

pipeline_config_path=training/faster_rcnn_inception_v2_pets.config

If everything has been set up correctly, TensorFlow initialize the training. The

initialization take up to 30 seconds before the actual training begins. When training begins,

the command windows will show ouput as shown in Figure 3.4.9(a). During the training,

the command windows shows the recoding summary as in Figure 3.4.9(b).

Figure 3.4.9(a): The command window shows the training started

24

Figure 3.4.9(b): The command window shows the recording summary

Figure 3.4.9(c): The command window shows the completion of training

Each step of training reports the loss. It will start high and get lower and lower as

training progresses. For the training on the Faster-RCNN-Inception-V2 model, it started

from loss at about 1.6 and let it dropped below 0.03, which will take about 39796 steps.

Figure 3.4.9(c) shows the completion of the training with the number of steps stated.

3.4.10 Export Inference Graph

The last step is to generate the frozen inference graph (.pb file). From the

\object_detection folder, the following command is entered where “XXXX” in “model.ckpt-

XXXX” is replaced with the highest-numbered .ckpt file in the training folder:

python export_inference_graph.py --input_type image_tensor --

pipeline_config_path training/faster_rcnn_inception_v2_pets.config --

	DEVELO~2

