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NOMENCLATURE 

A*   aspect ratio  
r*   radius ratio 
T   temperature 
Ti , To   inner and outer wall temperature  
ri , ro   inner and outer radius 
H   height of axisymmetric porous medium 
   streamline function  
   viscosity 
   kinematics viscosity 
u, v, w   velocity in r, , and z directions 
   density 
   thermal expansion 
   thermal diffusivity 
   permeability 
R    average radius of an element 
N1 , N2 , N3      shape functions for the triangular element 
p   pressure 
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ABSTRAK 

 
  

Kaedah berangka unsur terhingga dengan mengaplikasi kaedah Galerkin telah 

digunakan untuk analisa pemindahan haba dalam bahantara berliang bersimetri paksi 

secara perolakan bebas. Cara ini telah digunakan untuk mengkaji kesan nisbah aspek (0.6 

– 8) dan nisbah jejari (0.1 – 10) terhadap purata nombor Nusselt. Kesan nombor Rayleigh 

antara 10 – 100 terhadap purata nombor Nusselt juga diambil kira dalam kajian.  

 

 Tiga kes dikaji di sini: dinding sesuhu, perubahan suhu secara penguasan samada 

dinding luaran atau dalaman dan perolakan bebas pada dinding dalaman. Indek kuasa 

yang dikaji ialah antara 0.25 – 1.00. Dengan dinding luaran yang dikenakan pada 

perolakan bebas, koefisien haba pemindahan antara 0.01 – 100 telah disiasat kesannya 

terhadap purata nombor Nusselt juga. 
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ABSTRACT 

 
 

Computational finite element method employing Galerkin’s method of weighted 

residuals has been used to analyze free convection heat transfer in axisymmetric porous 

medium saturated by fluid. The approach is used to study the effect of aspect ratio (0.6 – 

8), radius ratio (0.1 – 10) and Rayleigh number range from 10 – 100 on the average 

Nusselt number, Nu in the case of porous cylindrical annulus.  

 

Three cases are studied here: isothermal wall temperature, power law temperature 

variation on both inner or outer wall and convective boundary on outer wall. The power 

law index for the power law temperature variation is ranges from 0.25 – 1.00. With 

convective boundary at the outer wall of the axisymmetric porous medium, heat transfer 

coefficient of 0.01 – 100 (W/m2.K) is taken into the study for the effect on the average 

Nusselt number. 
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Chapter 1         INTRODUCTION 
 

Vertical porous enclosures with axisymmetrical geometry are always encountered 

in many engineering applications. Its wide applications include geothermal energy 

engineering, groundwater pollution transport, nuclear waste disposal, chemical reactors 

engineering, insulation of buildings and pipes, and storage of grain and coal, and so on. 

 The study of heat transfer of porous medium has, in recent past, become a matter 

of considerable importance and interest because of the growing demand for energy, 

environment, comfort, safety, and advanced materials. Heat transfer is concerned with the 

physical processes underlying the transport of thermal energy due to a temperature 

difference or gradient. The efficiency of a system involving porous medium, such as 

electronic component is also a strong function of the heat transfer to and from various 

components of the system. All these considerations make it imperative to obtain accurate, 

consistent, and physically valid results on the heat transfer to relate these to the design, 

control, and optimization of the system. 

There has been a phenomenal increase in the use of computational methods for 

engineering applications in recent years. This is particularly true for problems in heat 

transfer and fluid flow, since the complexity of the governing equations generally allows 

analytical solutions to be obtained for very simple cases, making it necessary to use 

numerical technique for most problems of practical interest. Here for the free convection 

of axisymmetric porous medium, the finite element method has been used.  

The finite element method is based on various integral formulations of the 

conservation principles. The region under study is divided into a number of finite 

elements, these element being of various shapes. The integral statement of the governing 

conservation postulates yield the integral equations that apply for each element. The 

integrals are reduced by weighted residuals method. The method of weighted residuals is 

an approximate technique for solving boundary value problems that utilizes trial function 

satisfying prescribed boundary conditions and an integral formulation to minimize error. 

 Some commercially available software, such as Maple, Mathematica, Macsyma, 

and MathCAD, employ symbolic processing software capable of doing algebra, calculus,  
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and other mathematical operations symbolically, rather than numerically, to obtain 

analytical solutions whenever possible. An environment which is very convenient to use 

is provided by Matlab, which has extensively used computational software for solving 

mathematical problems of engineering interest. Because of its convenient user interface, 

visualization capability, programmability, and wide range of techniques and command, 

Matlab has become a computational tool in analysis the free convection of axisymmetric 

porous medium. 

Knowledge of the variation of heat transfer with radius and respect ratio would be 

very useful in determining the optimum insulation thickness for porous medium 

application. By applying the available source codes with the use of MATLAB, the 

temperature and stream function variations can easily be determined.  
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Chapter 2   LITERATURE REVIEW 

 

Flow and heat transfer in fluid saturated porous medium are being studied and 

have become interesting for researcher. This research is crucial because of their natural 

occurrence and its importance in industrial applications. The development of Darcy’s 

phenomenological relation in 1856 was the starting point for research on porous media 

flow. Darcy’s relation gives good solution for solving porous media problems like flow in 

a soil medium when it is less porous. Many of the porous medium application in 

industries require knowledge of porous medium behavior to ensure the products are 

reliable and compatible. In many common situations, many critical problems occurred for 

the product design using porous materials. To overcome these problems, the researchers 

used the experimental and numerical analysis to predict the behavior of the porous 

material. Researchers produced a contemporary literature on porous media showing that 

the combined flow and thermal problem is still a very active area of research. 

 In a review article, Cheng (1978) enlisted the various cases of heat transfer by 

free and mixed convection into porous medium while J.J Shu and I Pop (1999) 

elaborately discussed on the topic of free convection and forced convection in porous 

medium. The dissertation by Rajamani (1989), Satya Sai (1993), Partiban (1995) and 

Nithiarasu (1996) provides a comprehensive review of earlier and on going research 

activity in this field. In addition to this, a number of research papers on heat and mass 

transfer are available to indicate the importance of porous media application in daily use.  

       The thermal convection is described as an energy transfer process occurring in 

between solid surface and liquid by means of the combined action of heat conduction and 

fluid motion. There are two types of thermal convection which are free and force 

convection when the fluid is in contact with the body. In natural convection, the motion 

of the fluid particles in contact with a solid surface is generated due to the energy 

transferred by conduction from the solid surface. Natural convection in a single phase 

fluid can also be treated as a limiting case of the porous medium flow when porosity 

equals to 1 and permeability value approaching infinity. Even though laminar natural 

convection in a single-phase fluid has been studied well in literature, it is essential to  
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understand the type of flow pattern and heat transfer, before dealing with porous media 

problem. An excellent introduction to the subject is given by Ostrach (1988) with new 

developments in the area of natural convection heat transfer. In this review article, there 

are some experimental investigations presented relating to natural convection from the 

vertical and horizontal plate. Later, the energy conservation in single-phase fluid has been 

formulated for theoretical study based on experimental investigations.  

Laminar natural convection heat transfers in tall enclosures have been studied 

experimentally and numerically by Elder (1965). At high Rayleigh numbers multi-

cellular patterns were observed. The porous media theoretical analyses have been solved 

by Tabbarok and Lin (1977) by using finite element method to simplify the complexity of 

natural convection heat transfer model. Nath and Satyamurthy (1985) have used a finite 

difference method to evaluate the variation of Nusselt number with aspect ratio, radius 

ratio and Rayleigh number. Satya Sai (1993) studied the effect of radius ratio on natural 

convection heat transfer in an annular enclosure applying the finite element method.   

From the application perception, convection in complicated geometry such as 

rectangular and cylindrical shapes of cavities is of practical importance. The numerical 

analysis is being used because it requires less time and increases the computational power 

to predict the flow regime when compared with experimental analysis. Vertical porous 

enclosure with cylindrical geometry is encountered by Nath and Satyamurthy (1985) 

whereas they have used finite difference method to evaluate the variation of Nusselt 

Number with aspect ratio, radius ratio and Rayleigh number. They have given results in 

the range of 50< Ra<500; 0.2<A*<8 and 0.25<r*<8. Very few studies have been carried 

out in finding the effect of above parameters on Nusselt number. Prasad and Kullacki 

(1984) carried out a study of curvature effects on temperature and velocity fields in a 

vertical porous annulus. They considered a wide range of Rayleigh numbers up to 10,000.  

The Galerkin’s finite element method was used by Hickox and Gartling (1985) to 

solve the natural convective heat transfer in axisymmetric porous cavity. From the results, 

the heat transfer rate has been observed to increase about 2.6 times in the presence of 

convection when compared to the pure thermal conduction. Later Rajamani et al. (1995) 

used the same approach to study the effect of aspect ratio and radius ratio on Nusselt  
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number in the case of a porous cylindrical annulus. It is seen that the maximum average 

Nusselt number when the aspect ratio is around unity. 

From the literature review, it has been seen that, most of the researchers employed 

analytical solution to predict the behavior of the porous medium. The analytical solution 

in nature compared well with the experimental results. Hence analytical approach has 

becomes a foundation to the researchers to justify the applications in nature. Finite 

element method has in a simplified manner been used in the present work to analyze the 

problem. This method has a strong computational power and it is applicable for analysis 

of arbitrary shaped studies.    
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Chapter 3                 METHODOLOGY 

 

A cylindrical, saturated porous annulus of inner radius, ri and outer radius, ro is to be 

used. Since the body is axisymmetric, two coordinates r and z are sufficient to describe the 

system completely. 

 

                              
 

 
 
 
 
Assumptions: 

(i) The porous medium considered is saturated by fluid. 

(ii) The porous medium is homogeneous and isotropic. 

(iii) Fluid properties are constant except density variation which produces a buoyancy 

force. 

(iv) The fluid and porous medium is everywhere in local thermodynamic equilibrium. 

(v) Additional viscous and inertial terms are, for low Darcy number, neglected because 

of their small magnitudes compared to other terms. 

(vi) Dispersion and radiation effects are neglected.. 
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Figure 3.1: Coordinate system and geometry 
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The non-dimensional cylindrical coordinates is being used here for single phase 

fluid. The non-dimensional variables used in cylindrical coordinates system are: 

 
 coldhot

cold

reffrefref TT

TT
T
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z
z

L

r
r
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    (3.1) 

Under the above assumption, the governing equations in cylindrical coordinates are 

written as (Srinivas11, 1989): 

Continuity equation: 
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Darcy’s law in the z direction: 
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Equation of state: 
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 We introduce the stream function  defined by (Bejan8, 1984),   
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 The continuity equation is automatically satisfied by the introduction of the . One 

governing equation is thus eliminated. 

  

Eliminating the variable p from (3.3) and (3.4) and incorporating  we obtain,  

   
r

T
g

rrzrr 























 
22

2

2

2 11
   (3.9) 

  



EMD402   FINAL YEAR PROJECT 
CHAPTER 3   METHODOLOGY 
_________________________________________________________________________________________ 

 8

 

Using  /v , we obtain, 
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Substituting u and w in terms of   in (3.5), we obtain,  
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 Equations (3.10) and (3.11) are the two governing equations to be formulated into 

finite element matrix equations. Each equation has both the variables   and T, we thus 

have two coupled equations which have to be solved simultaneously.  

 The simplex 3 nodes triangular element is used for the analysis. The variation of 

temperature T and  inside the element are given by,  

   T = N1T1 + N2T2 + N3T3  

      = [ N ] { T  }       (3.12) 

              = N11 + N22 + N33   

                 = [ N ] { }       (3.13) 

where N1, N2, N3 are the shape function given by,  

    Ni = 
A

zcrba iii

2


  i = 1, 2, 3   (3.14) 

 

Using Galerkin’s method, (3.10) becomes,  
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where 2dV r dr dz for axisymmetric geometries.  

 

Integration of first two terms gives (Srinivas11, 1989),  
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The third term in the parenthesis is,  
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The solution for the governing equation of (3.15) by using finite element method is given as  
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Similarly, use Galerkin’s method for (3.11) yields, 
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Integrating, the first two terms in the parenthesis become,  
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where jk is the side along which the convection boundary condition exists. 
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Equations (3.16) through (3.22) yield two simultaneous matrix equations for an 

element. These matrix equations are assembled to obtain the total matrix equations for the 

domain. Initially the value of  is taken to be zero for the first iteration. The value of {T} 

obtained by solving the first set of equations are then used to solve the second set of global 

matrix equations. These values of {} are then used for the next iteration in calculation of 

{T}. The two equations are thus solved by iteration. For the solution to converge it is 

necessary that a fine mesh is used. 

Figure 3.1 shows the cross section of a cylindrical annulus with cylindrical 

coordinates. The remaining two horizontal walls are considered as adiabatic. Both sides of 

the annulus are symmetrical. Hence right side of the cross section of axisymmetric porous 

medium is sufficient for the numerical analysis. Further the heat transfer coefficients can be 

multiplied by area of the cylinder to obtain the total heat transfer rate. Before the numerical 

analysis, the region of height H  and breadth  irr 0  is discretized into linear triangular 

elements with fine mesh near the four bounded walls.  

 

 

 

These algebraic equations are coded in a Matlab program to solve for the temperature 

and stream functions at various boundary conditions applied. 

From the finite element method (FEM) analysis for various parameters such as aspect 

ratio, radius ratio and Rayleigh numbers are used to obtain the respective average Nusselt 

number values.   

k 

kkk TN ,,  

j 
jjj TN ,,  

i 

iii TN ,,  

Figure 3.2: A linear three nodded triangular element     
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Aspect ratio A* for the cylinder is defined as:  

 
L

H
A *          

whereas the radius ratio r* is defined as: 

 
i

i

r

rr
r


 0*  

The Rayleigh number in the present case is defined as (Bejan8, 1984): 

 
 


 LTTKg
Ra 01                     (3.23) 

where irrL  0  

  

 The boundary conditions of u = 0 at r = ri and r = ro and w = 0 at z = 0 and z = H are 

incorporated by forcing   to be zero on all four boundaries. The temperatures on the two 

vertical walls are forced to be: 

(a) Isothermal where Ti > To  

(b) Ti (z) = To + Az and To (z) = Ti + Az   

(c) Ti (z) = To + A(H – z) and To (z) = Ti + A(H – z)   

(d) Ti isothermally hot and outer wall subjected to convective boundary condition. 

where A = constant,  = power index,  H = height of the porous medium 

          

 The solution for equations (3.1) is obtained by iteration, yielding the steady state 

temperatures at all nodes. The mean Nusselt number at the cold wall is calculated using the 

equation 

 
L

H
T

z
r

T

Nu









                  (3.24)  

         The temperature gradient 
r

T




 at each wall node is obtained by using four point 

polynomial fit. 
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Chapter 4              RESULTS AND DISCUSSION 
 
4.1  Inner wall is warm isothermally 
 
 Many of the applications of porous medium in engineering involve transmission of 

fluids through pipes, vessel whereas the walls of fluid can be hotter. For this reason, 

studies have been carried out for this case where the inside wall of the cylindrical porous 

annulus is maintained at Ti isothermally. The outside wall is considered at temperature To 

isothermally where Ti > To. The remaining top and bottom horizontal walls are considered 

as adiabatic.  

                               

 

 With the aspect ratio and radius ratio fixed as one, the isothermal line and streamline 

pattern changes depending on different Rayleigh number. Figure 4.1 shows the isothermal 

lines and streamlines of the porous medium at various Rayleigh numbers. Figure 4.1(a) 

shows the convection effect is low for low Rayleigh number. The isothermal lines are 

almost parallel due to low fluid motion to convey the heat. But when the Rayleigh number 

increases from 50 and 100, the effect can be clearly noticed from Figure 4.1(b) and (c) 

where the temperature difference near the bottom of the inside wall and top of the outside 

wall is much greater. It indicates the convection effect is taking place due to the motion of 

the fluid. As can be seen from the streamlines, the fluid flow for higher Rayleigh number is 

increases gradually. Because of the greater fluid motion, the isothermal lines deviate more  

 ro 

 ri 

 H 

 T = To  T = Ti

 r 

 z 
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to the right at the upper portion of the porous medium and deviate to the left at the bottom 

portion. 
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4.1(a)   Ra = 10 
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4.1(b)   Ra = 50 
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4.1(c)   Ra = 100 

 
 Figure 4.1: Isothermal lines (left) and streamlines (right) for Ra=10, 50 and 100 

with A = r = 1 
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 The study for various aspect and radius ratios has also been taken. It is seen in Figure 

4.2 that for constant radius ratio, the average Nusselt number Nu  increases to reach optimum at 

aspect ratio of around 1.5 and drops linearly as the aspect ratio increases. In case of higher 

Rayleigh number Ra, the Nu  is higher as seen in Figure 4.2, the peak of the curves shift towards 

lower aspect ratio. Figure 4.3 and 4.4 show the isothermal lines and streamlines for different 

aspect ratios at Rayleigh number of 10 and 100. For low Rayleigh number, the fluid flow is low 

even as the aspect ration increases; while at high Rayleigh number of 100, the effect of 

convection is identical greater. The streamline values for Ra=100 is higher which indicates the 

high fluid flow in the porous medium.  

 As the Rayleigh number increases, the streamlines are concentrated near the bottom 

of the inside wall and upper of the outside wall, indicating a greater fluid motion because 

high heat transfer occurs in this area. Due to this high motion of fluid, the isothermal lines 

converge near the upper and lower horizontal walls and higher temperature difference is 

seen. This is hardly noticed for low Rayleigh number. 

 

 

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9

Aspect ratio A *

A
ve

ra
ge

 N
us

se
lt 

nu
m

be
r 

N
u

Ra = 10

Ra = 25

Ra = 50

Ra = 75

Ra = 100

 
 
 
 
 
 

Figure 4.2: The variation of Nu  for different aspect ratio A with r = 1 
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4.3(a)   A* = 0.6 
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4.3(c)   A* = 8 
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4.4(a)   A* = 0.6 

Figure 4.3: Isothermal lines (left) and streamlines (right) for aspect ratio of 0.6, 2 and 8 
at Ra=10 with A = 1 
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4.4(b)   A* = 2 
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4.4(c)   A* = 8 

Figure 4.4: Isothermal lines (left) and streamlines (right) for aspect ratio of 0.6, 2 and 8 
at Ra=100 with r = 1 
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In the case with constant aspect ratio, the Nu  always increases with the increment of 

the radius ratio. From Figure 4.5, as the inverse of radius ratio increases, the Nu  drops and 

reaches almost constant value. This shows the radius ratio is dominant than the aspect ratio, 

for which the Nu  is much higher when compared with the maxima Nu  with the aspect ratio 

of 1.5 for constant radius ratio. Figure 4.7 and 4.8 show the changes of isothermal lines and 

streamlines when the Rayleigh number increases from 10 to 100. The radius ratio affects the 

convection greatly, as seen in Figure 4.7 and Figure 4.8 shows high temperature gradient and 

convection effect occur when the radius ratio is high (annulus thickness is less). At Ra=10, 

the conduction is much dominant, because the isothermal lines are approximately parallel to 

the walls. As seen, when the radius ratio increases, meaning the inner radius decreases, the 

heat transfer by convective process becomes predominant.  
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Figure 4.5: The variation Nu  for different inverse radius ratio with A= 1 
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The variation of average Nusselt number for different Rayleigh number is shown in Figure 

4.6. This plot is obtained based on the variation of radius ratio from 0.1 up to 10. The aspect 

ratio is fixed as unity, whereas the inner radius varies according to radius ratio values. As 

mentioned earlier that when the inner radius decreases, heat transfer by convective process 

become important and will be a major contributor. From Figure 4.6, the average Nusselt 

number increase slightly with increment of radius ratio from 0.1 to 10. By increasing the 

Rayleigh number, the average Nusselt number increase to around 12 at Ra = 100 with r* = 

10. The pattern of the lines are almost linear. 

 

 

 

 

 

 

 

 

Figure 4.6: The variation Nu  for different Ra values with A= 1 



EMD402   FINAL YEAR PROJECT 
CHAPTER 4   RESULTS AND DISCUSSION 
__________________________________________________________________________________________ 

 20

0.
1

0.
1

0.
1

0.
2

0.
2

0.
2

0.
3

0.
3

0.
3

0.
4

0.
4

0.
4

0.
5

0.
5

0.
5

0.
6

0.
6

0.
6

0.
7

0.
7

0.
7

0.
8

0.
8

0.
8

0.
9

0.
9

0.
9

1
1

1

10 10.2 10.4 10.6 10.8 11
0

0.2

0.4

0.6

0.8

 

1

1 1
1

1

111

1

1
2

2 2
2

2

22
2

2
3

3

3
3

3

33

3

4

4
4

4

4

4

4

5

5

5

5
5

5

6

6

6

6

6

7

7

7

10 10.2 10.4 10.6 10.8 11
0

0.2

0.4

0.6

0.8

 
4.7(a)   r* = 0.1 
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4.7(b)   r* = 2 
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4.7(c)   r* = 5 

 
 

 

Figure 4.7: Isothermal lines (left) and streamlines (right) for radius ratio of 0.1, 2 and 5 
at Ra=10 with A = 1 



EMD402   FINAL YEAR PROJECT 
CHAPTER 4   RESULTS AND DISCUSSION 
__________________________________________________________________________________________ 

 21

 

0.1

0.
1

0.
1

0.2

0.2

0.
2

0.
2

0.
3

0.3

0.3

0.
3

0.
4

0.4

0.4

0.
4

0.
5

0.5

0.5

0.
5

0.
6

0.6

0.6

0.
6

0.
7

0.7

0.7

0.7

0.
8

0.
8

0.8

0.8

0.
9

0.
9

0.9

1
1

1

2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

 

1
1

1 1 1

1
1

111

1
2

2 2 2

2
2

222

2
3

3
3 3

3
3

33

3

3
4

4
4 4

4
4

44

4

5

5
5 5

5

5
55

5

6

6
66

6

6
6 6

7

7
7 7

7

7
7

7
8

8
8

8

8
8

8

9

9
9

9

9
9

10

10

10

10
10

11

11

11

2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

 
4.8(a)   r* = 0.1 
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4.8(b)   r* = 2 
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4.8(c)   r* = 5 

 
 

Figure 4.8: Isothermal lines (left) and streamlines (right) for radius ratio of 0.1, 2 and 5 
at Ra=100 with A = 1 
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4.2  Power law variation for wall temperature 
  
 Here the situation when the wall temperature Tw is a function of distance along the 

wall has been considered. Four cases have been investigated for this power law wall 

temperature, which include the outside and inside walls where the temperature may increase 

from cold to hot or vice versa. The other side of the wall is maintained at isothermally cold. 

For each of the case, the temperature of the wall is varying by the power index of  = 0.25, 

0.50, 0.75 and 1.00. Also the effect of varying the aspect ratio, radius ratio, and power law 

index along the wall has also been investigated. 

 
 
4.2.1  Power law temperature on the outside wall increasing from Ti at the 
bottom 
 

 
 
                                                              

 The effect of the power law temperature distribution along the outside wall with the 

radius ratio being held constant can be seen from the Figure 4.9. For Ra=10, the Nu  

increases uniformly while the power law index decrease from 1.00 to 0.25. It shows the Nu  

is different as the aspect ratio is increasing (Figure 4.9(a)). While at higher Rayleigh 

number of 100, Nu  increase until its maximum value (aspect ratio = 2.5) and remain 

constant at its  

 ro 

 ri 

 H  Ti = isothermal 

 r 

 z 

adiabatic 

To (z) = Ti + Az 

A = constant 
  = power  
       Law index 
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maximum as the aspect ratio increase. But for the case of  = 0.25, the Nu  drops before it 

remain constant. The inference is that for smaller the power law index, , the greater Nu  

will be obtained.  

 By taking the isothermal lines along the wall into consideration from Figure 4.2, it is 

seen that Nu  drops as aspect ratio increases. However it is seen that this type of distribution 

occur for  = 0.25 and for other power law index, the value remain almost constant.  

 
 
 
 
 
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8 9

Aspect ratio A *

A
ve

ra
ge

 N
us

se
lt 

nu
m

be
r 

N
u

 = 0.25

 = 0.50

 = 1.00

 = 0.75

 
4.9(a)   Ra = 10 
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4.9(b)   Ra = 100 

 
 
 
 
 
 
 

For different radius ratio at constant aspect ratio, as shown in Figure 4.10(a) and (b), the 

Nu decrease in a similar pattern as the power law index increase from  = 0.25 to  = 1.00 

when the radius ratio increase. When the radius ratio is low (annulus thickness is large), the Nu  

is very low, about 0.5 – 2, even for the  = 0.25, the Nu  is low, indicating that the heat transfer 

by convection is low when the inner radius of the axisymmetric porous medium is very much 

greater than the thickness of the porous medium.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.9: Variation of Nu  for various aspect ratios with different power index 
for Ra=10 and Ra=100, r = 1 
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