

PENGENALPASTIAN BAKTERIA TIBI

Disertasi ini dikemukakan kepada

UNIVERSITI SAINS MALAYSIA

Sebagai memenuhi sebahagian daripada syarat keperluan

untuk ijazah dengan kepujian

SARJANA MUDA KEJURUTERAAN (KEJURUTERAAN ELEKTRONIK)

Oleh

Nazrul Hilmi bin Mohammad

Pusat Pengajian Kejuruteraan

Elektrik dan Elektronik

Universiti Sains Malaysia Mac 2005

Nazrul Hilmi bin Mohammad Pengenalpastian Bakteria Tibi

 ii

ABSTRAK

Kaedah konvensional dalam mengenalpasti bakteria Mycobacterium tuberculosis

daripada sampel air liur adalah menyukarkan dan sangat terdedah kepada ralat kerana

pengiraan organisma dilakukan secara manual oleh juruteknologi ketika sesuatu

spesimen sedang diperiksa melalui mikroskop. Kaedah ini lazim menyebabkan

kelesuan mata yang boleh mengakibatkan banyak ralat. Oleh yang demikian, seseorang

juruteknologi dapat memeriksa tidak lebih daripada dua puluh specimen dalam masa

sehari untuk mengelakkan kelesuan yang boleh menyebabkan ralat itu. Maka kaedah

konvensional ini telah dianggap sebagai tidak produktif. Sebagai suatu usaha untuk

mengatasi masalah ini, projek ini membangunkan satu sistem perisian pemprosesan

imej digital, yang direkabentuk dan diimplimentasikan dengan menggunakan alatan

pembangunan perisian visual Borland C++ Builder. Perisian yang dibangunkan ini

secara khususnya disasarkan untuk memudahkan proses pengenalpastian bakteria

Mycobacterium tuberculosis dengan menggunakan imej-imej digital spesimen air liur

daripada pesakit-pesakit yang disyaki. Ia merangkumi tiga peringkat pengimejan

utama: peningkatan imej, peruasan imej, dan analisa gugusan. proses peningkatan imej

dalam perisian ini melibatkan transformasi jalur kelabu dan penurasan negatif untuk

menyediakan data imej bagi dua proses yang seterusnya. Kemudian, proses peruasan

imej menyediakan pilihan untuk pengguna sama ada menggunakan teknik pertumbuhan

kawasan berasaskan titik benih secara manual atau automatik. Seterusnya, teknik

analisa dan pengiraan gugusan ecara automatik mengira bilang organisma yang terdapat

dalam imej. Adalah diharapkan sistem perisian ini dapat diterima sebagai aplikasi yang

pantas dan tepat untuk mengenalpasti bakteria Mycobacterium tuberculosis daripada

spesimen air liur pesakit.

 iv

ACKNOWLEDGEMENTS

This project has benefited from a number of individuals who gave generously their time

and expertise, and the following persons deserve special mentions. My highest thanks

goes to Associate Professor Umi Kalthum Ngah, my project supervisor who has done a

lot to facilitate me for the whole duration of the project, right from the day I was

assigned the project title, next to the implementation of the project, and further to the

completion of this dissertation. I would also like to thank Dr. Suraiya Mohd. Noor from

the School of Medicine for facilitating me during the data acquisition activity. Also, I

must express my appreciation to Dr. Nor Ashidi Mat Isa who has been assigned as the

second examiner for my project, for his willingness to examine this dissertation and

attend my presentation alongside my project supervisor. Furthermore, my

acknowledgement extends to my dearest counterparts, Tina Zahani Zainuddin and Syed

Mohamad Hatmi Syed Zainal Abidin, under the supervision of the same supervisor as

mine, for their bits of suggestions and constructive criticisms that helped me quite a lot

to improve my project. Thanks also to the Final Year Project Coordinator for this term,

Associate Professor Dr. Mohd. Yusof Mashor who provided general guidelines on the

project development, particularly on the rules and standards in writing this dissertation.

Last but not least, my undying thanks to all other individuals whom have not been

mentioned here in particular for their own bit of direct and indirect contribution in this

project.

 v

TABLE OF CONTENTS

 Page

ABSTRACT ii

ACKNOWLEDGEMENTS iv

TABLE OF CONTENTS v

DIAGRAM LIST vii

PREFACE viii

CHAPTER 1 INTRODUCTION

1.1 Preface ……………………………………………………………. 1

1.2 Project Development Stages ……………………………………… 2

1.3 Project Objective …………………………………………………. 3

1.4 Introduction to Digital Image Processing ………………………… 3

1.5 Report Outline ………………………………………………………... 3

CHAPTER 2 DEVELOPMENT TOOL: BORLAND C++ BUILDER

2.1 Preface ……………………………………………………………. 4

2.2 Introduction to Borland C++ Builder …………………………….. 4

2.3 Borland C++ Builder Debugging Utility …………………………. 6

2.4 Conclusion ………………………………………………………… 6

CHAPTER 3 DIGITAL IMAGE PROCESSING TECHNIQUES

3.1 Preface …………………………………………………………….. 7

3.2 Fundamental Concepts in Digital Image Processing ……………… 8

3.2.1 Digital Image Definition …………………………………... 8

3.2.2 Types of Digital Image Processing ………………………… 9

3.2.3 Gray Level …………………………………………………. 10

3.2.4 Histogram ………………………………………………….. 10

3.2.5 Convolution ………………………………………………… 12

3.3 Gray Level Transformation ………………………………………… 13

3.3.1 Negative Transformation …………………………………… 14

 vi

3.3.2 Log Transformation ………………………………………… 14

3.3.3 Gray Level Transformation in This Project ………………... 15

3.4 Seeded Region Growing …………………………………………… 18

3.4.1 Seeded Region Mean Based on Region Mean ……………… 19

3.4.2 Automatic Region Growing and Cluster Analysis …………. 22

3.5 Cluster Analysis and Determination ……………………………….. 25

3.5.1 Cluster Analysis ……………………………………………. 25

3.5.2 Euclidean Distance …………………………………………. 28

3.5.3 Cluster Counting ….………………………………………… 29

3.6 Conclusion …………………………………………………………. 29

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Preface ……………………………………………………………… 30

4.2 Conventional Region Growing and followed by Cluster Count …… 30

4.3 Automatic Region Growing with Cluster Analysis ………………... 34

4.4 Results Discussion …………………………………………………. 36

4.4.1 Test 1 - Conventional Region Growing and followed by

Cluster Count ………………………………………………. 36

4.4.2 Test 2 - Automatic Region Growing with Cluster Analysis …... 37

4.5 Effects of Using Different Initial Seed Ranges and Grow Styles …... 37

4.6 Factors of Non-conformity ………………………………………… 38

4.7 Conclusion …………………………………………………………. 38

CHAPTER 5 SUGGESTIONS, FUTURE RECOMMENDATIONS, AND

CONCLUSION

5.1 Suggestions for Improvement …………………………………………. 39

5.2 Future System Recommendation ……………………………………… 40

5.3 Overall Conclusion …………………………………………………… 40

REFERENCES 41

APPENDIX A SOFTWARE MANUAL 42

 vii

DIAGRAM LIST

Figure 1.1 Project Development Stages

Figure 2.1 Borland C++ Builder interface

Figure 3.1 Matrices Representation for an Image

Figure 3.2 Adjacent pixels for pixel P

Figure 3.3 Histogram

Figure 3.4 3 x 3 representations for image data and mask function

Figure 3.5 Basic gray level transformations used for image enhancement

Figure 3.6 Negative transformation algorithm flow chart

Figure 3.7 Sputum specimen image

Figure 3.8 Position of a seed pixel surrounded by its neighbours in an 11 x 11

matrices.

Figure 3.9 Three options for seeded region growing direction

Figure 3.10 General algorithm flow chart for seeded region growing

Figure 3.11 Seeded region growing settings

Figure 3.12 Performance of manual seeded region growing for developing clearer

organism clusters prior to counting

Figure 3.13 Process flow chart of automatic region growing and cluster analysis

Figure 3.14 Automatic region growing and cluster analysis

Figure 3.15 Algorithm flowchart for cluster analysis

Figure 4.1 Original specimen image, 3355-08.bmp (760x570)

Figure 4.2 Image 3355-08.bmp split into two halves and negative-transformed

Figure 4.3 Seeded region growing

Figure 4.4 Cluster count

Figure 4.5 Automatic region growing with cluster analysis

Figure A1.1 Toolbar buttons

Figure A1.2 Main Menu (File) options

Figure A1.3 Main Menu (Window) options

Figure A2.1 Child Module details

Figure A3.1 Manual seeded region growing settings

Figure A3.2 Automatic seeded region growing settings

 viii

PREFACE

This dissertation is written as an official report for the Identification of Tuberculosis

Bacteria project that I have completed. In other words, this is the written representation

of the project that covers every aspect of it, beginning from the background that leads to

the initiation of this project, further to the project methodology, and complete with the

discussion on the results obtained by using the developed software and recommendation

for possible improvement of the system itself. Chapter 1 gives an introduction of the

project, which discusses the background issues that lead to the development of the

system and the objectives to be achieved by the solution. This chapter shall also

describe in brief on the development stages of the software system. Next is the Chapter

2, which covers in brief about Borland C++ Builder, the development tool that is used in

designing and implementing the software. In Chapter 3, there lays the critically

important part of the project itself. The chapter starts with a brief discussion on digital

image processing fundamentals and further extends to discuss image enhancement,

segmentation, and clustering algorithms applied in the software programme. Next,

Chapter 4 discusses the tests conducted against the software system and the

acceptability of the results. Also, the factors of some non-conformity that arise from the

tests are also covered. Finally, Chapter 5 gives overall conclusion on the project and

discusses possible improvements to be applied on the system in the future.

 1

CHAPTER 1

INTRODUCTION

1.1 Preface

As reiterated by Forero et al., Mycobacterium tuberculosis (TB) bacilli are the

origin of the pulmonary tuberculosis disease, although these microbes can infect tissues

of other organs such as brain, kidneys, bone, and skin. According to Ginsberg (1998),

Tuberculosis is the main cause of death resulting from infectious illness whereas the

World Health Organisation (WHO) states that 1.722 billion people are carriers of

Mycobacterium tuberculosis, triggering 10 million cases of active tuberculosis

worldwide and approximately 3 million of deaths annually. Cumbersome traditional

method for identification of Mycobacterium tuberculosis bacteria requires a

technologist to count visible bacteria clusters manually as he or she is examining the

specimen through a microscope. As this technique causes eye fatigue that leads to

reading error, a technologist can only examine a limited number of specimens per day,

leaving this traditional method irrelevant and counter-productive.

Image processing techniques provide a good tool for improving the manual

screening of specimens. As a mean of solution for the problem, this software is

designed to automatically identify Mycobacterium tuberculosis clusters from digitised

microscopic images of sputum specimens. This software incorporates three major

image processing domains; image enhancement, cluster segmentation, and cluster

counting. Image enhancement provides negative filtering to prepare the image data for

clustering. The cluster segmentation technique involves the application of k-mean

clustering technique and seeded region growing based on region mean. Furthermore,

cluster counting algorithm performs the quantitative detection of clusters developed

from the previous technique.

 2

1.2 Project Development Stages

The development of this project consists of several stages. It consists of academic

research on tuberculosis disease and image processing techniques, self-tutorial for

familiarisation with Rational Rose and Borland C++ Builder software engineering tools,

software requirement analysis, software design, data acquisition activity, software

implementation, units integration, and software testing. Sequential development of this

project is depicted in the following flow chart:

Figure 1.1: Project Development Stages

Academic research:

(a) Tuberculosis disease
(b) Image processing techniques

Self-tutorial:
(a) Rational Rose

(b) Borland C++ Builder

Software requirement analysis

Software design using Rational
Rose:

(a) Use Case Diagram
(b) Class diagram Data acquisition activity:

Microbiology Laboratory, School
of Medicine, Universiti Sains

Malaysia Software implementation using
Borland C++ Builder

(a) Class modules
(b) Functions

(c) Algorithms
(d) Compiling and debugging

(e) Encapsulation

Software testing with data

Software validation

 3

1.3 Project Objective

The software, in particular, is designed and implemented to fulfil the following

objectives:

1. Enhance digital microscope images of sputum specimens in overall through

negative filtering to prepare it for cluster segmentation.

2. Developing clusters of Mycobacterium tuberculosis organisms in the image

from colour and shape using either k-mean clustering or seeded region growing

based on region mean.

3. Analyse and count Mycobacterium tuberculosis clusters in the image.

1.4 Introduction to Digital Image Processing

An image could be defined as a two-dimensional function f(x,y), where x and y are

spatial (plane) coordinates, and the amplitude of f at any pair of coordinates (x, y) is

called the intensity or gray level of the image at that point. When x, y, and the

amplitude values of f are all finite, discrete quantities, the image is called a digital

image. Digital image processing refers to processing digital images by means of a

computer. A digital image consists of a finite number of elements, each of which has a

particular location and value. These elements are referred to as picture elements, image

elements, and pixels. Pixel is the most frequently used term to denote the elements of a

digital image. Digital image processing techniques implemented in this project will be

discussed in Chapter 3.

1.5 Report Outline

Chapter 2 provides a brief description on the development tools used in implementing

this project, followed by Chapter 3, which discusses digital image processing techniques

in detail. Next, Chapter 4 discusses the test results and factors that affected the results.

Finally, Chapter 5 concludes this project in overall and suggests some recommendations

for improvements in the future.

 4

CHAPTER 2

DEVELOPMENT TOOL: BORLAND C++ BUILDER

2.1 Preface

Computer users will always prefer software solutions that are easy to use and can be run

on any computers. Thus, software engineers and programmers in designing and

implementing their solutions always prefer visual programming tools. In this project,

Borland C++ Builder is chosen as the development tool as it incorporates the powerful

C++ programming language together with visual component development.

2.2 Introduction to Borland C++ Builder

Borland C++ Builder is a Rapid Application Development (RAD) package introduced

by Inprise Corporation for software engineers to develop user-friendly applications

based on the highly versatile and powerful C++ programming language. The tool

utilises object-oriented-programming (OOP) in building a software package.

Figure 2.1 shows the basic interface of Borland C++ Builder. The interface

features several essential parts:

 Main Menu

 Toolbar

 Component Palette

 Interface Design Form

 Object Inspector

 Project Manager

 Code Editor

 5

Figure 2.1: Borland C++ Builder interface

The main interface has toolbar on the left side and component palette on the

right side. The component palette contains functional tools for programmers to build

interface display on the form such as images, labels, buttons, scroll bar, and many

others. The object inspector contains the properties for the components selected by the

programmer. As a unit is being built, the code editor enables the programmer to write

desired programmes to get the components work.

Main menu Component palette Interface design
form

Object inspector Code editor

 6

Object-oriented Programming (OOP) is a discipline in programming that is not

associated to only one programming language. Theoretically, most programming

languages from high-level languages and above can be applied with OOP, but

practically, programmers only use the programming languages that are meant for OOP.

2.3 Borland C++ Builder Debugging Utility

The integrated debugger in Borland C++ Builder facilitates debugging and validation

processes in developing software. C++ Builder debugger automatically launches when

the “Run” button is pressed. Capability to control the variables in debugging is

important as it predicts whether a programme has been implemented correctly.

2.4 Conclusion

The software package for this project is built by using Borland C++ Builder. As

Borland C++ Builder facilitates in building windows-based application, it is renowned

as a highly coveted software development tool.

 7

CHAPTER 3

DIGITAL IMAGE PROCESSING TECHNIQUES

3.1 Preface

As described earlier in Section 1.4, digital image processing is a scientific discipline

that is related to the manipulation of images and its data, digitally. It can also be

defined as a proper technique in two-dimensional digital image processing which is

aimed to gather information from the manipulated image. Lindley (1991) stated that

digital image processing could be applied for images and its datum when any of the

following conditions is fulfilled:

1. The images have to be enhanced and modified to improve quality or to establish

a certain aspect from the information available in images.

2. The images have elements that can be classified, categorised, matched, or

measured.

3. The images have parts or elements that have to be merged or rearranged.

This project applies digital image processing techniques in concern to conditions

1 and 2. It implies that digital microscope images of sputum specimens have to be

enhanced to obtain a better image quality (condition 1) and that clusters of

Mycobacterium tuberculosis organism need to be extracted from the images (condition

2).

This chapter will first discuss on fundamental concepts in digital image

processing. Furthermore, digital image processing techniques applied in this project

will be given emphasis. The techniques that will be covered are gray level

transformations, region growing, and cluster counting.

 8

3.2 Fundamental Concepts in Digital Image Processing

In digital image processing, fundamental concepts that should be given emphasis

include digital image definition, types of digital image processing, gray level,

histogram, and convolution. These concepts are given detailed description as follows.

3.2.1 Digital Image Definition

As being described by Gonzalez and Woods (2002), a digital image contains a basic

element known as pixel. A digital image consists of a matrices array of pixels. Each

individual pixel holds a certain characteristic on its position in the image. Figure 3.1

shows the representation of a digital image by its pixels in matrices form. Shown in

Figure 3.1 (a) is an array of pixels represented in grid with x columns and y lines in two

dimensions, while Figure 3.1 (b) shows the image represented in matrices form.

Figure 3.1: Matrices representation for an image

A pixel P at a coordinate (x, y) has two adjacent neighbours of same column and

two adjacent neighbours of the same line with the following coordinates: (x, y-1), (x,

y+1), (x-1, y), and (x+1, y). All eight adjacent pixels for the pixel P are shown in

Figure 3.2.

0,0 1,0

0, 1 1, 1

x

y x y

a a

a a



  

 
 
 
 
 



  



x columns x y lines

(a) An array of pixels with x
columns and y lines

(b) Matrices representation for the
pixel array in (a)

 9

Figure 3.2: Adjacent pixels for pixel P

3.2.2 Types of Digital Image Processing

Lindley (1991) has suggested four different types of image processing as the following:

point processing, spatial processing, frame processing, and geometrical processing. As

frame processing is not applied in this project, only the remaining three processing types

are discussed here.

Point processing has become the basis for most digital image processing

operations. The value of a pixel in an image would be altered solely based on the value

of the pixel itself. The pixel value would be replaced by a new value based on the

original value of the pixel. Spatial relationship in the image remains intact after a point

processing operation. Thus, information in the image also remains unchanged.

Histogram representation is one of the techniques used in this project that based on

point processing.

Spatial processing uses a group of pixels in an image to obtain information

about the image. Neighbouring pixels in this group are adjacent to the desired pixel,

where its neighbours surround the desired pixel. Calculation processes that involve

spatial processing include mean, variance, and convolution. Spatial processing could

function using convolution as spatial filter and edge detector.

Geometrical processing would change the array or position of pixels in an

image. Pixels array and position could be altered through image enlargement and image

(x-1, y-1) (x, y-1) (x+1, y-1)

(x-1, y) P (x, y) (x+1, y)

(x-1, y+1) (x, y+1) (x+1, y+1)

 10

rotation techniques. Despite of being marginally applied in this project, the process

remains significant as an image could sometimes provide information in greater detail

through geometrical conversion.

3.2.3 Gray Level

Pixels are the smallest unit that represents a digital image. Each of the pixels that made

up the image contains different gray level value. Different combination of gray level

values dictates the brightness and intensity of the image. In this project, sputum

specimen images in colour are transformed into grayscale images with 256 gray level

values in which the value 0 represents the darkest up to 255 for the brightest pixel.

Other pixels might have different brightness and intensity levels between these two

values. All the images used in this project are of bitmap (BMP) format.

3.2.4 Histogram

Histogram for a digital image is essentially a discrete function in the form of bar chart

that displays the quantity of pixels with certain gray level values. Alang Ahmad (1999)

defines that histogram is a tabulation with input for every possible gray level value of

pixels, which provides the number of pixels with certain gray level value.

Histogram closely relates to the probability density function, which tells the probability

of a pixel having a certain gray level value, for a group of pixels in the image.

Histogram is fundamentally defined as a set of M numbers as given in Equation 3.1.

i
i

t

n
h

n
 , for i = 0,1,2…M-1 (3.1)

 where M = the total of gray levels in an image

 i = index number representing the i-th gray level

 ni = number of pixels in the image with i-th gray level

 nt = total number of pixels in the image

 11

Histogram for an image is usually displayed in the form of graph, in which the

number of pixels versus gray level values, as shown in Figure 3.3. It is common that

certain gray level values have a lot of pixels while other gray level values have too little

pixels or no pixel at all. Brightness of the image predicts the curve of the histogram

graph. A dark image would have high curves on the left part of its histogram, depicting

a large number of pixels with low gray value levels. Instead, a bright image would have

high curves on the right part of its histogram, depicting a large number of pixels with

high gray value levels.

Figure 3.3: Histogram

Despite of a number of information could be obtained from a histogram; it does

not provide any information on the contents of the image itself. Position of the

histogram peak represents the image intensity while the peak width, also known as

dynamic range, indicates its contrast. A small dynamic range represents low contrast,

and vice versa. Understanding histogram shapes is useful since it predicts the

probability for contrast enhancement of an image. Besides contrast enhancement, a

histogram is also viable in predicting a threshold value, whose position is between two

histogram peaks, for image segmentation processes. A correct or suitable threshold

value would enable a clear differentiation of two objects.

 12

3.2.5 Convolution

Convolution, which is easy to understand and apply, is a renowned technique

particularly in digital signal processing. As suggested by Alang Ahmad (1999),

convolution could be applied to implement various spatial processing transformations.

Filtering and detection techniques largely involve convolution technique.

Chuah (1999) defines that image convolution is a cross product between N x N

image data and M x M mask function. This concept could be illustrated using a 3 x 3

image data with values from X1 to X9 and a 3 x 3 mask function with values from Y1 to

Y9. Representation for both the image data and mask function are shown in Figure 3.4.

Figure 3.4: 3 x 3 representations for image data and mask function

Convolution of image data with mask function produces the result, which is described in

Equation 3.2.

[X] * [Y] = X1Y1 + X2Y2 + X3Y3 + … + X9Y9 (3.2)

This result would replace the position of X5 for the image once the processing is

complete. However, the original value of the position cannot change, as the data in that

particular pixel is required for the processing of its neighbours.

X1 X2 X3

X4 X5 X6

X7 X8 X9

(a) Image data

Y1 Y2 Y3

Y4 Y5 Y6

Y7 Y8 Y9

(b) Mask function

 13

 3.3 Gray Level Transformation

As described by Gonzalez and Woods (2002), gray level transformations are among the

easiest of all image enhancement techniques. The values of pixels before and after

processing could be denoted as r and s, respectively. These values are related by an

expression, which is shown in Equation 3.3,

 s = T(r) (3.3)

where T is a transformation that maps pixel value r into pixel value s. As digital image

processing involves digital quantities, values of the transformation function are stored in

a one-dimensional array and the mappings from r to s are implemented via table

lookups, in which an 8-bit lookup table will have 256 entries ranging from 0 up to 255,

in representative of 256 gray level values.

Figure 3.5 shows three basic types of functions widely used for image

enhancement: linear (negative and identity transformations), logarithmic (log and

inverse-log transformations), and power-law (n-th power and n-th root transformations).

Figure 3.5: Basic gray level transformations used for image enhancement

 14

3.3.1 Negative Transformation

The negative of an image with gray level values in the range from 0 to L-1 is obtained

by using negative transformation shown in Figure 3.5, which is given by the expression

in Equation 3.4,

 s = L – 1 – r (3.4)

where s = new gray level value

 r = original gray level value

 L = number of gray levels

*For 8-bit gray level images, it is L = 28 = 256.

Reversing the intensity levels of an image in this way produces the equivalent of a

photographic negative.

3.3.2 Log Transformation

Equation 3.5 represents the general form of log transformation.

 s = c log (1 + r) (3.5)

where c is a constant and it is assumed that r > 0. The shape of the log curve in Figure

3.5 shows that this transformation maps a narrow range of gray level values in the input

image into a wider range of output levels. Log transformation could be applied to

expand the values of dark pixels in an image while compressing the higher-level values.

The opposite for this transformation is inverse-log transformation, where the values of

bright pixels are expanded while dark values are compressed.

 15

3.3.3 Gray Level Transformation in This Project

In this project, a specimen image is supposed to be transformed from colour into gray

level prior to enhancement and clustering process. The gray level transformation

algorithm in this software consecutively performs colour depth conversion and negative

filtering with a single button click. Gray level transformation is considered to suit the

image data to the developed grayscale image processing algorithm.

Processing an image in colour domain would require the algorithm to perform

extensive considerations and manipulations for red, green, and blue (RGB) channel

levels for each pixel. Manipulating three colour levels together for every pixel needs

for more advanced and complex algorithms. Besides a cumbersome development of

algorithms for colour image enhancement and segmentation, clustering process in

colour domain is very resource-intensive and would stretch the processing capability of

the computer to its limit. Hence, gray level transformation with negative filtering is

considered a viable technique to adapt colour specimen images into grayscale image

processing algorithm.

Gray level transformation algorithm in the software applies a simple negative

transformation technique. The negative gray level value of a pixel is the deduction of

its original gray level value from 255. Gray level transformation process implemented

in the software is described by the following flow chart in Figure 3.6. Initially, the

software reads each pixel in the colour image in terms of brightness and appoints the

brightness value as gray level value. The algorithm scans the pixels beginning with

pixel (0,0) and performs negative transformation by deducting the original gray level

value from 255. The x-coordinate iterates as the algorithm transforms the next pixel.

Once all the pixels of (x,0) coordinates have been negative-transformed, the y-

coordinate iterates. The process is performed recursively until all pixels in the image

have been negative-transformed.

 16

Figure 3.6: Negative transformation algorithm flow chart

Figure 3.7 shows an example of gray level transformation performed by the

software. Image (a) is the original image while image (b) is image (a) as read by the

software in terms of pixel brightness, where the brightness level is assigned as gray

level. Image (c) is the fully transformed result of image (a).

START

Initialise
USERDATA[x][y],

xmax, ymax

y = 0

x = 0

USERDATA[x][y] = 255 – USERDATA[x][y]

x = x + 1

x > xmax ?

y = y + 1

y > ymax ?

STOP

No

Yes

Yes

No

 17

(a) Original sputum specimen image (b) Image (a) as read by the software

(c) Negative-transformed sputum specimen image

Figure 3.7: Sputum specimen image (a) that undergoes gray level transformation (b)
followed by negative filtering (c)

 18

3.4 Seeded Region Growing

According to Ooi (2000), seeded region growing involves a seed pixel from which a

region is grown with its pixels within a certain range. Firstly, seed pixel is selected at

which it is surrounded by neighbouring pixels with a matrices size of P x P, where P is

any odd integer. The seed pixel lies right in the centre amongst the neighbouring pixels,

as shown in Figure 3.8.

Figure 3.8: Position of a seed pixel surrounded by its neighbours in an 11 x 11
matrices.

Secondly, statistical parameter (such as mean and variance) for the region is

computed based on gray level values for all pixels in the matrices. Then, seed point

could be grown in the desired direction. The algorithm provides three options of

growing directions: four-connected, eight-connected, and four-diagonal as shown in the

following Figure 3.9.

 (a) four-connected (b) eight-connected (c) four-diagonal

Figure 3.9: Three options for seeded region growing direction

For every growing streak from the seed pixel to its adjacent pixels, a lookup

computation is carried out based on gray level value of the adjacent pixels and

 19

previously calculated region parameter to decide whether the adjacent pixels will be

included into the region or not. If the computation result fulfils a previously set

growing condition, then the adjacent pixels are included into the region. Otherwise, the

adjacent pixels will be left out of the region.

The process is implemented recursively where newly included pixels will act as

new seed pixels. New parameter for the region is recomputed with respect to those

newly included pixels. This new parameter value is then used for the next lookup

process. The region growing process stops once all pixels have been looked up.

3.4.1 Seeded Region Growing Based on Region Mean

This is the most common approach applied in seeded region growing technique. As the

P x P matrices for the initial region is set, mean of the region is then computed using

Equation 3.6,

Region mean, 1

n

i
i

t

g

n
 


 (3.6)

where gi = gray level value of each individual pixel

 nt = total number of pixel

Next, the seed pixel is grown out towards its neighbours in one of the three

directions provided as options. For each growing streak, only absolute values are

obtained for the difference between gray level value of neighbouring pixels and the

region mean computed previously. As long as the absolute value of difference is less

than a previously set threshold value, then the adjacent pixels are included into the

region and the process runs recursively against the next pixels until all the pixels have

been looked up.

 20

As new pixels are being included into the region, the new mean for the grown

region is computed using the updated values of gi and nt. The new mean is then used

for the next lookup process. The gained region is either marked or circumstanced by a

boundary line, depending on the option previously set by the user. Figure 3.10 shows

the general algorithm flow chart for seeded region growing.

Figure 3.10: General algorithm flow chart for seeded region growing

Pixel grey level value =
seed grey level value?

Growing conditions
fulfilled?

Grow the pixel

The growing process
repeats 100 times?

Save image
temporarily

START

User selects the first seed

Check the first pixel
in the image

All pixels have been
considered?

TAMAT

Check the next pixel Check the next pixel

Ignore the pixel

No

Yes

No

Yes

No

Y

No

Yes

STOP

 21

Figure 3.11: Seeded region growing settings

The panel shown in Figure 3.11 above is the setting for manual seeded region

growing. Options are provided for mask colour, region marking style, grow direction,

and initial seed pixel range matrices. The region growing threshold option needs to be

adjusted depending on the brightness of the selected seed pixel. A higher threshold

value should be selected for brighter seed pixels while a lower threshold value is

suitable for darker seed pixels.

Initial seed pixel range refers to the array range, which the seed pixel would be

grown. The range 3 x 3 implies that each growing streak shall consider eight adjacent

pixels to the current seed pixel. The same range shall be considered for the next

growing streaks from new seed pixels. Meanwhile, growing using the range 5 x 5 will

consider 24 adjacent pixels to the current seed pixels in every growing streak and the

same range is considered for every new seed pixels. Iteratively, selecting the range 7 x

7 shall have 48 adjacent pixels to be considered in every growing streak. The same rule

applies for the larger initial seed ranges where the use of 9 x 9 range shall consider 80

adjacent pixels to the seed for every growing streak and the range 11 x 11 shall consider

120 adjacent pixels.

Region growing
direction options

Mask colour

Selection for
manual seeded
region growing

Option for
marking the
region grown

Region growing
threshold

Coordinate of
the selected seed

Initial P x P
seed range
matrices

 22

An example of manual seeded region growing is shown in Figure 3.12. Image

(a) is a negative-transformed specimen image. Seeded region growing is performed

manually against each visible Mycobacterium tuberculosis organisms and as the result,

clearer Mycobacterium tuberculosis clusters are developed as shown in image (b).

Hence, seeded region growing is proven as an efficient technique to enhance clusters in

poor quality specimen images prior to cluster analysis and calculation.

(a) Negative image with unclear clusters (b) Clearer clusters developed

Figure 3.12: Performance of manual seeded region growing for developing clearer
organism clusters prior to counting.

3.4.2 Automatic Region Growing and Cluster Analysis

In addition to conventional seeded region growing, the software features an option for

automatic region growing and cluster analysis. Instead of having to select seed pixels

manually, the algorithm automatically detects for suitable seed pixels. As quoted by Ng

(2001), this automatic algorithm features fuzzy theory set for “on-the-fly” image

enhancement. Besides, Marr-Hildreth filter is also applied to improve the image

 23

contrast. Sequentially, the algorithm checks for suitable seed pixels. Then, using

region mean-based seeded region growing, the algorithm grows the identified seed

pixels.

The automatic region growing and cluster analysis process flow is described

with the process flow chart shown in Figure 3.13.

Figure 3.13: Process flow chart of automatic region growing and cluster analysis

The following Figure 3.14 shows an example of automatic region growing and

cluster analysis. Image (a) is a region of interest selected from a specimen image. With

START

The user selects pi function threshold
value

Image enhancement using fuzzy
theory set

Marr-Hildreth filtering improves the
image contrast

Suitable seed pixels detected

Seed pixels grown by using region
mean-based seeded region growing

Organism clusters analysed and
calculated by using cluster analysis

technique

STOP

 24

a certain adjusted pi function threshold value and one single click, the software

automatically enhance and filters the image, identifies seed pixel, performs region

growing, and analyses the developed clusters. Image (b) is the result of automatic

region growing with the pi function threshold set to 80.

Figure 3.14: Automatic region growing and cluster analysis

(b) Clusters developed with
automatic region growing

(a) Original image

	Pengenalpastian Bakteria Tibi_Nazrul Hilmi Mohammad_E3_2005_ESAR
	MUKA SURAT TAJUK
	ABSTRAK
	ACKNOWLEDGEMENTS
	CONTENTS
	PREFACE
	CHAPTER 1INTRODUCTION
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	REFERENCES
	APPENDIX A

