

DATA ACQUISITION SYSTEM BASED ON FPGA

Oleh

Nuril Syahira binti Mahrus

Disertasi ini dikemukakan kepada

UNIVERSITI SAINS MALAYSIA

Sebagai memenuhi sebahagian daripada syarat keperluan

 untuk ijazah dengan kepujian

SARJANA MUDA KEJURUTERAAN (KEJURUTERAAN ELEKTRONIK)

Pusat Pengajian Kejuruteraan

Elektrik dan Elektronik

Universiti Sains Malaysia Mac 2005

 ii

ABSTRAK

 Sebagai memenuhi syarat pengijazahan, satu sistem perolehan data berdasarkan

FPGA telah dibina. Data dalam bentuk analog, yang diperoleh dari pembekal kuasa

(isyarat dalam bentuk voltan) akan ditukarkan kepada bentuk digital dengan

menggunakan ADC0809. Sistem ini dikawal sepenuhnya oleh FPGA dengan

menggunakan perisian Xilinx Foundation Series 2.1, melalui Project Manager. Bahasa

yang digunakan untuk membina aturcara ialah VHDL code. Peranti Xilinx yang

digunakan adalah XC4010 PC84. Data yang diperoleh dari ADC0809 (dalam bentuk

digital) akan diproses untuk membolehkannya dipaparkan pada LCD (dengan cara

menukarkan kod Hex kepada kod ASCII). Selepas data ini telah ditukarkan kepada

bentuk kod ASCII, data ini akan dipaparkan pada LCD. Pada masa yang sama, data ini

juga akan dibandingkan dengan pembolehubah yang telah ditetapkan, iaitu 3F(dalam

Hex), yakni bernilai 1.24V. Jika data yang diperoleh adalah melebihi pembolehubah

tersebut, maka LED akan menyala. LED tidak akan menyala jika keadaan sebaliknya

terjadi. Ini direka untuk menunjukkan sistem pengawasan.

 iii

ABSTRACT

 For undergraduate project, a data acquisition system based on FPGA has been

developed. An analog data, which comes from power supply (in voltage signals) is

gathered and then be converted to digital signals. This is done by ADC0809. This

system is fully controlled by FPGA using the Xilinx Foundation Series 2.1, by Project

Manager. The device used is XC4010 PC84 and the language used to develop the

coding is VHDL code. Data from the ADC0809 (which is in digital form) will be

processing to make sure that it can appear on LCD. To do this, the data first must be

converted from the Hex code to the ASCII code. After the data has been converted to

ASCII code, then it will be displayed on the LCD. At the same time, the data will be

compared to a fix variable, which is 3F in Hex and equal to 1.24V. If the data is beyond

the variable then LED will turning ON, and if the data is less than that (the variable),

then the LCD will not turning ON. It is designed to show the monitoring system.

 iv

ACKNOLEDGEMENTS

 Alhamdullillah... In the name of Allah, most grates and most merciful.

 First of all, I would like to take this opportunity to express my deepest gratitude

and appreciation to Puan Zaini, my final year project supervisor. She had been very

supportive for me to continue my project. More importantly, her willingness to advice

and guide me along throughout this period. She is too patience to guide a new FPGA

user like me. Thank you very much.

 I would like to extend my appreciation to all my friends who did the FPGA for

the Final Year Project too, because they also help me a lot to use this system.

 Not to forget, to Encik Khairul and Puan Shahida, the technicians of

Microprocessor Laboratory, the place where I did my project. They are agreed to

borrow me the instrument in the laboratory.

 Last but not least, to Dr.Othman Sidek, the Electrical and Electronics Dean as

well as my second examiner who had express his great interest in my project and was

willing to be my second marker.

 Thank You.

 v

TABLE OF CONTENTS

Page

ABSTRAK ii

ABSTRACT iii

ACKNOWLEDGEMENT iv

TABLE OF CONTENTS v

LIST OF FIGURES AND TABLES viii

CHAPTER 1 INTRODUCTION

 1.1 Project Overview ………………………….. 1

 1.2 Objectives and Scope of Project ……………… 4

 1.3 Structure of Report ………………………….. 4

CHAPTER 2 LITERATURE SURVEY

2.1 Field Programmable Gate Array (FPGA)

2.1.1 History of FPGA ………………….... 5

2.1.2 Why FPGA Has Been

 Chosen ………………......... 6

2.2 Data Acquisition System ...………………… 7

2.3 Introduction to System’s Instrument

2.3.1 XC4010 PC84 …………………. 7

 2.3.2 ADC 0809 …………………. 9

 2.3.3 LCD 16 x 2 Display ………………….. 11

 2.3.4 LED …………………. 14

 2.3.5 DC Power Supply ………………. 14

 2.3.6 Function Generator …………………. 15

 vi

CHAPTER 3 FPGA IMPLEMENTATION

 3.1 Project Manager …………………….......... 16

 3.2 FPGA Design Flow ………………………..… 17

 3.2.1 Schematic Editor………………………….. 19

 3.2.2 HDL Editor ………………………..… 23

 3.2.3 Logic Simulator………………………….. 24

 3.2.4 Flow Engine ………………………….. 27

 3.2.5 PROM File Formatter…………………….. 29

CHAPTER 4 RESULTS AND ANALYSIS

 4.1 Simulation

 4.1.1 Analog-to-Digital Converter …………….. 32

 4.1.2 Hex-to-ASCII …………….. 34

 4.1.3 Multiplexer …………….. 35

 4.1.4 LCD …………….. 37

 4.1.5 Comparator …………….. 41

 4.1.6 Combinational Blocks …………….. 43

 4.2 Hardware Developing

 4.2.1 Downloading ……………... 46

 4.2.2 FPGA Demo Board ……………… 47

 4.2.3 Final Result ……………… 49

CHAPTER 5 CONCLUSION 51

 vii

REFERENCES

APPENDIX A: DATA SHEET
1. XC 4000X
2. ADC 0809
3. LCD

APPENDIX B: HDL CODE

1. ADC
2. UPPER
3. LOWER
4. MUX
5. LCD

APPENDIX C: SCHEMATIC EDITOR

1. COMBINATIONAL BLOCKS
2. COMPARATOR SCHEMATIC (MACRO)

 viii

LIST OF FIGURES AND TABLES

Page

Figure 1.1: Flow Chart of the System ………………………... 3

Figure 2.1: XC 4010 PC84 ………………………… 8

Figure 2.2: ADC 0809 ………………………… 9

Figure 2.3: Layout Pin ADC 0809 ………………………… 9

Figure 2.4: ADC 0809 Timing Diagram ………………………… 10

Figure 2.5: LCD 16 x 2 Display ………………………… 11

Figure 2.6: LCD Timing Diagram ………………………… 12

Figure 2.7: DC Power Supply ………………………… 15

Figure 2.8: Function Generator ………………………… 15

Table 2.1: Pin Description of LCD ………………………… 11

Table 2.2: Partial Listing of ASCII Code ………………………… 13

Figure 3.1: Project Manager ………………………… 17

Figure 3.2: FPGA Design Flow ………………………… 18

Figure 3.3: Schematic Editor Window ………………………… 20

Figure 3.4: Design Wizard Window

 Figure 3.4a: Welcome Window ………………………… 21

 Figure 3.4b: Contents Window ………………………… 21

 Figure 3.4c: Ports Window ………………………… 22

 Figure 3.5d: Attributes Window ………………………… 22

 Figure 3.5e: Final Window ………………………… 23

Figure 3.5: HDL Editor Window ………………………… 24

Figure 3.6: Simulator Window ………………………… 25

Figure 3.7: Component Selection Window ………………………… 26

Figure 3.8: Stimulator Selection Window ………………………… 27

Figure 3.9: Flow Engine Window ………………………… 29

Figure 3.10: PROM File Formatter Window ………………………… 30

Figure 3.11: PROM Properties Window ………………………… 31

 ix

Figure 4.1: Block Diagram for ADC ………………………. 32

Figure 4.2: Simulation Diagram for ADC

 Figure 4.2a: Simulation Diagram for Address 0…………………. 33

 Figure 4.2b: Simulation Diagram for Address 1…………………. 33

 Figure 4.2c: Simulation Diagram for Address 2…………………. 33

 Figure 4.2d: Simulation Diagram for Address 3…………………. 34

Figure 4.3: Hex-to-ASCII Block Diagram

 Figure 4.3a: Upper ………………….. 34

 Figure 4.3b: Lower ………………….. 35

Figure 4.4: Simulation Diagram for Hex-to-ASCII ……….................. 35

Figure 4.5: Block Diagram for Multiplexer ………………….. 35

Figure 4.6: Simulation Diagram for Multiplexer ………………….. 36

Figure 4.7: Block Diagram for LCD ………………….. 37

Figure 4.8: Simulation Diagram for Multiplexer

 Figure 4.8a: Simulation Diagram for Initializing LCD…………… 38

 Figure 4.8b: Simulation Diagram for Display Chn1:

 and to Place Cursor for Chn2 ………………….. 38

 Figure 4.8c: Simulation Diagram for Display Chn2:

 and to Place Cursor for Chn3 ………………….. 38

 Figure 4.8d: Simulation Diagram for Display Chn3:

 and to Place Cursor for Chn4 ………………….. 39

 Figure 4.8e: Simulation Diagram for Display Chn4: ……………. 39

 Figure 4.8f: Simulation Diagram to Place Cursor for Data Chn1

 and for display data Chn1 …………… 39

 Figure 4.8g: Simulation Diagram to Place Cursor for Data Chn2

 and for display data Chn2 …………… 39

 Figure 4.8h: Simulation Diagram to Place Cursor for Data Chn3

 and for display data Chn3 …………… 40

 Figure 4.8i: Simulation Diagram to Place Cursor for Data Chn4

 and for display data Chn4 …………… 40

Figure 4.9: Block Diagram for Comparator …………… 42

 x

Figure 4.10: Simulation Diagram for Comparator

 Figure 4.10a: Input not exceeded 3F ……………… 42

 Figure 4.10b: Input exceeded 3F ………………… 43

Figure 4.11: Simulation Diagram for the System

 Figure 4.11a: Initializing LCD and Channel Displaying……………... 43

 Figure 4.11b: Channel Displaying ………………. 44

 Figure 4.11c: Channel Displaying and Data Processing 44

 Figure 4.11d: Data Processing and Displaying Data (Chn1) ……. 44

 Figure 4.11e: Data Processing and Displaying Data (Chn2)………. 45

 Figure 4.11f: Data Processing and Displaying Data (Chn3)………. 45

 Figure 4.11g: Data Processing and Displaying Data (Chn4)………. 45

Figure 4.12: Schematic Diagram of the System ……………. 48

Figure 4.13: FPGA Demo Board ……………. 49

Figure 4.14: Final result

 Figure 4.14a: Inputs not exceeded 3F …………… 49

 Figure 4.14b: Inputs exceeded 3F …………… 50

Table 4.1: LCD Command codes …………… 41

Table 4.2: Cursor Address and Command …………… 41

Table 4.3: Pin Connection XC 4010 PC84 and ADC 0809 …………… 47

Table 4.4: Pin connection XC 4010 PC84 and LCD …...………… 48

 1

CHAPTER 1: INTRODUCTION

1.1 Project Overview

Generally, Data Acquisition (DAQ) System consists of amplifier, multiplexer,

analog to digital converter (ADC), controller to control the inputs data and a screen

monitor. For this under graduate final year project, one DAQ System based on FPGA is

designed. FPGA is stands for Field Programmable Gate Arrays. FPGA is chose because

FPGA is the high density ASIC that allow to re-configurable the hardware without

change its physical structure. It also implement the system to do the operation for the

millions logic gate. Designing based on FPGA can be done in a short time because they

are a few process that can be leaved such as fabrication and casing.

Data are first captured and subsequently translated into usable signals using

transducers. In this discussion, usable signals are assumed to be electrical voltages.

When there is more than one analog input, they are subsequently sent to an analog

multiplexer (MUX). The analog signal is then conditioned using signal conditioners.

There are two additional steps for those conditioned analog signals. First they must be

sampled and next converted to digital data. This conversion is done by analog-to-digital

converters (ADC).

Many applications require information capturing from more than one channel.

The use of MUX is to cater to multiple inputs. When the MUX is addressed to select an

input, say xi (t), the same address will be decoded by the decoding logic to generate

another address, which is used in addressing the programmable register. The

programmable register contains further information regarding how to handle xi (t). The

outcome of the register is then used in subsequent tuning of the signal conditioner. The

MUX address generator could be programmed in many ways; one of the simplest ways

is to scan input channels in a cyclic fashion where the address can be generated by

means of a binary counter. FPGA is used in addressing MUX.

FPGA is also used to get data from the ADC and sent to LCD for displaying the

result through the ASCII codes. The system which is hex to ASCII codes needs to be

implementing to make sure that the LCD can display the right output or number that

need.

The controlling device, which is Xilinx (XC 4010 PC 84) in this case, first

selects the desired input channel. To do this, a 3-bit channel address is placed on the A,

 2

B, C input pins, and the ALE input is pulsed positively, clocking the address into the

multiplexer address register. To begin the conversion, the START pin is pulsed. On the

rising edge of this pulse, the internal registers are cleared and on the falling edge the

start conversion is initiated. The address A, B, C pins, ALE pins and Start pin as well as

the OE pins are the output from XC 4010 PC 84 to ADC 0809. When EOC, which is the

input from the ADC 0809, goes high, it means it is the end of conversion and the data

resulting from the conversion is ready to be read.

After the data has been constructed, it will then be compared to a fix variable.

This comparison is needed to build a monitoring system in the design. If the system

monitored that the constructed data is exceeding the fix variable, then LED will turning

ON.

Figure 1.1 shows the flow chart describing the easiest way how the system works.

 3

 NO

 Yes

 Yes

 No

Figure 1.1: Flow Chart of the System

Collecting and

converting data (ADC)

Multiplexer

Displaying Data (LCD)
LED ON

MSB (4-bit)

=72
clock
cycle

>3F

START

LSB (4-bit)

LED OFF

 4

1.2 Objectives and Scope of Project

This monitoring system usually used by an aero plane, to indicate the navigation,

the fuel, and many more. Besides the aero plane, this monitoring system also can be

applied to indicate the temperature in oven or in a room that need a specific

temperature. It will sense any changes that occurred and then display it and will blinking

or honking if it comes to a dangerous level.

This project related to design a monitoring system which is used the data

acquisition system based on FPGA. To achieve this target, two main objectives are

discovered:

1. Construct a data acquisition system based on FPGA

2. Design a monitoring system which is used the data acquisition system.

The first objective, which is to construct a data acquisition system based on

FPGA will be done by gathering the usable signals, which will be electrical voltages, in

ADC0809 and will be converted to digital signals. Then these signals will then go

through a controlling device, which is Xilinx (XC 4010 PC 84). After that, the data then

will be display on the LCD.

LED (light-emitting diode) will be used to indicate whether the data (inputs),

which have been constructed before, exceed or not the variable that has been fixed in a

design of this system. If the data is exceed the fixed variable, the LED then will turning

ON. This approach is for achieving the second objective of the design of this system,

which is to design a monitoring system.

The monitoring system is very useful to monitor whether the system is in a

dangerous level or not.

1.3 Structure of Report

Chapter 2: A survey on the history of FPGA, what is data acquisition is all about and the

reason why FPGA has been chosen.

Chapter 3: The step by step to implement the FPGA

Chapter 4: The result and the explanation of each block (simulation), hardware

developing (connections between the hard wares), and the final result (finishing output).

Chapter 5: The conclusion of the projects as well as the future approach to improve this

project.

 5

CHAPTER 2: LITERATURE SURVEY

2.1 Field Programmable Gate Array (FPGA)

 2.1.1 History of FPGA

 By the early 1980s there were many companies providing programmable logic

devices, each which its own unique set of architectural features. As these devices

become more complex and varied, the need grew for higher levels of design abstraction

and for automated conversion of higher-design descriptions to programmable logic

implementations. Simulation tools also became increasingly important; the size and

complexity of programmable logic applications were now growing to the point where

testing based on device inputs and outputs were not sufficient.

 Although the use of programmable logic devices for creating logic circuits grew

dramatically in the early to mid 1980s, they did not take hold among embedded systems

designers and programmers due to their relatively small size and the wide availability

and low cost of standard microcontrollers. While microcontrollers were (and remain)

exceptionally slow in terms of data throughput relative to what is possible using

programmable logic, the tremendous flexibility provided by microcontrollers and micro

processors, along with their ability to host much larger algorithms and applications

made them the obvious choice for all but he simplest and most performance-critical

functions.

 Three factors combined in the mid 1980s to cause a change in the way that

programmable logic was applied, and in its applicability to hardware acceleration of

software computations. These factors were reprogram ability, more flexibility

interconnect architectures and tools for the automated synthesis of circuitry from

standard hardware description language.

 The new, more flexible device architectures represented by FPGA devices

(which were produced by Xilinx, Inc., Altera Corporation, and others) were also critical.

These devices had dramatically higher logic capacities and more general-purpose

features than had existed previously, and therefore provided a new set for performing

complex computations directly in hardware.

 Finally the emergence of more powerful logic synthesis software tools and the

development and standardization of two powerful hardware description languages,

VHDL and Verilog, made it possible for application developers to work at a higher level

 6

of abstraction, leaving to the design tools the details of actual implementation of an

algorithm as low-level logic gates, registers and the like.

 By the start of 1990s, it was clear that programmable logic devices had matured

to the point where the high-performance software algorithms and even complete

applications could be implemented in hardware.

 At the turn of century, the primary use of FPGAs was still almost

overwhelmingly for traditional hardware functions; controllers, interface logic and

peripheral integration. FPGA based computing had not yet caught hold.

 In recent years, two important developments have combined with ever-

increasing device densities to make FPGA-based computing practical for mainstream

applications. The first of these developments have been the availability of full-featured

embedded FPGA processors cores, including the Micro Blaze ad Power PC cores

available from Altera, and other processors cores available from third –party IP

suppliers. [1]

2.1.2 Why FPGA Has Been Chosen

The basic idea underlying the architecture of an FPGA is very simple. In

general, combinational and sequential circuits can be implemented directly in silicon.

Such ASICs produce the highest performance but can perform only one function, and it

is not that practical because it may needs high cost. [2]

FPGAs feature a gate-array-like architecture has three basic structures;

configuration logic blocks (CLBs), I/O cells and programmable switching matrix. It has

a matrix logic cells surrounded by a periphery of I/O cells. Segments of metal

interconnections can be linked in an arbitrary manner by programmable switches to

form the desired signals nets between the cells. This choice allows the user to both

design and programmed a device on premises; thus resulting in short design and

production lead times.

These features make the FPGA devices viable for small production runs and the

natural choice of technology where frequent production variations are required to meet

specific customer needs. Furthermore, integrating the complete system on to the chip

saves on both space and assembly costs and leads to an improvement in reliability and

design accuracy. [3]

 7

2.2 Data Acquisition System (DAQ)

 Data acquisition includes everything from gathering data, to transporting it and

to storing it. A data acquisition phase involves a real-time computing environment

where the computer must be keyed to the time scale of the process.

 Today, the data acquisition system (DAQ) are more widely used in many fields,

such as engine diagnosis, safeguards applications, remote sensing, clinical monitoring,

power quality analysis and many more. This large spectrum of applications requires

higher performance system. This performance is expressed in terms of not only high

sampling frequency, high resolution but also real-time compression of acquired

samples.

 The proposed DAQ adopt an approach including timing information directly in

the data stream, using a compact coding format, with consequent data reduction. These

systems are realized with one using an analog architecture and one using a digital

architecture.

 The DAQ based on analog architecture, utilizes a voltage control oscillator

(VCO) to generate a signal. This signal controls analog-to-digital converter to sample

the input signal. [4]

2.3 Introduction to System’s Instrument

 2.3.1 XC4010 PC84

 The XC 4010 PC84 board is in XC 4000 XL series. The biggest advantages of

this device are significantly increased system speed, greater capacity and new

architectural features, particularly Select-RAM memory. The XC 4010 PC 84 also offer

many new routing features, including special high-speed clock buffers that can be used

to capture input data in minimal delay. The features of this device are:

 Offers a high performance with maximum 3.3 V

 Has high capacity with over 180 000 usable gates.

 It I/Os are tolerant with 5V

 Buffered are interconnect for maximum speed blocks.

 It has optional multiplexer or 2-input function generator on device output.

 8

This XC 4000 Series devices are implemented with regular, flexible,

programmable architecture of Configurable Logic Blocks (CLB), interconnected by a

powerful hierarchy of versatile routing resources and surrounded by perimeter of

Input/Output Blocks (IOBs). This device has generous routing resources to

accommodate the most complex interconnect pattern.

The devices are customized by loading configuration data into internal memory

cells. The FPGA can either actively reads its configuration data from an external serial

or byte-parallel PROM (master mode), or the configuration data can be written into the

FPGA from an external device (slave and peripheral modes).

 XC 4000 Series FPGAs are supported by powerful and sophisticated software,

covering every aspect of design from schematic or behavioral entry, floor planning,

simulation, automatic block placement and routing of interconnects, to the creation,

downloading and readback of the configuration bit stream.

 Because of Xilinx FPGAs can be reprogrammed an unlimited number of times,

they can be used in innovative designs where hardware is changed dynamically, or

where hardware must be adapted to different user applications. [5]

 For downloading the software that has been built, EPROM 27C512 is used. The

chip is an UV-erasable EPROM (UV-EPROM) type. This chip has a window that is

used to shine ultraviolet (UV) radiation to erase it contents. It is located in the socket on

the XC 4010 PC84 board.[6]

Figure 2.1 shows the XC 4010 PC84 board.

Figure 2.1: XC 4010 PC84

 9

2.3.2 ADC 0809

 The ADC 0809 Data Acquisition Device implement on a single chip most the

elements of the standard data acquisition system. It contains an 8-bit A/D converter, 8-

channel multiplexer with an address input latch, and associated control logic. Following

are the features of the ADC 0809:

 Easy interface to all microprocessors

 Operates ratio metrically or with 5Vdc or analog span adjusted voltage

reference

 No zero or full scale adjust required

 8-channel multiplexer with address logic

 0V to 5V input range with single 5V power supply

 Outputs meet TTL voltage level specification

Figure 2.2 shows the ADC 0809.

Figure 2.2: ADC 0809

Figure 2.3 shows the layout pin of ADC0809.

Figure 2.3: Layout Pin ADC0809

 10

 The operation of these converters by a microprocessor or some control logic is

very simple. The controlling device first selects the desired input channel. A 3-bit

channel address is placed on the A, B, C input pins, and the ALE input is pulsed

positively, clocking the address into the multiplexer address register. To begin the

conversion, the START pin is pulsed. On the rising edge of this pulse the internal

register are cleared and on the falling edge the start conversion is initiated.

 There are 8 clock periods per approximation. A START pulse can occur any

time during this cycle but the conversion will not actually begin until the converter

internally cycles to the beginning of the next 8 clock periods sequence. As long as the

START pin is held high, no conversion begins, but when the START pulse is taken low,

the conversion will start within the 8 clock periods.

 The EOC output is triggered on the raising edge of the START pulse too. It is

also controlled by the 8 clock period cycle, so it will go low within 8 clock periods of

the rising edge of the START pulse. Once EOC does go high, this signal the interface

logic that data resulting from the conversion is ready to be read. Figure 2.4 shows the

timing diagram of ADC 0809. [7]

Figure 2.4: ADC0809 Timing Diagram

 11

2.3.3 Liquid Crystal Diode (LCD) 16 x 2 Display

 In recent years, the LCD display is finding widespread use replacing LEDs

(seven-segment LEDs or multi-segment LEDs). This is due to the following reasons:

 The declining prices of LCDs.

 The ability to display numbers, characters and graphics.

 Incorporation of a refreshing controller into the LCD, thereby relieving the CPU

of the task of refreshing the LCD.

 Ease of programming for characters and graphics. [6]

Figure 2.5 shows the LCD 16 x 2 displays.

Figure 2.5: LCD 16 x 2

 The LCD 16 characters x 2 lines have 14 pins in used. The function of each pin

is given in Table 2.1.

Table 2.1: Pin Description for LCD

Pin Symbol I/O Description

1 Vss Power Ground

2 Vcc Power +5V power supply

3 Vo Analog Variable resistor (to

control contrast)

4 RS Input RS=0 (select

 12

command register)

RS=1 (select data

register)

5 RS Input RW=0 (for write)

RW=1 (for read)

6 E I/O Enable

7 D0 I/O 8-bit data bus

8 D1 I/O 8-bit data bus

9 D2 I/O 8-bit data bus

10 D3 I/O 8-bit data bus

11 D4 I/O 8-bit data bus

12 D5 I/O 8-bit data bus

13 D6 I/O 8-bit data bus

14 D7 I/O 8-bit data bus

Figure 2.6 shows the timing diagram for LCD.

Figure 2.6: LCD Timing Diagram

To make sure that LCD can display the right output or number needed hex-to-

ASCII code is need to be implementing. ASCII is stands for American Standard Code

 13

for Information Interchange. The ASCII code is used to transfer of alphanumeric

information between a computer and external devices such as a printer or another

computer. Alphanumeric codes are codes that represent numbers and alphabetic

characters (letters). Table 2.2 shows the partial listing of ASCII code.

Table 2.2: Partial listing of ASCII code

Character ASCII Hex Character ASCII Hex

A 0100 0001 41 g 0110 0111 67

B 0100 0010 42 h 0110 1000 68

C 0100 0011 43 i 0110 1001 69

D 0100 0100 44 j 0110 1010 6A

E 0100 0101 45 k 0110 1011 6B

F 0100 0110 46 l 0110 1100 6C

G 0100 0111 47 m 0110 1101 6D

H 0100 1000 48 n 0110 1110 6E

I 0100 1001 49 o 0110 1111 6F

J 0100 1010 4A p 0111 0000 70

K 0100 1011 4B q 0111 0001 71

L 0100 1100 4C r 0111 0010 72

M 0100 1101 4D s 0111 0011 73

N 0100 1110 4E t 0111 0100 74

O 0100 1111 4F u 0111 0101 75

P 0101 0000 50 v 0111 0110 76

Q 0101 0001 51 w 0111 0111 77

R 0101 0010 52 x 0111 1000 78

S 0101 0011 53 y 0111 1001 79

T 0101 0100 54 z 0111 1010 7A

U 0101 0101 55 0 0011 0000 30

V 0101 0110 56 1 0011 0001 31

W 0101 0111 57 2 0011 0010 32

X 0101 1000 58 3 0011 0011 33

Y 0101 1001 59 4 0011 0100 34

 14

Z 0101 1010 5A 5 0011 0101 35

a 0110 0001 61 6 0011 0110 36

b 0110 0010 62 7 0011 0111 37

c 0110 0011 63 8 0011 1000 38

d 0110 0100 64 9 0011 1001 39

e 65 : 0011 1010 3A

f 66 blank 0010 0000 20

2.3.4 Light-Emitting Diode (LED)

 LED is a complex semiconductor that converts an electrical current into light.

The conversion process is fairly efficient in that it generates little heat compare to the

incandescent light. LED is of interest for fiber optic because of five characteristics:

1. It is small.

2. It possesses high radiance.

3. The emitting area is small, comparable to the dimension of the optical fibers.

4. It has very long life, offering high reliability.

5. It can be modulated (turned off and on) at high speed.

2.3.5 DC Power Supply

The dc power supply is an indispensable instrument on any test bench. The

power supply converts an ac power from the standard wall outlet into regulated dc

voltage. All digital circuits require dc voltage to operate. The power supply is used

when a new circuit is bread-boarded or when a PC board is pulled from a system for

testing and is no longer operating from the internal system power supply. Figure 2.7

shows the DC power supply that used in the laboratory. [8]

 15

Figure 2.7: DC Power Supply

2.3.6 Function Generator

The function generator is a signal source that provides pulse waveforms, as well

as sine wave and triangular waveforms. Many function generators have logic-

compatible outputs to provide proper level waveforms as inputs to digital circuits in

order to check the operation. Figure 2.8 shows the function generator that used in

laboratory. [8]

Figure 2.8: Function Generator

 16

CHAPTER 3: FPGA IMPLEMENTATION

3.1 Project Manager

Project Manager is an application that manages and supervises al Foundation

Series tools that involved in the design process, and it integrates all Foundation tools

into a unified environment. This environment includes such tools as Schematic Editor,

HDL Editor, State Diagram Editor, fast gate-level Logic Simulator and external third-

party programs. Project Manager assumes responsibility for numerous operations that

are manually performed with stand-alone design tools.

Project Manager performs the following functions:

 Automatically load all design resources when a project is open.

 Checks if all projects resources are available and up-to-date.

 Shows the design process flow.

 Provides button for launching applications involved in the design process.

 Provides interface to external third-arty programs.

 Places all error and status messages in the message window.

 Provides automated data transfer between tools involved in processing design.

 Provides design status information.

The Project Manager window has three main areas; messages, project files and

design flow. The message window is for errors, warnings and general messages

concerning the status of simulations or synthesis activities in progress. The upper left

portion shows the files in the current project. By selecting the flow tab in upper right

portion, a graphical representation of the core activities will take place within the

Foundation Express toolset, and refers to as the design flow.

The first rectangle in the design flow provides buttons for model creation. There

are three ways to construct a model. The first is by using a schematic editor and

constructing hardware models from library components. The second is a state machine

editor that provides a graphical interface for the construction of state machine. The third

approach is using a txt editor and entering HDL code. Figure 3.1 shows the Project

Manager Window.

 17

Figure 3.1: Project Manager Window

3.2 FPGA Design Flow

The design flow broadly refers to the sequence of activities encompassing

various design tools that begin with some abstract specification of a design and ends

with a configured FPGA. Figure 3.2 shows the FPGA design flow diagram.

 18

 Model

Development

 Functional Simulation

]

 Verification

 Device Programming

Figure 3.2: FPGA Design Flow

HDL Editor

State Machine
Editor

Schematic
Capture

Synthesis

Place and Route

Programming

Core Generation
Utilities

 19

 3.2.1 Schematic Editor

Schematic Editor is a primary design entry tool. It supports creation of multi-

sheet hierarchical schematics. It keys features are:

 Support for multiple sheet, flat and hierarchical schematics.

 Integration with Logic Simulator providing for non-schematic simulation.

 Integration with non-schematics design entry tools (HDL Editor and State

Diagram Editor), providing for the use of non-schematic macro.

 Import of Viewlogic schematics.

 Schematic netlist exported to XNF, EDIF and VHDL formats.

 Support for both board-level and FPGA schematics.

Schematic Editor should always be started from Project Manager. These two

applications are tightly integrated, so Schematic Editor demands that Project Manager is

running in the background. Schematic Editor can be started from the Project Manager in

one of the following ways:

1. By clicking the Schematic Editor Button in the Design Entry area of the Flow

tab.

2. By choosing the Schematic Editor from the Design Entry submenu of the

Tools menu.

3. By double-clicking in the hierarchy tree the name of the schematic document

that need to be opened.

If a project of a subtype Schematic is been created, Schematic Editor will

automatically create a new blank sheet (schematic file) and attach it to the project as a

top-level document. The file will have the name of the project ended with ‘1’. As a

result, a new icon will appear in the hierarchy tree in Project Manager.

If Schematic Editor with a project that already includes some schematic files is

started, Schematic Editor will automatically open all files that were in use during the

previous session.

Schematic Editor is a multiple-document, means work can be done with several

open schematic windows. This is particularly important for large schematics which

usually consist of numerous schematic files. Figure 3.3 shows the Schematic Editor

Window.

 20

Figure 3.3: Schematic Editor Window

 The New Symbol Wizard is a tool to create a macro symbol. The wizard

displays consecutively five dialogue windows, in which are prompted to enter data

needed to build the macro symbol. The Next button moves to the next symbol wizard.

The Back button allows the user to move back to the previous one and cancel all

settings in the current dialogue. Each wizard dialogue displays detailed instructions for

the user. The wizard can be quit out at anytime by clicking the Cancel button. Figure

3.4 shows the design wizard window (for each dialogue window).

 21

Figure 3.4a: Welcome window

Figure 3.4b: Contents Window

 22

Figure 3.4c: Ports Window

Figure 3.4d: Attributes Window

 23

Figure 3.4e: Final Window

3.2.2 HDL Editor

The HDL Editor is a text editor designed for editing HDL source files. In

addition to regular editing features, the editor provides interface to external synthesis

tools, commands for hierarchy operations and syntax coloring. The syntax coloring

feature supports three languages, VHDL, ABEL and Verilog.

It can be started be in two ways:

1. By choosing Design Entry>HDL Editor from the Tools menu.

2. By clicking the HDL Entry button in the project flowchart.

In all the cases, HDL Editor works in a non-hierarchical mode. In this mode,

library data associated with the source files can not be updated. Nevertheless, saving

changes in the source is possible.

 In addition HDL Editor can be automatically invoked during operations related

to the project hierarchy. In such situations it works in the hierarchical mode. In this

mode, HDL editor can automatically update library data associated with the source files.

This allows updating the macro ALB netlist and symbol after any modifications have

been made to the source file. Figure 3.5 shows the HDL Editor Window.

 24

Figure 3.5: HDL Editor Window

3.2.3 Logic Simulator

The foundation Logic Simulator is a real-time interactive design analysis tool. It

can work both with Foundation Schematic Editor and as a standalone tool. It key

features are:

 Supports full integration with Foundation Schematic Editor.

 Accept both flat and hierarchical Xilinx XNF and EDIF netlists.

 Supports Functional and Timing simulation mode.

 Supports graphical waveform editing.

 Supports easy-to-use predefined stimulator type.

 Supports simulation of memory devices.

 Detects design timing errors such as timing violations and bus conflicts.

There are three ways of starting the Foundation Simulator from Project Manager:

	Data acquisition system based on fpga_Nuril Syahira binti Mahrus_E3_2005_NI
	cover
	ABSTRAK
	TABLE OF CONTENTS
	LIST OF FIGURES AND TABLES
	FULL REPORT
	REFERENCES
	APPENDIX A

