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ABSTRAK 

________________________________________________________________________ 

 

Projek ini berhubungkait dengan perbandingan antara dua teknik pengurangan dimensi 

sesuatu set data.  Dua teknik yang terlibat ialah Principal Component Analysis sebagai 

teknik yang umum diaplikasikan manakala Random Projection merupakan teknik yang 

baru diperkenalkan.  Kajian adalah berdasarkan keputusan daripada dua kawalan neural 

iaitu Standard Backpropagation dan Fuzzy ARTMAP.  Data piawaian dan data pesakit 

digunakan dalam kajian ini.  Keputusan daripada dua kawalan neural dikira berdasarkan 

percentage of correct classification, purity, and collective entropy.  Pengujian hipotesis 

iaitu ujian t dilaksanakan untuk menguji perbezaan min antara dua min populasi 

berdasarkan sample yang terhasil daripada keputusan kawalan neural untuk Principal 

Component Analysis dan Random Projection.  Keputusan yang sah berdasarkan pengujian 

hipotesis pada ralat, α = 0.05 ataupun selang keyakinan 95%, dihasilkan dan ini 

menyumbang kepada kesimpulan yang kukuh dalam membuat perbandingan antara dua 

teknik pegurangan dimensi ini.  Keputusan daripada data pesakit juga membuktikan 

Random Projection boleh diaplikasikan secara praktikal.  Di samping itu, Random 

Projection juga meghasilkan keputusan yang setara berbanding Principal Component 

Analysis.  Satu perbincangan disertakan untuk menerangkan keputusan yang diperolehi dan 

kesimpulan dibuat untuk kajian ini.  Cadangan disertakan di akhir disertasi ini untuk 

perkembangan dan kajian pada masa hadapan untuk teknik pengurangan dimensi. 
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ABSTRACT 

________________________________________________________________________ 

 

This project involves an analysis of the effectiveness of two dimensionality reduction 

techniques, i.e., Principal Component Analysis as the standard approach and Random 

Projection as a recent technique.  The study is based on the performance of two supervised 

neural network classifiers i.e., Standard Backpropagation and Fuzzy ARTMAP.  A set of 

benchmark and real medical databases are used to evaluate the performance of the neural 

network models.  The performance indicators used are percentage of correct classification, 

purity, and collective entropy.  The Student’s two-tailed paired t-test is used to compare the 

significance of differences of the results.  Based on the estimated 95% confidence intervals, 

a strong decision which eventually leads to a convincing conclusion on the performance of 

the dimensionality reduction techniques can be obtained.  The perceived experimental 

results especially from the real medical data sets are encouraging enough to prove that 

Random Projection exhibits good performance as a dimensionality reduction technique.  

Surprisingly, Random Projection is effective on low dimensional data, and the outcomes 

are as good as Principal Component Analysis.  A discussion on generalization of the results 

obtained is included, and a conclusion ensues.  Recommendations are also included for 

further improvements and enhancements in the analysis of dimensionality reduction 

techniques. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

The ability of human recognizing objects such as handwritten characters, identifying 

faces, differentiating sounds, distinguishing animals, fruits, plants, etc based on 

important features and patterns involves the art of biological nervous system and a 

complex process in the human brain.  The recognition task, applied by researchers on 

systems known as neural networks by presenting information of objects defined as 

patterns based on category to mimic the human nature is sometimes in short termed as 

pattern recognition.  On the other hand, data analysis involves the process of 

systematically applying statistical and logical techniques to describe, compare, and 

summarize data based on narratives, charts, graphs, and tables as well as to discover the 

underlying principles and structures of the data. 
 

Data and information must be gathered prior to applying the pattern recognition 

or data analysis task.  A particular data object contains information represented in 

numerical or symbolic values known as features or attributes to distinguish from the 

other data points.  Sometimes, a data object is also termed as a data vector in which 

each feature corresponds to a dimension or a particular direction.  For example, a 

particular salmon could be represented based on its distinctive colour, texture, shape, 

smell, etc to distinguish it from other fish in a group.  Therefore, as there are more 

features added, more information will be perceived in which corresponds to an increase 

of dimensions.  At times, there could be thousands of dimensions as human attempts to 

capture more information from the data.  However, enormous amount and high 

dimensionality of data would eventually lay a sheer task on the neural network 

classifiers and laborious work in data analysis even with the help of statistical software 

such as Excel and Minitab.  Other tasks, for example clustering, are also 

computationally impractical.  

 

Hence, there is a need to reduce the dimensions of data but remain most of the 

information of data vectors for mitigating problem in computational time.  In short, it is 
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also known as dimensionality reduction.  Researchers have came up with many new 

dimensionality reduction techniques varying from different feature extraction 

techniques to multidimensional scaling with each having its own underlying 

mathematical principles, emphasized most on preserving the information of data vectors 

itself.  However, high computational complexity within the dimensionality reduction 

technique itself again arise the problem in explosion of computational time.  For 

example, feature extraction methods are very much dependent on the nature of data, and 

therefore generally not applicable, for instance, in all data mining tasks (Kaski, 1998).  

On the other hand, multidimensional scaling methods such as Principal Component 

Analysis (PCA) with time complexity of ( ) ( )32 NOnNO +  for estimating the principal 

components i.e., the new directions of data vectors are computationally costly and 

almost infeasible if the dimension of the original data vectors is very high.  Here, N 

represents the original dimension and n is the number of data vectors. 

 

A new rapid dimensionality reduction method is urgently needed for situations 

where it is impossible to use the original vectors and the existing dimensionality 

reduction methods are too costly.  The Random Projection (RP) method that only 

involves simple mathematics and low time complexity of ( )NdO  in forming the random 

matrix for obtaining the new directions of vectors is found as a computationally feasible 

method for reducing the dimensionality of the data so that mutual similarities between 

the data vectors are approximately preserved.  Here, N and d are the dimensionalities 

before and after RP.  It is clear that the computational complexity for RP is almost 

negligible as compared to the time complexity of PCA.  

 

It would be impractical and meaningless for merely comparing the theoretical 

basis and mathematical principals of the dimensionality reduction techniques.  Hence, 

there is a need to gauge the performance of techniques such as performing a 

classification task, etc prior applying the method for reducing dimensions of real world 

data.  Therefore, in this project, the effectiveness of dimensionality reduction techniques 

is to be based on the performance of neural network classifiers as high dimensionality is 

a common major problem arises in the neural nets.  Besides that, neural network 

classifiers are a common computational paradigm found in most practical applications 

such as medical diagnosis and industrial work for classification and generalization 
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purposes as it imitates the biological nervous system of human nature.  Furthermore, the 

availability of neural network classifiers in databases which could be easily downloaded 

from the web resources also contributes a reason for applying this technique in the 

project. 

 

In this project, two neural network models have been experimented, i.e. 

Standard Backpropagation (Rumelhart et al, 1986) and Fuzzy ARTMAP (Carpenter et 

al., 1992) networks.  The performance indicators of the neural network classifiers for 

justifying the performance of dimensionality reduction techniques could be basing on 

the percentage of correct classification, collective entropy, nearest neighbors, data 

compactness, purity, etc.  A standard mathematical test is needed to clarify and evaluate 

the obtained experimental results as well as to be convincing enough in making 

decisions and giving strong conclusions on the achieved results besides eliminating 

controversies subjected to different perspectives of individuals.  Hence, all decisions in 

this project are based upon the decision on the 95% confidence level of the Student’s 

two-tailed paired t-test for the differences of mean classification accuracies, differences 

of mean collective entropies, and differences of mean purities by PCA and RP. 

 

 

1.1 Project Objectives 

Section 1.0 discussed the need for dimensionality reduction especially when data 

vectors are high and problem having long hours of computational time when a 

dimensionality reduction technique has high time complexity is applied.  Besides that, 

there is a need to gauge the performance of the techniques based on the neural network 

classifiers.  Therefore, the main objectives of this project are 

• to develop a program for implementing RP as a dimensionality reduction 

technique 

• to investigate the effectiveness of PCA and RP in dimensionality reduction  

• to evaluate the performance of neural network-based classifiers with PCA and 

RP as the dimensionality reduction techniques. 

• to compare the results from PCA and RP using Student’s t-test 

• to quantify the stability of the classification results using bootstrapping 
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1.2 Scope 

This project mainly includes the following activities: 

• understanding of theoretical basis and mathematical concepts applied in PCA 

that were used to form orthogonal principal components which results in lossless 

information if the original dimension is kept,  

• understanding of the principal and mathematical concepts of RP used in 

formation of new directions, which results in orthogonal directions when the 

dimension of data is high based on Fisher’s theorem and the findings of Hetch 

Nielsen (Hetch-Nielsen, 1994), 

• understanding the behavior of neural network classifiers, 

• conducting performance tests using neural network classifiers to measure the 

effectiveness of PCA and RP when data of benchmark and real medical data sets 

are mapped to new directions.  The performance indicators are the percentage of 

correct classification, collective entropy, and purity, and 

• performing statistical test to obtain the decision of Student’s two-tailed paired t 

test on the performance results of PCA and RP. 

 

 

1.3 Dissertation Outlines 

This section steps through a series of chapters with brief descriptions on the related 

topics organized in the dissertation. 

 

Chapter 2 begins with a review on various types of dimensionality reduction 

techniques.  This is followed by a thorough survey on the applications of PCA and RP 

techniques to process real data.  Lastly, this chapter reviews on the applications of 

Backpropagation and Fuzzy ARTMAP neural network classifiers to solve pattern 

recognition tasks. 

 

 Chapter 3 begins with the theoretical insights and the underlying mathematical 

principles of PCA and followed by RP.  Subsequently, the principles of 

Backpropagation for classification are included.  Lastly, the operations of Fuzzy 

ARTMAP network are explained. 

  



 5 

 Chapter 4 describes the experimental setup for dimensionality reduction and 

classification.  This chapter begins with the explanation on the data sets used.  After 

that, a brief description on the methods applied to dimensionality reduction by PCA and 

RP are included.  An introduction to the tools used for performing classification is also 

given.  The steps for data preprocessing prior to performing classification are also 

explained.  Lastly, the parameter settings for Backpropagation and Fuzzy ARTMAP 

networks to perform classification are given. 

 

Chapter 5 gives an introduction on the performance indicators used in the 

experiment.  Detailed analyses and discussion of the results are presented.  The 

principles of the performance indicators, i.e., the percentage of correct classification, 

collective entropy, and purity are explained.  After that, the mathematical principles on 

bootstrapping for estimating the confidence intervals of the results as well as Student’s 

t-test for comparing the experimental results are given.  The main focus of this chapter 

proceeds is the detailed analyses, comparison, and discussion of the experimental results 

obtained from Backpropagation and Fuzzy ARTMAP networks using PCA and RP. 

 

Chapter 6 gives a conclusion that wraps up the results and discussions. 

Recommendations for future work are also included. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.0 Introduction 

This chapter presents surveys on dimensionality reduction techniques and classification 

by neural network classifiers.  It is worthwhile to make a review on the dimensionality 

reduction techniques and the practical applications to solve real world data.  This is 

particularly important to perceive a better understanding and see an overview of 

techniques used in past researches to reduce dimensionality of data in various aspects, 

get an idea on general obstacles encountered during dimensionality reduction as well as 

the need for future improvements. 

 

Section 2.1 begins with an introduction on dimensionality reduction techniques and a 

list of contributions by PCA and RP.  Section 2.2 shows a list of surveys on the 

applications of Backpropagation and Fuzzy ARTMAP networks.  Perceiving knowledge 

related to the neural network classifiers available from web resources will lead to better 

understanding in selecting the proper classifiers for practical applications. 

 

 

2.1 A Survey on Dimensionality Reduction Techniques. 

Among the main concerns in dimensionality reduction is selecting the appropriate 

method which preferably subject to less information loss and lower computational 

complexity.  Survey papers by (Fodor, 2002) revised on several methods and 

categorized into linear and non-linear techniques.  Fodor discussed the mathematical 

principal underlying in each technique such as PCA, RP, Independent Component 

Analysis (ICA), Multidimensional Scaling, Projection Pursuit, Vector Quantization, 

Factor Analysis, etc as well as the drawbacks subjected to the technique applied.  

Generally, even though most of the techniques as described above such as PCA, 

Principal Curves, Projection Pursuit, etc may fulfill the intended purpose of preserving 

information in data, these techniques have imposed adverse effect on the computational 

time needed for reduction when dimensions of data are high.  This is subjected to the 
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constraint of high computational complexity within the technique itself.  RP on the 

other hand only involves a simple mathematics. 

 

 Section 2.1.1 shows a list of surveys on the application of PCA as a 

dimensionality reduction technique.  Section 2.1.2 describes the utilization of RP as a 

new dimensionality reduction technique. 

 

 

2.1.1 Principal Component Analysis (PCA) 

PCA or known as the Karhoneun Leunean Theorem, has been widely used by 

researchers of various field for the purpose of dimensionality reduction.  PCA seeks 

application in areas of research such as medical imaging (Mcleish et al., 2002), 

computer vision (Menser & Muller, 1999; Oravec & Paradicova, 2004), geophysics 

(Gothoh et al., 2000), biomedical (Ravazzani et al., 2003; Tarveinan, 2001), process 

control (Kumar et al., 2002; Yang et al., 2002), and neural computing (Kasgoftaar & 

Szabo, 1994; Opitz, 1997). 

 

PCA has grown the interest of several researchers in image processing and 

machine vision.  Menser and Muller (1999) performed PCA to enhance face detection 

in colour images.  Result was along with their intended purpose as colour information 

improved the robustness of colour detection significantly.  Besides that, Mcleish et al. 

(2002) studied the motion and deformation of the heart due to respiration based on 

patient’s data.  PCA was used to produce a statistical model of motion and deformation 

of the heart.  Detailed information regarding how the model could be used to assist 

motion correction was also described.  Recently, Oravec and Pavlovicova (2004) tried 

to combine PCA and Multilayer Perceptron Neural Network (MLP) for face 

recognition.  The proposed face recognition system yielded good results as compared to 

the other seven presented methods with more than 80% of correctly recognized faces.  

 

Tarveinan et al. (2001) investigated the goodness of PCA for analyzing the 

pattern of successive galvanic skin responses (GSR) from twenty health control and 

thirteen psychotic patients.  With application to clustering, a significant discrimination 

with overall correct ratings of 82% of patients was achieved.  A significant fact was that 
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all patients were ranked correctly, giving the proposed method a sensitivity of 100%.  

There are also applications of PCA in biomedical engineering.  For example, Ravazzani 

et al. (2003) explored the effectiveness of PCA to facilitate fast detection of Transient-

Evoked Otoacoustic Emissions (TEOAE i.e., acoustic signals coming out form inner ear 

after acoustic simulation click).  The results seemed to enhance the signal to noise ratio 

and in turn, allowed correct detection in response.  

 

Besides that, the applications of PCA in neural networks are also explained in 

this section.  Khosgoftaar and Szabo (1994) explored the effectiveness of PCA to neural 

network modeling as a way of improving the predictive quality of neural networks 

quality models.  Results showed an improvement in prediction by utilizing PCA.  Opitz 

(1997) used PCA to detect the functional redundancy of a neural network.  Results 

revealed that the new algorithm give much more accurate estimation on network 

complexity than the standard approaches such as weight decay, weight pruning, 

prediction-risk techniques, etc.  

 

Process control is also another field which needs the applications of PCA.  Yang 

(2002) utilized multiple PCA models based on soft-partition algorithms to monitor 

continuous processes with more than one stage of operation.  Good results were 

demonstrated on a three-tank plant.  Kumar et al. (2002) proposed PCA-based 

monitoring scheme to detect process changes. This technique proved to be more 

sensitive to faults which are not detectable in the previous Q-statistics technique.  

 

Other applications of PCA are estimating geomagnetic data .to detect 

earthquakes in IZU islands (Gothoh et al., 2000) and setting the threshold in a dynamic 

Idd test process by identifying process corners and computing statistical model (Jiang 

&Vinnakota, 2002). 
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2.1.2 Random Projection (RP) 

RP is a simple, new yet powerful dimensionality reduction technique that uses random 

projection matrices to project data onto low-dimensional spaces.  This technique has 

attracted the interest of researchers of various fields.  Although it is based on simple 

mathematical ideas, random mapping has demonstrated good performance in a number 

of applications including information retrieval (Kleinberg, 1997; Thaper et. al., 2002) 

machine learning, (Kaski, 1997; Dasgupta, 2000; Brigham & Maninila, 2001; Fradkin 

& Madigan, 2003; Fern & Brodley, 2003), and optimization (Vempala, 1998), yielding 

results comparable to the conventional dimensionality reduction techniques, such as 

PCA, while reducing the computational requirements.  

 

RP has grown the interest of several researchers in database applications, 

especially in the nearest-neighbor similarity search problem.  Indyk and Motwanti 

(1998) applied RP in the form of locality-sensitive hashing, as part of a randomized 

algorithm for solving the nearest-neighbor problem in high dimensional Euclidean 

distance.  They used random projection to reduce the original problem to a series of 

tractable, low-dimensional problems and produced an algorithm that scales better with 

dimension that determines methods.  It is implemented successfully in practice for 

sparse indexing of databases.  Kleinberg (1997) combined randomly chosen one-

dimensional projections of the underlying data to develop an algorithm for finding 

approximate nearest neighbors. 

 

Papadimitriou et. al. (1998) combined RP with Latent Semantic Indexing (LSI).  

Even though LSI is an elegant and accurate technique for document categorization and 

classification, its high computational cost make it impossible for large databases as it 

slows down the process in LSI tremendously.  Prior to applying LSI, RP was used to 

reduce the dimensionality of the data.  Kurimo (1999) applied RP for the similar 

purpose as Papadimitriou to the indexing of audio documents, prior to using LSI and 

Self-Organizing Maps (SOMs).  

 

Dasgupta (2000) combined RP with Expectation-Maximization (EM) in learning 

high-dimensional Gaussian mixture models.  His results illustrate that data separation 

can be retained even though from a mixture of k Gaussians and projected down to 
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O(logk) dimensions.  The results were encouraging when the algorithm was applied on 

a hand-written digit data set.  Motivated by the results of Dasgupta, Fern and Brodley 

(2003) investigated the application of RP for clustering high-dimensional data.  They 

proposed using ensembles of RP as earlier work demonstrated that clustering results 

were very unstable when using single runs of RP.  Better performance was achieved 

when three different data sets were used as compared to using individual runs of RP.  

Positive results were achieved in comparison to clustering using the combination of EM 

algorithm and PCA for dimensionality reduction.  

 

Kaski (1997) presented the experimental results using RP in the context of using 

SOMs i.e., WEBSOM, a system for organizing textual documents.  His results show 

that RP needed moderate number of dimensions for producing a good mapping.  In this 

case, the results were as good as those obtained using PCA, and almost as good as those 

obtained using the original vectors.  Brigham and Manilla (2001) compared several 

dimensionality reduction techniques such as PCA, RP, and DCT on image and text data.  

Their results again indicate that RP preserves distances and has performance 

comparable to that of PCA while being much faster.   

 

More recently, Fradkin and Madigan (2003) evaluated RP in the context of 

supervised learning.  In particular, RP was compared with PCA on a number of 

different problems using different machine learning algorithms which came to a 

conclusion that RP was slightly worst than PCA.  However, its computational 

advantages might make it attractive in certain applications. 

 

Other applications of RP include solving VLSI layout with minimum area 

consumption (Vempala, 1998), performing approximate kernel computations 

(Achlioptas et. al., 2001), similarity computations for histogram models (Thaper et. al., 

2002), protein similarity search (Rigoutsos & Califano, 1993), and DNA motif 

discovery (Buhler & Tompa, 2002). 
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2.2 A Survey on Neural Network Classifiers 

The large amount of neural network classifiers available on the web resources has 

always raised the curiosity of human in selecting the appropriate algorithm for better 

performance in classification.  The performance is indeed dependant on the built in 

structure of the algorithm itself.  Section 2.2.1 lists the applications of Backpropagation 

algorithm while section 2.2.2 describes the utilizations of FAM to perform pattern 

recognition tasks. 

 

 

2.2.1 Backpropagation 

This section will make a survey on the applications of Backpropagation, first of all 

because it is powerful, useful, and relatively easy to understand but also many other 

training methods can be seen as a modification from it.  The training method is simple 

even for complex models having thousands of parameters (Duda et al., 2000).  The 

applications of Backpropagation for classification in the following research areas are 

explained below. 

• Brunet et al. (1994) applied Backpropagation for recognizing phonemes.  The 

ability of the network was tested with samples from a few men and women.  

Although there was limitation for Backpropagation in recognizing similar 

phonemes, the network was able to function in an independent manner. 

• Chen and Hwang (1994) developed a Multi-Level Backpropagation Network 

(MLBPN) for pattern recognition which was practically needed for massive 

computations to extract features.  The MLBPN could improve the pattern 

recognition systems and keep good characteristics of Backpropagation. 

• Funderbuck et al. (2000) investigated the feasibility of Backpropagation to 

predict the performance of chronic users of cocaine after one month of abstinent.  

Although results were not optimal, Backpropagation proved that it worked well 

and handled the noise that was invariably present in the data.  This provided a 

first approximation of a clinical useful tool. 

• Rodic et al. (2002) proposed a new concept for integrating Backpropagation as 

part of the active control system to ensure robustness and better adaptability 

upon the system uncertainties and inaccuracies.  The system had shown to be 
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valid and effective.  The fast convergence of learning process was achieved by 

Backpropagation  

• Jin et al. (2002) applied Backpropagation to identify fingerprints and 

successfully proved that the network was able to recognize the core part of the 

fingerprint images. 

 

Other applications of Backpropagation include prediction of protein structural class 

(Metfessel & Saurugger, 1993) and recognition of facial affect (Avent et al, 1994). 

 

 

2.2.2 Fuzzy ARTMAP (FAM) 

ART (Adaptive Resonance Theory) is found to be able to overcome the stability-

plasticity dilemma (Carpenter & Grossberg, 1987a, 1988) suffered by most of the neural 

network and perform incremental learning.  Fuzzy ARTMAP, a derivative of ART is 

able to perform classification on binary and analogue inputs (Carpenter et al., 1992), has 

been popularly used by researchers.  The goodness of Fuzzy ARTMAP could be seen 

from a few application in the examples as below. 

• Srinivasa and Ziggert (1994) applied Fuzzy ARTMAP to approximate the 

thermal error maps in machine tools. Even though FAM was not able to learn 

thermal errors in real-time, it could make correct predictions on test data.  

• Murshed et al (1995) proposed the use of Fuzzy ARTMAP for offline signature 

verification and trained the system with genuine signatures.  The system could 

be trained even though with only genuine signatures.  The authors believed that 

FAM could produce a solution of unresolved and very difficult problem in area 

of signature verification. They proposed to evaluate the signatures on large 

databases in the following research. 

• Jervis et al. (1996) evaluated the effectiveness of FAM to detect Contigent 

Negative Variation (CNV) as neural nets trained on CNV data offer an 

additional tool for diagnosis of Huttington Disease, Parkinson Disease, and 

Schizophrenia as well as detecting and monitoring the pre-onset Huttington 

Disease.  FAM had showed most promising in this domain. 

• Ham and Han (1996) performed classification of cardiac arrhythmias using 

FAM. Classification with 99% specificity and 97% sensitivity were achieved. 



 13 

• Dagher et al. (2002) attempted fingerprint classification using FAM. Results 

showed that the system was able to achieve high acceptable identication 

accuracies and similar to the performance of the current implemented matchers. 

 

Other applications of FAM are speech recognition (Woo et al., 2000), discovery of gene 

function and classes of cancer (Azuaje, F., 2001), and fault detection and diagnosis in 

power generation plant with symbolic rule extraction (Tan &Lim, 2004). 

 

 

2.3 Summary 

From the literature review, an overall view of the entire project to be performed is 

given.  It is clearly shown that PCA has been a popular technique which seeks 

application in many aspects of researches.  Although RP has been recently introduced, 

this dimensionality reduction technique is popularly used by researchers in machine 

learning, information retrieval, and optimization fields.  Fuzzy ARTMAP and 

Backpropagation are used in a variety of classification tasks, e.g., speech, text, or image 

data despite there may be some limitations in the classifier itself. 
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CHAPTER 3 

 

SYSTEM’S GENERAL ARCHITECTURE 

 

 

3.0 Introduction 

Prior to proceeding to the detailed experimentation, it is worthwhile to understand the 

theoretical insights of PCA and RP as well as Backpropagation and Fuzzy ARTMAP 

used in this project.  The system proposed for comparing the performance of PCA and 

RP is composed of two main stages i.e., the first stage for dimensionality reduction as 

described in section 3.1 while the second stage involves classification by Backprogation 

and Fuzzy ARTMAP networks as in section 3.2.  The general architecture of the system 

is shown in Figure 3.1. 

  

 
 
 

 

 

 

 

Figure 3.1: General Architecture for Measuring Performance of PCA and RP. 

 

 

3.1 Dimensionality Reduction Techniques 

Dimensionality reduction involves the process of reducing dimensions from data 

vectors by mapping to a lower dimensional subspace after going through certain 

functions that may capture important information from the original data vectors.  Note 

that the dimensionality reduction techniques described in this dissertation use the same 

data representation model i.e., the vector space model in which each sample is 

represented as a vector.  Each dimension of the vector corresponds to one feature, and 

the value of each component is the relative frequency of occurrence or measurement for 

the corresponding feature in the sample. 

 

Dimensionality 
Reduction 

Classification 
(Neural Network) Data 

System’s General Architecture 

Class 
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3.1.1 Principal Component Analysis (PCA) 

Principal Component Analysis is an unsupervised approach to finding the right 

“features” from the data (Duda et al, 2000).  PCA transforms correlated or uncorrelated 

features to independent principal components which has the maximum variability on the 

first principal components, followed by the second principal component and so on.  This 

dimensionality reduction technique is widely used as described in section 2.1.1.  The 

basic theory of PCA is as follows. 

 

 

3.1.1.1 Theoretical Basis of PCA 

Suppose that we want to represent all the vectors in a set of n  d-dimensional samples, X 
→→

nxx ,.......1  by a single vector
→

0x .  However, there are many vectors that could be 

represented by 
→

0x .  Therefore, the vector 
→

0x  is chosen as such that the sum of squared 

distances between 
→

0x and the various 
→

kx is as small as possible.  The sum of squared-

error criterion function, 





 →

00 xJ  by 

                         
2

1
000 ∑

=

→→→

−=





 n

k
kxxxJ                                     (3.1) 

 

and find the value of 
→

0x that minimizes 0J .  It is simple to know that the solution to this 

problem is given by 
→

= mx0 , where 
→

m is the sample mean, 

                                  ∑
=

→→

=
n

k
kx

n
m

1

1
       (3.2) 

 

Therefore, the solution to this problem could be easily shown by writing  
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The second sum is independent of 
→

0x and the minimum value of 0J  could be achieved 

when 
→→

= mx0 .  The sample mean is a zero dimensional representation of data set.  

Although this method of representation is simple, it does not reveal any variability of 

the data.  Therefore, the one-dimensional data representation could be obtained by 

projecting the data onto a line running through the sample mean.  Assuming 
→

e be a unit 

vector in the direction of the line, then the equation for 
→

0x  could be written as, 

                                            
→→→

+= eamx         (3.4) 

where a  denotes the distance of any point 
→

x from the mean 
→

m .  

 

If 
→

kx is represented by 
→→→

+= eamx k , a set of “optimal” coefficients,  ka are found by 

minimizing the squared-error criterion function. 
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Since 
→

e  is equivalent to 1, partially differentiating with respect to ka , 
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Setting the derivative to zero,  
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is obtained.  This results shows that a least-squares solution is obtained by projecting 

the vector 
→

kx onto a line in the direction of 
→

e that passes through the sample mean. 

 

(a) Scatter Matrix 

This part demonstrates the finding of best direction 
→

e for the line involving the 

computation of scatter matrix as defined by 
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The scatter matrix is only n – 1 times the sample covariance matrix. It arises here when 

we substitute ka  found in equation (3.6) into equation (3.5) to obtain 
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This clearly shows that 
→

e minimizes J1  and also maximizes 
→→

eSet .  Using Langrage 

multipliers to maximizes 
→→

eSet subject to the constraint that 
→

e  = 1 and assumingλ as 

the undetermined multiplier and differentiate  
→→→→

−= eeeSeu tt λ       (3.9) 

with respect to 
→

e to obtain  
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→→

→ −=
∂

∂ eeS
e

u λ22        (3.10) 

 

Setting the gradient vector to zero, it is shown that 
→

e must be an eigenvector of the 

scatter matrix:  

  
→→

= eeS λ         (3.11) 

 

In particular because 
→→

eSet  = 
→→

eetλ  = λ , it follows that to maximize 
→→

eSet , the 

eigenvector with the corresponding largest eigenvalue of the scatter matrix have to be 

selected with the best in least sum-of-squared error sense.  The data are projected onto 

the line or eigenvector that passes through the sample mean.  This results can be readily 

extended from a one-dimensional dimensional projection to a d’ dimensional projection. 

In replace of equation (3.4), 

       ∑
=

→→→

+=
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i
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1
     (3.12) 

where dd ≤' ’ 

 

This leads to the following criterion function, 
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is minimized when the vectors 
→→

',.......1 dee are the d’ eigenvectors of the scatter matrix 

having the largets eigenvalues.  The eigenvectors, 
→

e are orthogonal and nonzero vectors 

while λ  is real positive as the scatter matrix is real and symmetric.  They form the 

principal components representing any feature vector 
→

x .  The coefficients ia  in (3.12) 

are the components of 
→

x in the new directions and known as the principal components.   
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Therefore, it is mathematically proven that PCA reduces the dimensionality of 

feature space by restricting attentions to those directions along which the scatter of data 

points are the greatest. 

 

 

3.1.1.2 Algorithm for PCA 

In summary, PCA could be performed as follows. 

1  Collect kx
→

of a d dimensional data set, X, k = 1, 2, 3, …n. 
 

2.  Calculate the mean, 
→

m as shown in equation (3.2) for data adjust to mean zero 

       Xadjust = ∑
=

→→







 −

n

k
k mx

1
       (3.14) 

 
3.  Calculate the variance-covariance matrix, C. However, sometimes the 

correlation matrix, R is used instead when the units between 2 features. The 

computation method is shown in equation (3.7) with only 
1

1
−d

 times the scatter matrix. 

 

4. Determine the eigenvalues, λ  and eigenvectors, 
→

e  of the matrix, C. To find a 

nonzero
→

e , the characteristic equation 0=− IC λ must be solved. The eigenvalues and 

eigenvectors could be solved using  

• Singular Value Decomposition, (SVD) because of its numerical stability, 

 

• Transform the matrix to a tridiagonal form (using Householder transformation) 

and decompose it to C = QR, where Q is orthogonal and R is upper triangular, 

and 

• Hotelling’s power method, an iterative technique to find the largest 

ddi ≤ eigenvectors and eigenvalues, result that step 5 is unnessary. 

 

5. Sort the eigenvaluesλ ,(and corresponding eigenvectors) so that 

dλλλ ..........21 ≥≥ . 
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6. Select the first ddi ≤ eigenvectors and generate the data set in the new (usually 

compressed) representation. The first principal component consists of 
→

⋅te1 Xadjust, 

the second principal component consists of ⋅
→

te2 Xadjust, and so on. 

 

 

3.1.2 Random Projection (RP) 

RP has recently emerged as a powerful dimensionality reduction tool in the demand for 

high dimensional data.  This section will detail the theoretical basis of RP with the 

underlying mathematical principles. 

 

 

3.1.2.1 Theoretical basis of RP 

(a) Random Projection Technique (RP) 

In the linear RP method, the original data vector for a sample, denoted by NRn∈
→

, is 

multiplied by a random matrix R.  The mapping  

     =
→

x  R
→

n                                                           (3.15) 

results in a reduced dimensional vector dRx∈ (Kaski, 1998).  The random matrix 

consists of random values and the Euclidean length of each column is normalized to 

unity.  If the ith column of R is denoted by 
→

ir  and the ith component of 
→

n  is denoted by 

ni, the random mapping operation can be expressed as  

                               
→→

∑= i
i

i rnx                         (3.16) 

In the original vector, the components ni are weights of orthogonal unit vectors, 

whereas in expression (3.16), each dimension i, of the original data space has been 

replaced by a random, non-orthogonal direction  
→

ir in the reduced dimensional space. 
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(b) Properties of the RP 

“There exist a much larger of almost orthogonal than orthogonal directions in a high 

dimensional space.  Therefore, in a high dimensional space, even vectors having 

random directions might be sufficiently close to orthogonal to provide an 

approximation of a basis” (Hetch-Nielsen, 1994). 

 

(c) Transformation of the Similarities. 

The closer the vectors are to being orthogonal, the better the similarities of the vectors 

obtained by random mapping correspond to the original similarities.  The similarities of 

the vectors are measured using the cosine function, θcos. BABA = .  Each column of 

the random matrix is normalized to unit length so that the cosine can be computed as the 

inner product of the vectors. 

 

Assuming two vectors obtained by random mapping, =
→

1y R
→

n  and =
→

2y R
→

m .  The 

inner product of two vectors, 
→

1y and 
→

2y  that have been obtained by the random 

mapping of the vectors n and m, respectively, can be expressed as follows: 
→→→

= tt nyy 21 Rt R
→

m               (3.17) 

       Rt R ε+= 1                         (3.18)      

         j
t

iji rr
→→

=ε  for i ≠ j, and  iiε  = 0 for all i.          (3.19) 

 

 

The diagonal entries in Rt R are collected into the identity matrix, I.  These entries are 

always equal to unity since the column vectors, 
→

ir  has been normalized.  The units off 

the diagonal has been collected into ε which consists of the cosine angles between the 

vectors ri and rj.  Therefore if all of the entries in ε are zero, the vectors 
→

ir and 
→

jr  are 

orthogonal as cosine 90˚ = 0.  Hence, Rt R = I and the similarity of the vectors are 

preserved in RP.  However in practice, the entries in ε are just approximately zero. 
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(d) Statistical Properties of ε 

It is possible to analyze the properties of ε  if the distribution of the entries into the 

random matrix, R is fixed.  In the present experiment, the components 
→

ir  and 
→

jr are 

initially generated by a normal random number generator to be independent, identical, 

and normally distributed with mean zero, and thereafter the length of 
→

ir and 
→

jr is 

normalized to unity.  Hence, the direction of 
→

ir and 
→

jr will be distributed uniformly.  It is 

clear that [ ] 0=ijE ε  for all i and j, where E denotes the average over all random choices 

for the entries of R.  Besides that, the distribution of εij could be derived. εij is in fact an 

estimate of correlation coefficient between two independent, identical and normally 

distributed random variables.  This can be proven that for the units off the diagonal 

entries that 
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where ir and jr are approximately zero. 

Equation (3.20) is the exact formula for correlation coefficient.  

 

(e) Fisher’s Theorem 

As proven by Fisher,  
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   (3.22) 

where ρ  denotes the population correlation coefficient of two random variables 

d denotes the number of samples in the estimate.  In this context, d is the number 

of dimensions of the original vector.  

 

Using series expansion, it can be shown that 
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However, if ijε  is small enough that the higher order ijε  could be ignored, 
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The expected mean for ijε  is denoted by [ ]ijE ε  and since the random variables  
→

ir  and 

→

jr are uncorrelated, 0=ρ , therefore, [ ] 






−
+

=
01
01ln

2
1

ijE ε  = 0. 

If d is large enough, 

    
d
12 ≈εσ .        (3.25) 

 

Therefore, since this equation is linearized around zero and if the claim follows for large 

d, the matrix RT R will approximate the identity matrix the better because for higher 

dimensional vectors, most of the entries inε approximates zero.  
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Figure 3.2: Distributions of εij for different dimensionalities. 
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The normal distributions of the inner products between pairs of random vectors 
→

ir  for 

different dimensionalities with variance equal to 
3

1
−d

 are arbitrarily generated by a 

normal random number generator and plotted in Figure 3.2.  It is noticed from the 

empirical curves that when d increases, the inner products become smaller and the 

vectors become more orthogonal.  Generally, small inner products contribute only small 

distortions in the similarity computations.   

 

(f) Statistical Properties of Mutual Similarities 

It is possible to investigate more closely how the similarities of the original vectors are 

transformed in random mapping.  Given a pair of original vectors, 
→

n  and 
→

m  it is 

possible to derive the distribution of the similarity of the vectors 
→

x  and 
→

y  obtained by 

random mapping. 

Using equations (3.17), (3.18) and (3.19), the inner product between the mapped vectors 
→

x  and 
→

y  can be expressed as 
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where                                                     lk
lk

kl mn∑
≠

= εδ .     (3.27) 

 

The mean of δ is zero as the mean of each term in the sum is zero and the random 

variables are uncorrelated.  
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