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ABSTRACT 
 

The model of the electric power system that is used in a power flow analysis consist of 

all the busses in the system, the generating units and load elements connected to these 

various buses, and the transmission lines that interconnected the buses. The information 

furnished by a power flow analysis is quite simply the voltage profile of the system. In 

other words, the important result of the analysis is the determination of the voltage 

magnitude and its associated phase angle at each bus. Of course, once this information is 

known, it is a routine matter to determine the currents in each transmission link, and 

accordingly, the real and reactive power flows. Conclusions regarding overloads on any 

of the system components are obtained at this point in the study. They are necessary for 

planning operation, economic scheduling and exchange of power between utilities. In 

addition, power flow analysis is required for many other analyses such as transient 

stability and contingency studies. The most common techniques used  for the iterative 

solution of nonlinear algebraic equations are Gauss-Seidel, Newton –Raphson, and 

Quasi-Newton methods. Because of its quadratic convergence, Newton’s method is 

mathematically superior to the Gauss-Seidel method and is less prone to divergence with 

ill-conditioned problems. For large power systems, the Newton- Raphson method is 

found to be more efficient and practical. The number of iterations required to obtain the 

solution is independent of the system size, but more functional evaluations are required at 

each iteration. This project presents Newton-Raphson method for conducting load flow. 

A practical IEEE-5 bus system is considered for illustrator. A software in MATLAB is 

written and load flow is simulated. The results are compared with the programs written 

by Hadi Saadat and presented in the Chapter 4. 
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ABSTRAK 
 
Sebuah model sistem kuasa elektrik di dalam analisis aliran kuasa terdiri daripada bus 

dalam sistem, unit penjanaan dan elemen beban yang menghubungkan setiap bus dan 

penghantaran setiap bus. Keputusan yang penting dalam analisa ialah mengenalpasti 

magnitud voltan dan sudut fasa setiap bus. Maka daripada maklumat yang diketahui ini, 

kita boleh mengenalpasti aliran arus, kuasa sebenar dan kuasa reaktif. Selain itu sesuatu 

sistem memerlukan perancangan operasi, ekonomi adan penukaran tenaga kepada 

pengguna. Teknik biasa yang selalu digunakan adalah kaedah Newton-Raphson, Gauss-

Seidel dan Quasi-Newton. Newton-Raphson adalah kaedah matematik yang lebih 

berkesan berbanding kaedah Gauss-Seidel. Untuk sistem kuasa yang lebih besar, kaedah 

Newton-Raphson adalah lebih berkesan dan praktikal. Bilangan iteratif yang diperlukan 

dalam penyelesaian adalah bergantung kepada saiz sesuatu sistem. Projek ini 

menunjukkan kaedah Newton-Raphson untuk aliran kuasa. Keputusan IEEE-5 bus sistem 

digunakan untuk perbandingan. Perisian MATLAB digunakan untuk simulasi. 

Perbandingan keputusan Hadi Saadat ditunjukkan pada bab 4. 
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CHAPTER 1 
 

INTRODUCTION 
 
1.1 LOAD FLOW: 
 
The electric power system often is composed of many generators, transformers, passive and 

active load elements, and other accessories, all interconnected by transmission links 

between buses numbering in the hundreds and even in the thousands. The purpose of the 

power system is to supply real and reactive electric power to customers all along the 

network in a reliable and economic fashion on a continuous basis and at a voltage level and 

frequency that holds within specified limits. Moreover, this must be achieved in a way 

which ensures that none of the generating units operates in a sustained overloaded 

condition and that no transmission link is stressed either by excessive line losses or by a 

serious reduction in its static stability margin. A primary objective of power flow analysis  

is to guarantee this goal. But there are other reasons too. For example, a power flow 

analysis( or load flow study as it is alternatively called) is a necessity when the power 

network is expanded to include additional transmission links and loads to accommodate 

growth in a region. Such studies help ensure that newly formed system can meet all its 

needs in a economical, efficient, and secure manner. 

The model of the electric power system that is used in a power flow analysis consist of 

all the busses in the system, the generating units and load elements connected to these 

various buses, and the transmission lines that interconnected the buses. The information 

furnished by a power flow analysis is quite simply the voltage profile of the system. In 

other words, the important result of the analysis is the determination of the voltage 

magnitude and its associated phase angle at each bus. Of course, once this information is 
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known, it is a routine matter to determine the currents in each transmission link, and 

accordingly, the real and reactive power flows. Conclusions regarding overloads on any of 

the system components are obtained at this point in the study.     

    The system is assumed to be operating under balanced condition and represented by a 

single phase network. The network contains hundreds of nodes and branches with 

impedances specified an per unit on a common MVA base. 

Network equations can be formulated systematically in a variety of forms. However , the 

node-voltage method, which is the most suitable form for many power system analyses, is 

commonly used. The formulation of the network equations in the nodal admittance form 

results in complex linear simultaneous algebraic equations in terms of node currents. When 

node currents are specified, the set of linear equations can be solved for the node voltages. 

However, in a power system, powers are known as the power flow equation, become 

nonlinear and must be solved by iterative techniques. Power flow studies, commonly 

referred to as load flow, are the backbone of power system analysis and design. They are 

necessary for planning operation, economic scheduling and exchange of power between 

utilities. In addition, power flow analysis is required for many other analyses such as 

transient stability and contingency studies. 

The load study in a power system constitute a study of paramount importance. The study 

reveals the electrical performance and power flows(real and reactive) for specified 

conditions when the system operating under steady state. The load flow study also provides 

information about the line and transformer loads(as well as losses) throughout the system 

and voltages at different points in the system for  evaluation and regulation of the 

performance of the power system under conditions known of priori. Further alternative 
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plans for future expansion to meet new load demands can be analyzed and a complete 

information is made available through this study. 

A bus is a node at which one or many lines, one or many loads and generators are 

connected. It is not necessary that all of them be connected at every bus. The buses are 

classified as P-Q(load bus),P-V(generator or voltage controlled bus) and V-Q(slack bus). 

The bus is indicated by a vertical line at which several components are connected.  

 

1.2 OBJECTIVE 

1. Solving load flow 5-bus system problem using Newton-Raphson method. 

2. Flow of real and reactive power in the branches of the network. 

3. Busbar(node) voltage and angles. 

4. Power system augmentation studies to plan expansion to the network to meet future 

requirements. 

5. Difference between Gauss-Seidel and Newton-Raphson method. 

6. Optimum system running conditions and load distribution. 

7. Generator scheduling and reactive scheduling to minimizes losses. 

 
SCOPE 

 
In this project generators and loads connected to various nodes of the system, inject and 

remove power from system.  The principal information obtained from a power flow study is 

the magnitude and phase angle of the voltage at each bus and the real and reactive power 

flowing in each line. However, much additional information of value is provided by the 

printout of the solution from computer programs used by electric utility companies. Most of 

these features are made evident in our discussion of power flow studies.We shall examine 
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some of the methods upon which solutions to the power flow problem are based. The great 

value of the power flow computer program in power system design. The load-flow problem 

can be defined as the calculation of the real and phase angle of the voltage at each bus of a 

given transmission system for specified generation and load conditions. The information 

obtained from the load flow studies can be used to test the system’s capability to transfer 

energy from generation to load without overloading lines. Thus ,the solutions are obtained 

by applying approximations to the Newton-Raphson method. Aim of my project is solving 

load flow using Newton-Raphson method. The Newton Raphson method is a powerful 

method that will typically converge rapidly for many function.  
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CHAPTER 2 

 

LOAD FLOW NEWTON-RAPHSON METHOD THEORY 

 

2.1 BUS ADMITTANCE MATRIX 
 
In order to obtain the node-voltage equations,consider the simple power system shown in 

Figure 2.1 where impedance are expressed in per unit on a common MVA base and for 

simplicity resistances are neglected. Since the nodal solution is based upon Kirchhoff’s 

current law, impedance are converted to admittance,i.e., 

1 1
ij

ij ij ij
y

z r jx
 


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The circuit has been redrawn in figure 2.2 in terms of admittances and transformation to 

current sources. Node 0(which is normally ground) is taken as reference. Applying KCL to 

the independent nodes 1 through 4 results in 

 

Node 1, I1 = y10V1 + y12(V1-V2) + y13(V1-V3) 

          2, I2 = y20V2  +y12(V2-V1) + y23(V2-V3) 

          3, 0 = y23(V3-V2) + y13(V3-V1) + y34(V3-V4) 

          4, 0 = y34(V4-V3) 

 

Rearranging these equations yields 

I1 = (y10 + y12 + y13)V1 – y12V2 – y13V3 

I2 = -y12V1 + (y20 + y12 + y23)V2 – y23V3 

0 = -y13V1 – y23V2 + (y13 + y23 + y34)V3 – y34V4 

0 = -y34V3 + y34V4 
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We introduce the following admittance 

Y11 = y10 + y12 + y13 

Y22 = y20 + y12 + y23 

Y33 = y13 + y23+ y34 

Y44 = y34 

Y12 = Y21 = -y12 

Y13 = Y 31 = -y13 

Y23 = Y32 = -y23 

Y34 = Y43 =-y34 

The node equation reduces to 

I1 = Y11V1 + Y12V2 + Y13V3 + Y14V4 

I2= Y21V1 + Y22V2 + Y23V3+ Y24V4 

I3= Y31V1 + Y32V2 + Y33V3 + Y34V4 

I4= Y41V1 + Y42V2 + Y43V3 + Y44V4  

In the above network, since there is no connection between bus 1 and 4, Y14 = Y41=0; 

similarly Y24 = Y42 = 0. 

Extending the above relation to an n bus system, the node-voltage equations in matrix form 

is 

     

  I1                   Y11      Y12                   Y1i                   Y1n            V1 

  I2                    Y21     Y22                    Y2i                  Y2n             V2 

                         

            =   

  Ii                    Yi1     Yi2                       Yii                 Yin              Vi 

   

 

  In                    Yn1    Yn2                       Yni                Ynn            Vn 

 

or  Ibus = Ybus Vbus 
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Where Ibus is the vector of the injected bus currents(i.e., external current sources). The 

current is positive when flowing towards the bus, and it is negative if flowing away from 

the bus. Vbus is the vector of bus voltage measured from the reference node (i.e., node 

voltages). Ybus is known as the bus admittance matrix. The diagonal element of each node is 

the sum of admittance connected to it. It is known as self-admittance or driving point 

admittance, i.e., 

0

n

ii ij

j

Y y


    j ≠ i 

 

the off-diagonal element is equal to the negative of the admittance between the nodes. It is 

known as the mutual admittance or transfer admittance, i.e., 

ij ij ijY Y y    

When the bus currents are known,     can be solved for the n bus voltages. 

 

The inverse of the bus admittance matrix is known as the bus impedance matrix Zbus . The 

admittance matrix obtained with one of the buses as reference is nonsingular. Otherwise the 

nodal matrix is singular. 

Inspection of the bus admittance matrix reveals that the matrix is symmetric along the 

leading diagonal, and we need to store the upper triangular nodal admittance matrix only. In 

a typical power system network, each bus is connected to only a few nearby buses. 

Consequently, many off-diagonal elements are zero. Such a matrix is called sparse, and 

efficient numerical techniques can be applied to compute its inverse. By means of an 

appropriately ordered triangular decomposition, the inverse of a sparse matrix can be 

expressed as a product of sparse matrix factors, thereby giving an advantage in computional 
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speed, storage and reduction of round off errors. However ,Zbus, which is required for  short 

–circuit analysis, can be obtained directly by the method of building algorithm without the 

need for matrix inversion. 

 

8.50 2.50 5.00 0

2.50 8.75 5.00 0

5.00 5.00 22.50 12.50

0 0 12.50 12.50

bus

j j j

j j j
Y

j j j j

j j

 
  
 
  

 

 

A function called Y = ybus (zdata) is written for the formation of the bus admittance 

matrix. zdata is the line data input and contains four columns. The first two columns are 

the line bus numbers and the remaining columns contains the line resistance and reactance 

in per unit. The function returns the bus admittance matrix. The algorithm for the bus 

admittance program is very simple and basic to power system programming. Therefore, it is 

presented here for the reader to study and understand the method of solution. In the 

program, the line impedances are first converted to admittance. Y is then initialized to to 

zero. In the first loop, the line data is searched, and the off-diagonal elements are entered. 

Finally, in a nested loop, line data is search to find the elements connected to a bus and the 

diagonal elements are thus formed. 

 2.2  SOLUTION OF NONLINEAR ALGEBRAIC EQUATIONS. 

The most common techniques used  for the iterative solution of nonlinear algebraic 

equations are Gauss-Seidel, Newton –Raphson, and Quasi-Newton methods. The Gauss-

Seidel and Newton-Raphson methods are discussed for one-dimensionl equation, and are 

then extended to n-dimensional equations. 
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2.2.1  NEWTON-RAPHSON METHOD. 

The most widely used method or solving simultaneous nonlinear algebraic equation is 

the Newton-Raphson method. Newton’s method is a successive approximation 

procedure based on an initial estimate of the unknown and the use of Taylor’s series 

expansion. Consider the solution of the one-dimensional equation given by 

                                                         f(x) = c                                                              (2.1) 

if x(0) is an initial estimate of the solution, and ∆x(0) is a small deviation from the correct 

solution, we must have  

f(x(0) + ∆x(0)) = c 

 

Expanding the left- hand side of the above equation in Taylor’s series about x(0) yields 

f(x(0) ) + ( df  )  ∆ x (0)  + ½! ( d2f  ) (0)  (∆ x(0))2 + ……. = c 

                                              dx                          dx2 

assuming the error ∆x(0)  is very small, the higher-order terms can be neglected, which 

results in 

∆ c(0) ≈ ( df ) (0)   ∆x (0) 

dx 

 

where                                              ∆ c(0) = c- f(x(0) ) 

 

adding   ∆x(0)  to the initial estimate will result in the second approximation 

x(1) = x(0)  + ∆ c(0) 

                      ( df ) (0) 

                                                                             dx 

successive use of this procedure yields the Newton-Raphson algorithm 

                                                        ∆ c(k)  = c – f (x(k))                                              (2.2) 

                                                        ∆x(k)   =   ∆ c(k)                                                                             (2.3) 

                   ( df ) (k) 

           dx 
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                                                          x(k+1) = x(k) + ∆x (k)                                                                  (2.4) 

 

(2.3)        can be rearranged as 

                                                               ∆ c(k)  = j (k) ∆ x(k)                                             (2.5) 

 

                     Where                               j(k) =   ( df ) (k)        

                                                                            dx 

the relation in  (2.5) demonstrates that the nonlinear equation f (x) – c = 0 is  

approximated by the tangent line on the curve at x(k) . Therefore, a linear equation is 

obtained in terms of the small changes in the variable. The intersection of the tangent  line 

with the x-axis results in x (k+1). 

 

2.3 NEWTON-RAPHSON POWER FLOW SOLUTION.  

 

Because of its quadratic convergence, Newton’s method is mathematically superior to the 

Gauss-Seidel method and is less prone to divergence with ill-conditioned problems. For 

large power systems, the Newton- Raphson method is found to be more efficient and 

practical. The number of iterations required to obtain the solution is independent of the 

system size, but more functional evaluations are required at each iteration. Since in the 

power flow problem real power and voltage magnitude are specified for the voltage- 

controlled buses, the power flow equation is formulated in polar form. For the typical bus 

of the power system shown in figure 2.3, the current entering bus I is given from equation. 

This equation can be rewritten in terms of the bus admittance matrix as 

                                                           
1

n

i ij j

j

I Y V


                                                            (2.6) 
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In the above equation, j includes bus i. Expressing this equation in polar form, we have 

                                                
1

| || |
n

i ij j ij j

j

I Y V  


                                                  (2.7) 

The complex power at bus i is  

  *i j i i iP Q V I                                                       (2.8) 

 

Substituting from  (2.7)  for Ii  in  (2.8) 

                                     
1

| | | || |
n

i j i i i ij j ij j

j

P Q V Y V  


                                        (2.9) 

Separating the real and imaginary parts, 

                                      
1

| || || | cos( )
n

i i j ij ij i j

j

P V V Y   


                                           (2.10) 

                                      
1

| || || | sin( )
n

i i j ij ij i j

j

Q V V Y   


                                          (2.11) 

                                                

Equations (2.10)  and (2.11) constitute a set of nonlinear algebraic equations in terms of the 

independent variables, voltage magnitude in per unit, and phase angle in radians. We have 

two equation for each load bus, given by (2.10) and (2.11) and one equation for  
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each voltage-controlled bus, given by (2.10) . Expanding (2.10) and (2.11) in Taylor’s   

series about the initial estimate and neglecting all higher order terms results in the 

following set of linear equations.  

 

      ∆ P2 
(k)                 ∂P2 

(k)                    ∂P2
(k) ∂ P2

(k)     ∂ P2
(k)                        ∆ δ2

(k) 

                                  ∂δ2                            ∂δn ∂│V2│  ∂│Vn│ 

                                   

                                  ∂Pn 
(k)                ∂Pn

(k) ∂Pn 
(k) ∂Pn 

(k)  
    ∆ Pn (k) =       ∂δ2                    ∂δn ∂│V2│ ∂│V2│            ∆ δn

(k)   

    ∆Q2 
(k) ∆│V2

(k)
 │ 

                                                    ∂Q2 
(k) ∂Q2 

(k)         ∂Q2 
(k)  ∂Q2 

(k) 

 ∂δ2 ∂ δn ∂│V2│ ∂│Vn│ 

     

                           ∂Qn 
(k)  ∂Qn 

(k)        ∂Qn 
(k)                     ∂Qn 

(k)              ∆ │Vn 
(k)│  

     ∆Qn 
(k)                    ∂δ2                              ∂ δn              ∂│V2│               ∂│Vn│                                                         

  

                           

  In the above equation, bus 1 assumed to be the slack bus. The Jacobian matrix gives the 

linearized relationship between small changes in voltage angle ∆ δ i(k)  and voltage 

magnitude ∆│Vi
(k)│with the small changes in real and reactive power  ∆Pi

(k) and  ∆ Qi
(k). 

Elements of the Jacobian  matrix are the partial derivatives of  (2.5) and (2.6)        evaluated 

at ∆ δ i(k)  and   ∆│Vi
(k)│. In short form, it can be written as 

 

                                               
1 2

3 4 | |

P J J

Q J J V

      
           

                                             (2.12) 

  

For  voltage- controlled buses, the voltage magnitudes are known. Therefore, if m buses of 

the system are voltage-controlled, m equations involving ∆ Q and ∆V and the 
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corresponding columns of the Jacobian matrix are eliminated. Accordingly, there are n-1 

real power constraints and n-1-m reactive power constraints, and Jacobian matrix is of order 

(2n – 2-m) x (2n -2-m). J1 is of the order (n-1) x (n-1), J2 is of the order (n-1) x (n-1-m) , J3 

is of the order (n-1-m) x (n-1), J4 is of the order (n-1-m) x (n-1-m). 

The diagonal and the off-diagonal elements of J1 are 

 

                                        | || || | sin( )
i

i j ij ij i j
j ii

P
V V Y   

 


   


                                   (2.13) 

                                        | || || | sin( )
i

i j ij ij i j
j

P
V V Y   




   


 j≠i                              (2.14) 

 

The diagonal and the off-diagonal elements of J2 are    

                                       2 | || | cos | || | cos( )
| |

i
i ii ii j ij ij i j

i j i

P
V Y V Y

V
   




   

           (2.15) 

                                        | || | cos( )
| |

i
i ij ij i j

j

P
V Y

V
  

  


  j≠i                                    (2.16) 

The diagonal and the off-diagonal elements of J3  are 

 

                                   | || || | cos( )
i

i j ij ij i j
i j i

Q
V V Y   

 


  

                                    (2.17) 

                                   | || || | cos( )
i

i j ij ij i j
j

Q
V V Y   




   


 j≠i                              (2.18) 

The diagonal and the off-diagonal elements of J4  are  
 

                                        2 | || | sin | || | sin( )
| |

i
i ii ii j ij ij i j

i j i

Q
V Y V Y

V
   




    

         (2.19) 

 

                                        | || | sin( )
| |

i
i ij ij i j

j

Q
V Y

V
  

   


 j≠i                                 (2.20) 
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The terms   ∆ Pi 
(k) and ∆Qi 

(k) are the difference between the scheduled and calculated 

values, known as the power residuls, given by  

                                           ∆ Pi 
(k) = Pi 

sch – Pi (k)                                                                                        (2.21)             
 

                                           ∆Qi 
(k) = Qi sch - Qi(k)                                                                                        (2.22) 

The new estimates for bus voltages are  

                                           ∂i
(k+1) = ∂i

(k) + ∆∂i
(k)                                                                                           (2.23) 

 

                                 │Vi(k+1) │= │Vi(k)  │ + ∆│Vi(k)  │                                              (2.24)  

 

 

The procedure for power flow solution by the Newton – Raphson method is as follow: 

 

1. For load buses, where Pi
 sch  and Qi sch are specified, voltage magnitudes and phase 

angles are set equal to the slack bus values, or 1.0 and 0.0, i.e., │Vi(0)  │= 1.0 and  

∂i
(0) = 0.0. For voltage-regulated buses, where │Vi │ and Pi

 sch  are specified, phase 

angles are set equalto the slack bus angle, or 0, i.e., ∂i
(0) = 0. 

2. For load buses, Pi 
(k)  and Qi 

(k) are calculated from  (2.10) and  (2.11) and ∆ Pi 
(k)  and 

Qi 
(k) are calculated from (2.21) and (2.22). 

3. For voltage- controlled buses, Pi 
(k)  and ∆ Pi 

(k)  are calculated from (2.21) and 

(2.10), respectively. 

4. The elements of Jacobian matrix (J1,J2,J3 and J4) are calculated from (2.13) – 

(2.20). 

5. The linear simultaneous equation (2.12) is solved directly by optimally ordered 

triangular factorization and Gussian elimination. 

6. The new voltage magnitudes and phase angles are computed from (2.23) and (2.24). 
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7. The process is continued until the residuls ∆ Pi 
(k)  and ∆ Qi 

(k) are less than the 

specified accuracy , i.e., 

│∆ Pi 
(k) │ ≤ ε 

 

│∆ Qi 
(k)  │ ≤ ε 

 

Aim of my project is solving load flow using Newton-Raphson method. The Newton 

Raphson method is a powerful method that will typically converge rapidly for many 

function. 

2.4 LINE FLOWS AND LOSSES. 

After the iterative solution of bus voltage, the next step is the computation of line flows and 

line losses. Consider the line connecting the two buses i and j in figure. The line current Iij, 

measured at bus i and defined positive in the   

 

 

 

i j  is given by 

                                   Iij = Il + Ii0 = yij( Vi – Vj) + yi0Vi                                            (2.25) 
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Similarly, the line current Iji measured at bus j and defined positive in the direction j i  

is given by 

                                   Iji = - Il + I j0 = yij(Vj – Vi) + yj0Vj                                          (2.26) 

The complex power Sij from bus i to  j  and Sji from bus j to i are 

 

                                   Sij = ViI*ij                                                                                 (2.27) 

                                   Sji= VjI*ji                                                                                  (2.28) 

The power loss in line i – j is the algebraic sum of the power flows determined from, i.e., 

                                 SLij = Sij + Sji                                                                             (2.29) 

 

 

 

 

Figure 2.5 Power flow 

Equations (2.10)  and (2.11) constitute the polar form of the power-flow equations they 

provide calculated values for the net real power Pi and reactive power Qi entering the 

network at typical bus           . Let Pgi denote the scheduled power being generated at bus                              

and  Pdi denote the scheduled power demand of the load at the bus. Then, Pi,sch=Pgi-Pdi is the 

i
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net scheduled ower being injected into the network at bus          ,as illustrated in   figure. 

Denoting the calculated value of Pi by Pi,calc leads to the definition of mismatch ∆ Pi as the 

scheduled value Pi,sch minus the calculated value Pi,calc, 

         , , ,( )i i sch i calc gi di i calcP P P P P P                                                                     (2.30) 

Likewise, for reactive power at bus         we have, 

         , , ,( )i i sch i calc gi di i calcQ Q Q Q Q Q                                                                    (2.31) 

 

                                      
1 1 1

N N N

L i gi di

i i i

P P P P
  

                                                          (2.32) 

 

PL= real power loss 

Pgi= real power generation 

Pdi= real power load 

 

The term PL in this equation is evidently the total I2R loss in the transmission lines and 

transformers of the network.  The individual currents in the various transmission line of the 

network cannot be calculated until after the voltage magnitude and angle are known at 

every bus of the system. Therefore, PL is initially unknown and it is not possible to 

prespecify all the quantities in the summations. In the formation of the power-flow problem 

we choose one bus,slack bus,at which Pg is not scheduled or otherwise prespecified. After 

the power-flow problem has been solved, the difference (slack) between the total specified 

P going into the system at all the other buses and  the total output P plus I2P losses are 

assigned to the slack bus. For this reason a generator bus must be selected as the slack bus. 

The difference between the total megavars supplies by the generators at the buses and the 

megavars receives by the loads is given by: 

i

i



 19

                                               
1 1 1

N N N

i gi di

i i i

Q Q Q
  

                                                       (2.33) 

 

2.5  MATLAB IEEE POWER FLOW SOLUTION. 

 
Several computer programs have been developed for the power flow solution of practical 

systems. Each method of solution consists of four programs. The program for the gauss-

seidel method is lfgauss, which is preceded by lfybus, and is followed by busout and line 

flow. Programs lfybus,busout, and lineflow are designed to be used with two more power 

flow programs. These are lfnewton for the Newton-Raphson method and decouple for the 

fast decoupled method. The following is  brief description of the programs used in the 

Gauss-seidel method. 

Programs Brief Description of the programs 

lfybus This program requires the line and transformer parameters and 

transformer tap settings specified in the input file named 

linedata. It converts impedances to admittances and obtains 

the bus admittance matrix. The program is designed to handle 

parallel lines. 

lfgauss This program obtains the power flow solution by the Gauss-

Seidel method and requires the files named busdata and 

linedata. It is designed for the direct use of load and 

generation in MW and Mvar, bus voltages in per unit, and 

angle in degrees. Loads and generation are converted to per 

unit quantities on the base MVA selected. A provision is 

made to maintain the generator reactive power of the voltage-

controlled buses within their specified voltage is either to high 

or too low. After a few iterations(10th iteration in the Gauss 

method), the var calculated at the generator buses are 
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examined. If a limit is reached, the voltage magnitude is 

adjusted in steps of 0.5 percent up to ±5 percent to bring the 

var demand within the specified limits. 

busout This program produces the bus output result in a tabulated 

form. The bus output result includes the voltage magnitude 

and angle, real and reactive power of generators and loads, 

and the shunt capacitor/reactor Mvar. Total generation and 

total load are also included as outlined in the sample case. 

lineflow This program prepares the line output data. It is designed to 

display the active power flow entering the line terminals and 

line losses as well as the net power at each bus. Also included 

are the total real and reactive losses in the system. The output 

of this portion is also shown in the sample case. 

 

Data preparations: 

The bus power and voltage specifications are given below: 

Bus PL QL PG QG V Bus 

Specification 

1 0 0 0 0 1.06∟0 Slack bus 

2 0.2 0.1 0.4 0.3 1.045 PV bus 

3 0.2 1.5 0.3 0.1 1.03 PV bus 

4 0.5 0.3 0 0 Not specified PQ bus 

5 0.6 0.4 0 0 Not specified PQ bus 

 

In order to perform a power flow analysis by the Newton-Raphson  method in the 

MATLAB environment, the following variables must be defined: power system base MVA, 

power mismatch accuracy,acceleration factor, and maximum number of iterations. The 

name (in lowercase letters) reserved for these variables are basemva, accuracy,accel,and 

maxiter, respectively. Typical values are as follows: 
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Basemva = 100 ;  accuracy = 0.001 ; 

Accel      = 1.6   ;  maxiter   = 80; 

The initial step in the preparation of input file is the numbering of each bus. Buses are 

numbered sequentially. Although the numbers are sequentially assigned, the buses need not 

be entered in sequence. In addition, the following data files are required. 

BUS DATA FILE – busdata the format for the bus entry is chosen to facilitate the 

required data for each bus in a single row. The information required must be included in a 

matrix called busdata. Column 1 is the bus number. Column 2 contains the bus code. 

Column 3 and 4 are voltage magnitude in per unit and phase angle in degrees. Column 5 

and 6 are load MW and Mvar. Column 7 through 10 are MW, Mvar, minimum Mva and 

maximum Mvar of generation, in that order. The last column is the injected Mvar of shunt 

capacitors. 

The bus code entered in column 2 is used for identifying load, voltage-controlled, and slack 

buses as outlined below:  

%              Bus     Bus      Voltage     Angle        ---Load----       ---Generator--- 

%              No      code       Mag.       Degree    MW      Mvar     MW     Mvar      

busdata=[1            1          1.06            0.0          0             0           0          0     

                2            2          1.045          0.0        20           10         40          0      

                3            2          1.03            0.0        20           15         30          0      

                4            0          1.00            0.0        50           30           0          0      

                5            0          1.00            0.0        60            40          0          0     ]; 
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Code Description of the code 

1 This code is used for the slack bus. The only necessary information 

for this bus is the voltage magnitude and its phase angle. 

0 This code is used for load buses. The loads are entered positive in 

megawatts and megavars. For this bus,initial voltage estimate must be 

specified. This is usually 1 and 0 for voltage magnitude and phase 

angle for this type of  bus specified, they will be taken as the initial 

starting voltage for the bus instead of a flat start of 1 and 0. 

2 This code is used for the voltage-controlled buses. For this bus, 

voltage magnitude,real power generation in megawatts, and the 

minimum and maximum limits of the megavar demand must be 

specified. 

 

LINE DATA FILE – linedata lines are identified by the node-pair method. The 

information required must be included in a matrix called linedata. Column 1 and 2 are the 

line bus numbers. Column 3 and 5 contain the line resistance, reactance, and one-half of the 

total line charging susceptance in per unit on the specified MVA base. The last column is 

for the transformer tap setting; for lines, 1 must be entered in this column. The lines may be 

entered in any sequence or order with the only restriction being that if the entry is a 

transformer, the left bus number is assumed to be the tap side of the transformer. 
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%                                        Line code 

%                   Bus         bus      R         X             1/2 B   = 1 for lines 

%                    nl            nr      p.u.      p.u.            p.u.     > 1 or < 1 tr. tap at bus nl 

linedata=[         1              2       0.02     0.06             0               1 

                         1              3       0.08     0.24             0               1 

                         2              3       0.06     0.18             0               1 

                         2              4       0.06     0.18             0               1 

                         2              5       0.04     0.12             0               1 

                         3              4       0.01     0.03             0               1 

                        4               5       0.08     0.24             0               1]; 

 

A program named lfnewton is developed for power flow solution by the Newton-Raphson 

method for practical power systems. This program must be preceded by the lfybus 

program.  busout and lineflow programs can be used to print the load flow solution and the 

line flow results. The format is the same as the gauss-seidel. The following is a brief 

description of the lfnewton program. 

Lfnewton this program obtains the power flow solution by the Newton-Raphson method 

and requires the busdata and the linedata. It is designed for the direct use of load and 

generation in MW and Mvar, bus voltages in per unit quantities on the base MVA selected. 

A provision is made to maintain the generator reactive power of the voltage-controlled 

buses within their specified limits. The violation of reactive power limit may occur if the 

specified voltage is either too high or too low. In the second iteration, the var calculated at 

the generator buses are examined. If a limit is reached, the voltage magnitude is adjusted in 

steps of 0.5 percent up to ±5 percent to bring the var demand within the specified limits. 
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CHAPTER 3 

 
POWER FLOW  5 -BUS SYSTEM SOLUTION USING NEWTON RAPHSON 

METHOD 
 

 
 

Figure 3.1 5-bus power system. 
 

Figure shows a five bus power system. The line shunt admittances may be neglected. The 

bus power and voltage specifications are given below: 

Bus PL QL PG QG V Bus 

Specification 

1 0 0 0 0 1.06∟0 Slack bus 

2 0.2 0.1 0.4 0.3 1.045 PV bus 

3 0.2 1.5 0.3 0.1 1.03 PV bus 

4 0.5 0.3 0 0 Not specified PQ bus 

5 0.6 0.4 0 0 Not specified PQ bus 
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