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Abstract. Polyamide (PA6) nanocomposites containing 4 wt% organo-montmorillonite (OMMT) were melt-compounded
followed by injection molding. The mechanical properties of the PA6/OMMT nanocomposites were studied through tensile
and flexural tests. The rheological behaviour of the nanocomposites was determined by plate/plate rheological measure-
ments. Attempts were made to trace the rheological parameters that reliably reflect the observed changes in the clay disper-
sion. X-ray diffraction (XRD) and atomic force microscopy (AFM) were used to characterize the exfoliation and dispersion
of the OMMT in the PA6 matrix. The thermal properties of PA6/OMMT nanocomposite were characterized by Dynamic
Mechanical Thermal Analysis (DMTA). The tensile modulus and strength of the PA6 was increased in the presence of
OMMT. The flexural strength of PA6/OMMT was approximately doubled compared to the tensile strength value. The sig-
nificant enhancement of both tensile and flexural strength was attributed to the delaminated clay formation. XRD and AFM
results revealed the formation of PA6 nanocomposites as the OMMT was successfully exfoliated.
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1. Introduction hybrid exhibits high modulus, high distortion tem-
perature and good barrier properties of gas and
water. Kojima et al. [3] have reported the synthesis
of nylon 6-clay hybrid by montmorillonite interca-
lated with e-caprolactam. They found that the sili-
cate layers of nylon 6-clay hybrid were uniformly
dispersed in the nylon 6 matrixes. Fornes ef al. [4]
have described the melt compounding of nylon 6/
organoclay nanocomposites by using a twin-screw
extruder. Tensile modulus and strength were found
to increases with increasing concentration of clay.
Cho & Paul [5] have reported that the organoclay
was well exfoliated into nylon 6 matrix when com-
pounded with twin screw extruder. Liu et al. [6]
have reported the preparation of polyamide 6-clay
nanocomposites/MAHgPP alloys and investigated
its mechanical and dynamic mechanical properties
and morphologies. The notched impact strength of

Polymer nanocomposites offer new technological
and economical benefits. The incorporation of
nanometer scale reinforcement may dramatically
improve selected properties of the related polymer.
These nanocomposites exhibit superior properties
such as enhanced mechanical properties, reduced
permeability, and improved flame retardancy [1].
Polymer layered-silicate nanocomposites are cur-
rently prepared in four ways: in-situ polymeriza-
tion, solution intercalation, melt intercalation and
sol-gel technology. Direct polymer melt intercala-
tion is the most attractive because of its low cost,
high productivity and compatibility with process-
ing techniques (e.g. extrusion and injection mold-
ing) [2].

Numerous researchers described polymer-clay
nanocomposites based on polyamide. Nylon 6-clay
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the alloys increased remarkably while its stiffness
and strength still maintained. Chiu er al. [7] have
studied the effects of maleic anhydride-grafted
polyolefin elastomer (POEMA) on the properties of
PA6/OMMT by using melt intercalation. Gonzélez
et al. [8] have investigated the toughening of PA6/
OMMT by blending with maleinized styrene-ethyl-
ene/butadiene-styrene copolymer (mSEBS).

X-ray diffraction (XRD) and transmission electron
microscopy (TEM) have been adopted as the stan-
dard techniques to study the clay (or layered sili-
cates) dispersion in polymers. X-ray diffraction
permits the study of intercalation, whereas TEM
could provide evidence of intercalation/floccula-
tion and exfoliation/delamination of clay. Atomic
force microscopy (AFM) is a further suitable tech-
nique to study the microstructure and nanostructure
of polymer nanocomposites. Karger-Kocsis et al.
[9] have studied the morphology and topography of
interpenetrating vinylester/epoxy/organoclay by
using AFM technique. Chow et al. [10] have inves-
tigated the blend morphology and clay dispersion
in PA6/PP matrix using AFM technique. Rheo-
meters could be used to investigate the clay disper-
sion in the polymer matrix. The melt-state linear
viscoelastic properties for the nanocomposites are
typically examined in a constant strain rheometer in
either a cone and plate or parallel plate (plate-plate)
geometry. According to Krishnamoorti & Yurekli
[11] the response of the intercalated and exfoliated
nanocomposites to external flow is vital in their
processing, but would also provide a systematic
study of the response of highly anisotropic layers
suspended in a viscoelastic medium. A transition
from liquid-like to solid like rheological behaviour
for nanocomposites at relatively low silicate load-
ings (1-2 vol.%) is observed with relatively small
differences between intercalated and exfoliated
systems.

The present work has devoted to study the effects
of 4 wt.% OMMT on the mechanical, rheological
and morphological properties of PA6. Thus, it is
the aim of the present contribution to report the
effect of OMMT in reinforcement and its ability of
intercalation/exfoliation in PA6. This study
attempts to enhance the tensile and flexural proper-
ties of PA6. Further, this paper was aimed at study-
ing the rheological behaviour of PA6/OMMT
nanocomposites at both high and low shear rates,
and to interpret the rheological characteristics as a
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function of the morphology of the PA6 nanocom-
posites.

2. Experimental

2.1. Specimen preparation

The PA6 (Amilan CM 1017) used in this study was
a commercial product from Toray Nylon Resin
AMILAN, Japan. The melt flow index (MFI at
230°C and 2.16 kg load) and density of PA6 were
35 g/10 min and 1.14 g/cm3, respectively. Organo-
montmorillonite (Nanomer 1.30TC — OMMT) was
a commercial product from Nanocor, Inc, USA.
This OMMT is a white powder containing mont-
morillonite (70 wt%) intercalated by octadecy-
lamine (30 wt%).

Melt compounding of the PA6 nanocomposites was
done on a counter-rotating twin-screw extruder
(Berstoff). The extrusion zone temperature ranged
from 220-230°C. Prior to extrusion, PA6 pellets
and organo-montmorillonite (OMMT) were dehu-
midified by using a vacuum oven at 80°C for 8§ h.
The extrudates were pelletized with a Haake pel-
letizer. The pellets were injection molded into stan-
dard tensile bars using a Niigata AN 50 injection
molding machine. Injection molding temperature
ranged from 225-240°C. Prior to injection mold-
ing, all pellets were dehumidified in a vacuum oven
(80°C for 8 h). The tensile test specimens were
molded in a Type I mold according to ASTM D638.

2.2. Mechanical studies

Tensile tests were performed on an Instron-5582
machine at 23°C, according to ASTM D638, at a
crosshead speed of 50 mm/min. Tensile modulus,
tensile strength and elongation at break were evalu-
ated from the stress-strain data. Flexural measure-
ments were carried out according to ASTM D790
using 3-point bending configuration at 3 mm/min
deformation rate. The support span was set at
50 mm, Flexural modulus and strength were deter-
mined.

2.3. X-ray Diffraction (XRD)

Wide-angle X-ray spectra were recorded with a
D 500 diffractometer (Siemens) in step scan mode
using Ni-filtered Cu Ka radiation (0.1542 nm
wavelength). Powder samples were scanned in
reflection, whereas the injection-molded com-
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pounds were scanned in transmission in the interval
of 260 =2-10°. The interlayer spacing of the
OMMT was derived from the peak position (doo;-
reflection) in the XRD diffractograms according to
the Bragg equation (A = 2dsin6).

2.4, Atomic Force Microscopy (AFM)

Specimens were taken from the gauge section of
the injection molded dumbbells. Their orientation
was transverse to the mold flow direction. The sur-
face of the specimens was first polished prior using
further physical etching techniques. As for the
physical etching, the polished surface of the speci-
mens was eroded by Ar+ ion bombardment. This
occurred in a secondary neutral mass spectrometer
(INA3 of Leybold) working at 500 eV energy. The
beam was focused perpendicular to the surface of
the specimens. The overall ion dose was 1.9-1018
Ar*/cm2. The surface profile was scanned by AFM
(MultiModeTM  Scanning Probe Microscope,
Digital Instruments) in tapping mode and the
related topography image captured.

2.5. Plate/Plate Rheometry

Rheological measurements were made in dynamic
mode on a rheometer (ARES rheometer, Rheo-
metric Scientific) equipped with parallel plate
geometry (plate diameter: 25 mm) at 230°C. Sheets
were compression molded to about 1 mm thickness
and punched into disc of 25 mm diameter. Dynamic
frequency scan tests were conducted for all samples
at a strain sweep of 1% at 230°C. The strain ampli-
tude (1%) was within the linear viscoelastic region
as deduced from dynamic strain scan tests per-
formed for PA6 and PAG/OMMT nanocomposites.

2.6. Dynamic Mechanical Thermal Analysis
(DMTA)

The storage modulus (E”) and the mechanical loss
factor (tand = E"°/E”) as a function of temperature
(T), were assessed by dynamic mechanical thermal
analysis (DMTA) using an Eplexor 25N device of
Gabo Qualimeter, Germany. DMTA spectra were
taken in tension mode at 10 Hz frequency in a
broad temperature range (7 = —110...+230°C).
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3. Results and Discussion

3.1. Mechanical properties

Table 1 shows the effect of OMMT on the tensile
and flexural properties of PA6 nanocomposites.
The tensile modulus and tensile strength of PA6
was improved significantly in the presence of
OMMT. The stiffness of the OMMT filled PA6
composites is markedly higher than that of the neat
PAG6. This maybe attributed to the stiffness and
reinforcing effects of the OMMT particles. Either
full or partially delaminated clay formation is
believed to be responsible for the increment in stiff-
ness of PA6 nanocomposites. Cho & Paul [5]
reported that the modulus of PA6 composite con-
taining 5 wt.% of organoclay was substantially
increased relative to neat PA6. Reichert ez al. [12]
also showed that the tensile modulus increased as a
function of organophilic layered silicates content.
Shelley er al. [13] considered the possibility that
the modulus improvements are due to the constraint
of the polymer chains by their interaction with the
clay surfaces. According to Huang et al. [14], the
introduction of the montmorillonite, which has a
higher modulus than the organo-soluble polyimide
(PI) matrix, leads to an increase in the modulus of
the nanocomposite. The tensile modulus of PI
increased almost linearly up to 5 wt.% of montmo-
rillonite. However, as the montmorillonite content
is further increased, the aggregation of the mont-
morillonite leads to a leveling off or even slightly
decreases in the modulus of the hybrid. The addi-
tion of organoclay yields a substantial improve-
ment in stiffness of the composites based on PA6
[4].

Note that the flexural modulus and strength of PA6
was improved significantly in the presence of
OMMT. Recall that the OMMT has a plate-like
structure irrespective to its degree of exfoliation.
Accordingly, the platy OMMT and its silicate lay-
ers when exfoliated are aligned in the mold flow
direction (MFD), especially in the skin layers. The
injection-molding direction is parallel to the long

Table 1. Effects of OMMT on the tensile and flexural

properties of PA6
Properties Unit PA6 PA6/OMMT
Tensile modulus GPa 23+0.02 3.0+0.02
Tensile strength MPa 40.1 £ 0.05 68.720.10
Elongation at break % 58.4+0.05 3.5+0.02
Flexural modulus GPa 21002 2.9+0.01
Flexural strength MPa 94.2%0.10 | 1053 x0.10
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axis of the layered silicates. This forced orientation
is a result of the high shear rates during injection
molding. This injection molding-induced skin-core
morphology causes the observed increase in the
flexural strength.

3.2. Morphological properties

3.2.1. X-ray diffraction (XRD)

Figure 1 shows the XRD patterns in the range of
20 = 2-10° for PA6, OMMT and PA6/OMMT. The
XRD spectrum of the OMMT exhibits a broad
intense peak at approximately 20 = 3.25° corre-
sponding to a basal spacing of 2.72 nm. Note that
the XRD spectra of PA6/OMMT do not shows a
characteristic basal reflection of the OMMT. XRD
spectra of the OMMT filled PA6 display a promi-
nent increase in the intensity at lower 26 values
compared with neat PA6. This is due to the fact that
the PA6 molecular chain success to intercalate into
the inter-gallery of OMMT and further exfoliate the
OMMT layered silicates. This reflects that the
OMMT used was exfoliated in the PA6 matrix. Wu
et al. [15] had reported a similar observation in the
case of nylon 1012/clay nanocomposites. The

- OMMT

tteriity [c5]

Figure 1. XRD spectra of PA6, OMMT and PA6/OMMT
nanocomposites

absence of the characteristic clay doo: peak indi-
cates the exfoliation of the clay platelets in the
nylon 1012 matrix.

3.2.2. Atomic force microscopy (AFM)

Figure 2a&b display the AFM surface topography
of PA6 and PA6/OMMT after Argon ion bombard-
ment. The great difference in the topography
reflects the effect of OMMT. Recall that OMMT
would act as nucleant for the y-phase of PA6 which
is likely less resistant to ablation than the a-phase.
The white image represents the individual clay lay-
ers or layered silicates (i.e. platelet structure shown
by the arrow). The average length of the plate-like
structure is approximately 0.5 micrometer. Note
that the silicate layer of OMMT was exfoliated in
the PA6 matrix.

3.3. Rheological properties

A deeper insight into morphology-dependent flow
behavior was expected from the rheological meas-
uremnents performed in the viscoelastic range. The
storage modulus (G’) resulting from dynamic fre-
quency scans is depicted in Figure 3a. The storage
modulus (G’) increased monotonically in the cov-
ered frequency range when OMMT was introduced
to the PA6 nanocomposites. This reflects the strong
effects of intercalated/exfoliated clay silicate layers
on the viscosity of PA6. Besides, the increasing of
the G’ values of PA6/OMMT compared with the
neat PAG is attributed to the interaction of PA6 and
OMMT. The slope values of G’ for PA6 at 1 rad/s
and 100 rad/s is 0.92 and 1.25, respectively. On the
other hand, the slope values of G’ for PAG/OMMT
nanocomposites at 1 rad/s and 100 rad/s is 0.89 and
0.96, respectively. According to Li ef al. [16],
changes of G’ in the viscoelastic range sensitively

2 o

b)

Figure 2. a - AFM surface topography of PA6; b - AFM surface topography of PA6/OMMT nanocomposites
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Figure 3. a - Variation in the storage modulus (G”) as a function of frequency for PA6 and PA6/OMMT nanocomposites;
b - Variation in the complex viscosity (n*) as a function of frequency for PA6 and PA6/OMMT nanocompos-

ites

reflect the effects of clay dispersion. The higher the
slope, the less stable the clay is. At lower frequency
(at 1 rad/s) the polymer chains are fully relaxed and
thus alterations in storage modulus (G’) and loss
modulus (G”) including their slopes are likely
linked to the effect of the clay dispersion. This
change in slope indicates that the nanocomposites
attained a pseudo solid-like behaviour due to the
nano-reinforcing effect of the intercalated/exfoli-
ated clay. Similar results were reported by
Hoffmann ez al. [17]. The higher the G’ moduli and
the smaller the slope (at lower frequency), the more
pronounced the interaction between the silicate
platelets and their tendency to form a three-dimen-
sional superstructure {17]. One can thus concluded
that rheological characteristics (G’ and related
slope) in the low frequency viscoelastic range
could reflect even small changes in the clay disper-
sion accordingly.

Figure 3b depicts the course of the complex viscos-
ity (n") as a function of frequency for the viscoelas-
tic range assessed by a plate-plate rheometer. Note
that the complex viscosity of PA6 increased in the
presence of OMMT. The slope values of 1* for
PAG6 at 1 rad/s and 100 rad/s are —0.04 and -0.13,
respectively. However, the slope values of n* for
PA6/OMMT at 1 rad/s and 100 rad/s is —0.46 and
-0.29, respectively. According to Boucard er al.
[18], at low shear rates, the silicate platelets of high
aspect ratio are well separated and this strongly
increases the viscosity of the melt. On the other
hand, at higher shear rates the platelets are oriented
in the flow direction which consequently leads to a
reduction in the viscosity. One could expect that the
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higher the viscosity and the higher the negative
slope in viscosity-frequency relation are the better
is the clay exfoliation. This prediction is due to the
fact that intimate clay/polymer interaction is
accompanied with strong viscosity increase.
However, if the clay layers are well separated from
each other (exfoliated stage) then shear thinning is
more probable than in case of intercalated tactoids.
Recall that shear thinning presumes an alignment
of the clay layer in the flow direction which occurs
easily in exfoliated stage.

3.4. Thermal analysis

The dynamic storage modulus, as well as the tand
versus temperature traces for the PA6 and PA6/
OMMT nanocomposites is shown in Figure 4a&b,
respectively. It can be seen that PA6/OMMT
nanocomposites exhibits higher storage modulus
than PAG (c.f. Figure 4a). This may again be attrib-
uted to the reinforcing effects of the OMMT in PA6
matrix. Figure 4b shows the effect of OMMT on
the loss factor (tand) for PA6. Two dynamic relax-
ation peaks were observed at around 56°C and
—-60°C, which referred to as o and B relaxation
peaks of PA6. The « relaxation peak is believed to
be related to the breakage of hydrogen bonding
between polymer chain which induces long range
segmental chain movement in the amorphous area.
This is assigned to the glass transition temperature
(T,) of PA6. Note that there is no significant chang-
ing in the T, value of PA6 with the incorporation of
OMMT.
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Figure 4. a - £’ vs T traces for PA6 and PA6/OMMT nanocomposites: b — tand vs T traces for PA6 and PA6/OMMT

nanocomposites

4. Conclusions

Based on this work devoted to study the effects of
OMMT on the mechanical, morphological and rhe-
ological properties of PA6 nanocomposites, the fol-
lowing conclusions can be drawn:

(@

(b

©

Modulus and strength of the PA6 was
improved significantly in the presence of
OMMT attributed to the stiffness, rigidity, rein-
forcing effects and exfoliation of OMMT.
XRD and AFM techniques could be used to
study the morphology of PA6/OMMT nano-
composites. The OMMT was exfoliated in the
PA6 matrix. This is attributed to the strong
interaction of PA6 and OMMT, and the inter-
calation capability of PA6 in the silicate layers
of OMMT.

Considering the XRD and AFM results of the
OMMT dispersion in the PA6 nanocomposites,
the following rheological parameters, in the
viscoelastic range at low frequency, could be
considered as suitable indicators: the storage
modulus (G’) and its slope, and the complex
viscosity (n*) and its slope. The higher G’ and
the smaller the related slope, as well as the
higher n* and its higher related slope, the better
the clay exfoliation is.
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