UNIVERSITI SAINS MALAYSIA

Stamford College
First Semester Examination
2004/2005 Academic Session
October 2004
External Degree Programme
Bachelor of Computer Science (Hons.)
CPT102 - Discrete Structures
Duration : 3 hours

INSTRUCTIONS TO CANDIDATE:

- Please ensure that this examination paper contains FOUR questions in SIX printed pages before you start the examination.
- Answer ALL questions.
- This is an "Open Book" Examination.
- On each page, write only your Index Number.

1. (a) Given is a sequence on binary numbers: $11_{2}, 1111_{2}, 111111_{2}, 11111111_{2}$, $1111111111_{2}, \ldots$.
(i) Change the given sequence to decimal representation (write only the first five (5) terms).
(ii) Based on answer in (i), find J_{n} where J_{n} is the implicit formula for the given sequence.
(iii) Based on answer in (ii), use substitution method, to find S_{n} where S_{n} is the explicit formula for the sequence.
(iv) Is $3 \mid S_{n}$ for $n \in \mathbb{Z}^{+}$? If true, prove it using mathematical induction.
(b) In a football league there are 4 clubs (club A , club B, club C , club D) competing.
(i) If each club competing has 20 players (4 strikers, 8 midfielders, 8 defenders), how many ways are there to choose a national team of 15 players from the clubs if the 15 players consist of 4 strikers, 5 midfielders and 6 defenders.
(ii) A club has brought 10 balls to a field. The club buys balls from only 3 well-know ball manufacturers. How many combinations of balls are there that can be brought to the field.
(10/100)
(iii) Between club A and club B , club A has twice the chance to be a winner. Between club B and club C, club B has three times chance to be a winner. Club C and club D has the same chance to be a winner. What are the chances for each club to be a winner?
(c) Mathematical Structure $S=($ Integer matrices size $1 \times 2, \nabla$), where

$$
\left[\begin{array}{ll}
x & y
\end{array}\right] \nabla\left[\begin{array}{ll}
w & z
\end{array}\right]=\left[\begin{array}{ll}
x+w & (y+z) / 2
\end{array}\right]
$$

(i) Show that S is closed
(ii) Based on S, shows that ∇ is commutative.
(iii) Based on S, shows that ∇ is not associative.
2. (a) In an examination schedule, there are only two types of exam, exam for graduate students and exam for undergraduate students. Only one exam will be conducted in a day. All undergraduate exams are not allowed to be conducted in two or more days in row. If there are n exam days,
(i) Find the implicit formula for the sequence that shows how many schedules that can be generated?
(ii) Write a recursive pseudocode based on answer in 2(a)(i).
(iii) Write an iterative (loop) pseudocode based on answer in 2(a)(i).
(b) Given the following function:

```
Function Goo(a,b)
a,b: integer.
Begin
    If (a = 0) then
        return (b)
    If (b = 0) then
        return (a)
    If (a < b)
        Goo(a, b mod a)
        else
            Goo(a mod b, b)
End
```

(i) Trace the given pseudocode with $\operatorname{GoO}(15,3)$ and $\operatorname{GoO}(14,5)$.
(ii) What is the task of the given function?
(iii) Rewrite the pseudocode using loop.
(c) Given the NAND operation as follows:

\boldsymbol{p}	\boldsymbol{q}	\boldsymbol{p} NAND \boldsymbol{q}
0	0	1
0	1	1
1	0	1
1	1	0

(i) Show that $\neg p \Leftrightarrow p$ NAND q.
(i) Show that $p \vee q \Leftrightarrow(p$ NAND $p)$ NAND $(q$ NAND $q)$.
(iii) Using only $N A N D$ find the equivalent proposition to $p \wedge q$.
3. (a) If $a R b$ is a relation of congruent modulo $n, a \equiv b(\bmod n)$. Show that R is:
(i) reflexive.
(ii) symmetric.
(iii) transitive.
(b) A is a set and $|A|=8 . R$ is a relation on $A, R \subseteq A \times A$.
(i) How many different R can be produced?
(ii) How many R are reflexive?
(iii) How many R are symmetric?
(iv) How many R are reflexive and symmetric?
(c) A computer application consists of 9 modules. The given table shows the relation on the modules with time required to produce the modules.

Module	Should be done after this module(s)	Time required (week)
1	-	5
2	1	4
3	1	1
4	2	4
5	2,3	3
6	4	1
7	2,3	3
8	4,5	2
9	$6,7,8$	5

(i) Draw the Hasse diagram for this project.
(ii) How long it takes to complete the project? (Assume there is no constraint on human resources but each module should be done by one person).
(iii) Draw the matrix representation of the relation represented by the Hasse diagram in 3(c)(i).
4. (a) Based on question 2 above.
(i) Draw the simplest finite state machine which accepts only the defined schedule.
(ii) Write the simplest Phase Structured Grammar based on answer in 4(a)(i).
(b) For each of the following, draw the respective tree or explain why the tree cannot be produced.
(i) Complete binary tree with 5 internal nodes.
(ii) Complete binary tree with 5 internal nodes and 7 leaves.
(iii) Complete binary tree with 9 nodes.
(iv) Complete binary tree with height 3 and having 7 leaves.
(v) A binary tree with height 3 and 7 leaves.
(vi) Complete binary tree with height 3 and 6 leaves.
(c) For each of the given function (f, g and h), determine if the function is 1-to-1. If the function is 1 -to-1 then find its inverse, otherwise name the function type.
(i) $f=\left\{(a, b) \mid b=a^{100}, a \in \mathbb{R}, b \in \mathbb{R}\right\}$
(ii) $g=\left\{(a, b) \mid b=2^{a}, a \in \mathbb{R}, b \in \mathbb{R}\right\}$
(iii) $h=\{(a, b) \mid a \geq 5, b=a+3, a \in \mathbb{R}, b \in \mathbb{R}\}$
(iv) Show that $f(n)=O(g)$ and $g(n) \neq O(f)$

