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ABSTRACT 

 

The analysis of thermal behaviour of composite wall subjected to unsteady-state 

heat conduction is becoming increasingly important in building designs today.  Many 

researches have been carried out in this field in order to develop new methods that will 

lead to progressions and improvements. 

 

The main objective of this project is to develop a program that can be used to 

analyze thermal behaviour of composite walls.  In order to simplify the computations, 

the problem is assumed to be one-dimensional (only in the direction normal to the 

surface of walls) unsteady-state heat conduction through the multilayer composite walls.  

The wall inner surface is subjected to convective boundary condition and the wall outer 

surface is subjected to periodic surface temperature boundary condition.  The problem 

was solved by using finite volume method with Tri-Diagonal Matrix Algorithm 

(TDMA) and fully implicit scheme was chosen. 

 

For code validation purposes, a program code for solving transient heat 

conduction through a one-layer wall was developed and it was used to solve two 

different types of boundary conditions, the step change in surface temperature and the 

surface convection.  The results obtained were compared with the analytical solutions.  

Later, a program code for solving unsteady-state heat conduction through a multilayer 

composite wall, which was incorporated with convective boundary condition on the 

wall inner surface and periodic surface temperature boundary condition on the wall 

outer surface, was developed.   

 

By using the program, the wall inner surface temperature at any time of a day 

was determined.  Time lags and decrement factors of the composite walls were also 

calculated.  The effects of the thermophysical properties and thickness of the walls were 

investigated.  From the results obtained, it was found that the thermal conductivity, 

specific heat and the thickness have a very deep effect on the time lag and decrement 

factor.  The investigations were repeated for different wall materials and thickness and 

the results were discussed.   
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ABSTRAK 

 

 Analisis kelakuan haba ke atas dinding rencam yang dikenakan konduksi haba 

tak-mantap menjadi semakin penting di dalam rekabentuk bangunan hari ini.  Banyak 

kajian telah dijalankan dalam bidang ini bagi tujuan membangunkan kaedah-kaedah 

baru yang akan mendatangkan kemajuan dan pembaikan. 

 

 Tujuan utama projek ini adalah untuk membangunkan satu program yang dapat 

digunakan untuk menganalisa kelakuan haba pada dinding rencam.  Untuk tujuan 

memudahkan pengiraan, masalah ini dianggap sebagai konduksi haba tak-mantap satu-

dimensi (hanya pada arah normal kepada permukaan dinding), menerusi dinding rencam 

berbilang lapis.  Permukaan dalam dinding dikenakan keadaan sempadan berolak 

manakala permukaan luar dinding dikenakan keadaan sempadan suhu permukaan 

berkala.  Masalah ini diselesaikan dengan menggunakan kaedah isipadu terhingga 

dengan algoritma matriks tiga-perpenjuru (TDMA) dan skema tersirat penuh dipilih. 

 

 Bagi tujuan pengesahan kod, satu kod program bagi menyelesaikan masalah 

koduksi haba fana melalui dinding satu lapis telah dibangunkan.  Program ini digunakan 

untuk menyelesai dua jenis keadaan sempadan iaitu perubahan langkah dalam suhu 

permukaan dan permukaan olakan.  Keputusan yang didapati dibandingkan dengan 

penyelesaian analisis.  Kemudian, satu kod program dibangunkan bagi menyelesaikan 

masalah konduksi haba tak-mantap menerusi dinding rencam berbilang lapis, yang 

mana telah digabungkan dengan keadaan sempadan berolak pada permukaan dalam 

dinding dan keadaan sempadan suhu permukaan berkala pada permukaan luar dinding. 

  

 Dengan menggunakan program tersebut, suhu permukaan dalam dinding pada 

bila-bila masa untuk satu hari dapat ditentukan.  Ekoran masa dan faktor susutan untuk 

dinding rencam juga dikira.  Kesan ciri-ciri haba fizik dan ketebalan dinding disiasat.  

Dari keputusan, didapati bahawa keberkondukan haba, haba tentu dan ketebalan 

mempunyai kesan yang amat dalam terhadap ekoran masa dan faktor susutan.  

Penyiasatan ini diulang bagi bahan dinding dan ketebalan yang berlainan, dan keputusan 

dibincangkan.  

  

 



INTRODUCTION                                                                                                                        1  
  

CHAPTER 1: INTRODUCTION 

 
1.1  Introduction of Heat Conduction 

 

    Heat transfer by conduction is defined as the transfer of energy caused by 

physical interaction among molecular, atomic, and subatomic particles of a substance at 

different temperatures.  Very energetic molecules, which located in the high temperature 

region, will lose energy in the transfer process, and the lower energy molecules, which 

located in the low temperature region, will receive energy.  Motion, as we understand 

the term in fluid dynamic, is not necessary.  

 

Heat conduction can occur in gases, liquids as well as solids.  Conduction in 

gases involves the collision and exchange of energy and momentum among molecules 

in continuous random motion.  This same molecular transport mechanism also occurs in 

liquid mediums, but is complicated by the effects of molecular force fields, and can be 

augmented by the transport of free electrons in liquids that are good electrical 

conductors. Conduction in solids occurs as a result of the movement of free electrons 

and vibration in the atomic lattice structure of the material. 

 

The French scientist, J. B. J. Fourier, proposed the basic relation for heat transfer 

by conduction in 1822. The relation states that the rate of heat flow by conduction, q in 

a material, is equal to the product of the following three quantities: 

 

1. k, the thermal conductivity of the material. 

2. A, the area of the section through which heat flows by conduction,  

           perpendicular to the direction of heat flow. 

3. 
dx

dT
, the temperature gradient at the section. 

 

The relation above can be written in mathematical form: 

                          
dx

dT
Akq ..                                                                          (1.1) 
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The negative sign in the equation denotes that heat flows from point of higher 

temperature to point of lower temperature, according to the second law of 

thermodynamics.    The increasing distance x is to be the direction of positive heat flow.  

Heat flow will be positive when the temperature gradient is negative.  Equation (1.1) is 

the elementary equation for one-dimensional conduction in steady state.  

 

 

1.2  Introduction of Unsteady-state Heat Conduction 

 

Unsteady-state conduction is very important in many applications of heat 

transfer.  In technological areas, designers are often faced with start-up, operating, and 

instability transients.  These must be well understood in order to guide material 

selection, for example, in solid-fuel rocket nozzles, in reentry heat shields, in reactor 

components, and in combustion devices. 

 

  Unsteady-state conduction mechanisms are also important in the many earth 

sciences due to the ever-changing effects of solar radiation and atmospheric conditions.  

For example, both daily and seasonal temperature changes cause complicated time-

dependent temperature variations in the soil.  Geophysics problems are also analyzed on 

the basis of conduction mechanisms in the steady state and unsteady state.  The growth 

characteristics of ice in soil and on the surfaces of bodies of water are also considered in 

terms of unsteady-state conduction and diffusion mechanisms.  

 

 There are actually two different general kinds of unsteady-state process.  One is 

a transient, wherein the temperature field varies with time, from an initial condition, 

toward an eventual steady state.  For example, an object at an initial temperature of Ti is 

immersed in a surrounding at a temperature T1.  The temperature difference decays with 

time.  Another unsteady process is a periodic, in which the temperature at each location 

in the region continues to vary periodically with time.   This arises approximately on the 

surface layer downward into soil, due to both annual and daily variations of atmospheric 

conditions.  The annual periodic component has a time scale of 365 days, whereas the 

daily period is 24 hours.  Another common examples are the daily variation of air 

temperature or of solar loading at a bounding surface.   
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1.3  Prediction of Heat Transfer Process  

 

Heat transfer is a part of science studies, which seeks to predict not only how 

heat energy may be transferred but also the rate of heat transfer between material bodies 

due to the temperature difference.  The prediction of heat transfer processes can be done 

through experimental investigations and theoretical analysis. 

 

1.3.1 Experimental Investigations 

 

An experiment investigation of heat transfer process requires high accuracy and 

precision full-scale equipments in order to obtain accurate results.  Such equipments are 

very expensive and also difficult to manufacture.  The alternative way is to perform the 

experiments on small-scale models.  The resulting information, however, must be 

extrapolated to full scale but general rules for doing this are often unavailable.  

Furthermore, the small-scale models do not always simulate all the features of the full-

scale equipment.  This reduces the reliability of the test results.  In conclusion, it is hard 

to obtain experimental results with high accuracy due to the unavailability of full-scale 

equipments.   

 

 

1.3.2 Theoretical Analysis 

 

A theoretical analysis uses mathematical models rather than actual physical 

models to predict the heat transfer processes.  The mathematical model mainly consists 

of a set of differential equations, which can be solved by means of analytical solutions 

as well as numerical methods.  Analytical solutions are only used to solve simple heat 

transfer problems, which have simple boundary conditions.  For more complicated 

problems, the numerical methods are more practical solutions. 

The development of numerical methods and availability of high-speed, digital 

computers hold the promise that the implications of a mathematical model can be solved 

for almost any practical problems.  The examples of the types of numerical method are 

Finite Element Methods, Finite Difference Methods and Finite Volume Methods.  
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The advantages of theoretical analysis compared with the experimental 

investigations are low cost, high speed, more detail and complete results, and ability to 

simulate both practical and ideal conditions.  In the other hand, the disadvantages of 

theoretical analysis may happen if the prediction has a very limited objective and the 

computation may be more expensive than an experiment test due to expensive software.  

 

1.4  Introduction of Thermal Characteristics of Composite Walls 

 

 Walls are the basic structural elements of any buildings. Generally, the walls are 

composed of several layers with different thermophysical and mechanical properties 

depend on the types of building.  Most ordinary houses are made of brick walls, which 

generally consists of three layers (brick and plastering on both sides).  For taller 

buildings (5-storage and above), concrete walls are used for load retaining purposes, 

such as wind load. 

 

          The function of walls of passive solar buildings [9,11] is to provide a 

comfortable indoor environment for living. In this context, walls are used as heat 

storage elements.  During day periods, the ambient temperature is much higher than the 

normal human body temperature due to the solar radiation. The walls isolate the solar 

heat from directly heating the inside building space and at the same time absorb some 

portion of the heat energy. As a result, the temperature inside the building is maintained 

at a bed comfort level. During nights, when the ambient temperature turns lower, the 

heat energy stored by the walls is dissipated to the environment to keep the inside 

building space comfortably warm.   

 

 There are different temperature profiles during any instant of one-day period at 

the cross-section of the outer wall of a building.  These temperature profiles are 

functions of inside air temperature, outside air temperature and thermophysical 

properties of the wall.  The outside air temperature changes periodically during one-day 

period.  Thus, there will be new temperature profiles at any instant of time of the day.  

Since the outside air temperature changes periodically with time, it is an unsteady-state 

process. 
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 A heat wave in terms of temperature and time flows from the outside to inside 

through the thickness of the wall.  The amplitude of the heat waves is represented by the 

temperature magnitudes, and the wavelength of the heat wave is represented by the 

time. The amplitude of the heat wave on the outer surface of the wall is depending on 

solar radiation and convection between the outer wall surface and the outside air.  When 

the heat wave propagates through the thickness of the wall, its amplitude will decrease 

accordingly to the thermophysical properties of the wall materials.  When the wave 

reaches the inner wall surface, the amplitude of the wave is significantly smaller than 

that at the outer wall surface.  This effect is caused by the decrement factor 

characteristic of the wall materials. The maximum temperature at the inner surface may 

occur later or earlier than that of the outer surface. This effect is caused by the time lag 

characteristic of the wall material.  

 

 This project is mainly focused on developing a program code using finite 

volume method and the fully implicit scheme is applied. The code was used to solve the 

one-dimensional unsteady-state heat conduction, without internal heat generations, 

through a multi-layer composite wall.  The corresponding boundary conditions are 

convective type on the wall inner surface and periodic temperature type on the wall 

outer surface.  Two important characteristics, time lag and decrement factor were also 

calculated in the computations.  The effects of thermophysical properties and thickness 

of the wall on time lag and decrement factor were investigated and the results were 

discussed.  The results obtained from the investigations are important for effective 

passive solar building designs.   

 

The inputs of the code are: number of layers, the thickness of each layer, initial 

condition and boundary conditions, thermal conductivity, specific heat and density of 

each layer.  The outputs of the code are: time lag, decrement factor, wall inner surface 

temperatures and the temperature of any location at any time of the day. 
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1.5  Literature Survey 

 

H. Asan’s published papers [1, 2, 3] provide the basic theory of the thermal 

analysis on composite walls.  The researches were mainly focus on developing program 

code by using numerical method to investigate the effect of thermophysical properties, 

wall thickness, and insulation position on the time lag and decrement factor. 

 

C. Carter and J. DeWilliers’s book [9] and J.D. Balcomb’s [11] paper provide 

the researches for heating of passive solar building via direct heat gain and thermal 

storage methods.   

 

R. J. Duffin’s research paper [12] emphasizes the design of special walls, which 

have very high time lags and very low decrement factors to prevent the propagation of 

big fluctuations of outside temperature to inside and almost constant inside temperature 

can be obtained which results to a good comfort level. 

 

P. T. Tsilingiris’s research paper [4] focus on the study of  thermal behaviour of 

wall subjected to transient heat conduction.  The thermal time constants were evaluated 

for number of typical walls. 

 

 Frank Kreith’s book [5] provides the basic theory of heat conduction.  The 

analytical and numerical  solutions are introduced in details.  The book also provides the 

visual FORTRAN codes for solving heat transfer problems. 

 

 Lindon C. Thomas’s book [6],  J. P. Holman’s book [7] and Benjamin Gebhart’s 

book provide the analytical solutions for one-dimensional transient heat conduction 

through infinite and semi-infinite slabs with step change and surface convection 

boundary conditions. 

 

 S. V. Patankar’s book [8] introduces the finite volume method for solving the 

unsteady-state heat conduction problems.  
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 E. R. G. Eckert and Robert M. Drake, Jr.’s book [13] and Lindon C. Thomas’s 

book [6] provide the analysis of surface convection and periodic surface temperature on 

solids. 

 

N. Ozisik’s book [15] develops a range of formulae for infinite, semi-infinite 

and finite boundary problems of transient heat conduction subjected to general boundary 

conditions.  The book also introduces the solutions for multi-layer slab.  
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CHAPTER 2:  THEORY  

 
2.1 Introduction 

 

There are several techniques available to solve the heat conduction problem in 

the form of differential formulation.  These solution techniques include analytical, 

analogical, and graphical methods. The differential formulation can also be solved by 

applying the numerical methods.  In this chapter, only the analytical solutions of the 

one-dimensional unsteady-state heat conduction problems are introduced.   

 

The analytical solutions can be applied to either one-dimensional or 

multidimensional heat transfer problems.  Two popular methods, which are often used 

to develop analytical solutions, are the separation-of-variables technique and the 

approximate integral technique [6, 7].  There are frequently used to develop 

multidimensional steady and unsteady heat conduction analytical solutions due to their 

simplicity.  The separation-of-variables solution will be discussed in detail in this 

chapter.   

 

Sometimes, the analytical solutions are difficult to obtain due to the complexity 

of the heat transfer problems.  In this case, numerical methods are introduced. The 

numerical methods provide the basis for analyzing the more complex problems such as 

nonlinear boundary conditions, temperature-dependent properties, and complex 

geometries.  The numerical approach will be discussed in detail in the Chapter 3.  

  

2.1.1 Time Lag and Decrement Factor 

 

Two very important characteristics, which are very useful in determining the heat 

storage capabilities of any wall material, are introduced in this chapter.  There are  “time 

lag” and “decrement factor”[12].   

 

Time lag is defined as the time taken for a heat wave to propagate from outer 

wall surface to the inner wall surface.  Decrement factor is defined as the decreasing 

ratio of the heat wave amplitude when the heat wave propagates from outer wall surface 

to the inner wall surface. From studies done by H. Asan [1, 2, 3], it was shown that the 
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thermophysical properties and the thickness of wall have an important effect on time lag 

and decrement factor. 

 

The schematic diagram shown in Figure 2.1 illustrates the concept of time lag 

and decrement factor.  In mathematical form, the time lag, which is denoted as  is 

defined as follows [1, 2, 3]: 

 

 

           max
iT

t  > max
eT

t      max
iT

t  - max
eT

t    

         =         max
iT

t  <  max
eT

t      max
iT

t  - max
eT

t   + P                                                     (2.1) 

           max
iT

t  = max
eT

t       P 

 

 

where max
iT

t
 and max

eT
t  represent the time in hours when the inside and outside wall 

surfaces are at their maximum value, respectively.  P is the period of the wave. In this 

study, it is taken as 24 h (one-day period).  

 

Similarly, the decrement factor, which is denoted as f is defined as [1, 2, 3]: 

 

min
e

max
e

min
i

max
i

e

i

TT

TT

A

A
f





                                                                                  (2.2) 

 

Where Ai and Ae are the amplitudes of the wave in the inner and outer wall 

surface, respectively.  
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inside outside 

Ti (t) 

Tsa (t)

x = 0 x = L

Ta

Te
max

Te
min

Ti
max

Ti
min

max
eT

t  max
iT

t

 

        

 

 

 

     

  

 

   

 

   

 

Figure 2.1 The schematic illustration of time lag,  and decrement factor, f. 

  

 A detailed computational study was made to determine the effects of the 

thickness and thermophysical properties of a wall on time lag and decrement factor.  

The computations were carried out on three selected cases in Chapter 4.  Comparisons 

were made between the results in each case and these results are useful for designing 

more effective passive solar buildings [9,11] and other related areas.    

 
 
2.1.2 Sol-air Temperature 

 

The sol-air temperature, denoted as Tsa, is the outside air temperature affected by 

the heat flux of solar radiation.  This temperature changes periodically with time [6, 13] 

and it is assumed to oscillate in the sinusoidal way during one-day period (24 h).  A 

very general equation [1, 2, 3] for sol-air temperature is taken as follows: 
 

  





 







2

2

22


P

t
sin

TTTT
TtT minmaxminmax

minsa                     (2.3) 

 

Here, Tmin and Tmax are the minimum and maximum ambient air temperature over 

the one-day period, respectively.  P is taken as a value of 24 hours as the problem is 

wall

P

Ae Ai 
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investigated based on one-day period..  Refer to Equation (2.3), the sol-air temperature 

changes between Tmax and Tmin during the 24-hour period.   

 

For example, Tmax and Tmin are 40C and 22C, respectively over a 24-hour 

period.  The sol-air temperature profile is shown in Figure 2.2.   
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Figure 2.2  The Sol-air temperature profile 

 

  According to  Equation (2.3), the minimum ambient air temperature occurs 

exactly at 12 a.m. midnight and the maximum ambient air temperature occurs at 12 p.m. 

noon.  The comparison between the actual sol-air temperature profile, which is taken 

from a real climatological data by Threlkeld [10] and the sol-air temperature in present 

study is shown in Figure 2.3 [2].  Equation (2.3) is a reasonable choice for sol-air 

temperature as shown in Figure 2.3. 

 

 



THEORY                                                                                                                               12 
 

 

Figure 2.3  Comparison of sol-air temperature 

 

 

2.2  Methods  

 
During the thermal analysis on the multi-layer composite wall [15], the problem 

is assumed to be one-dimensional (only in x-direction) and time dependent.  The 

problem geometry is illustrated in Figure 2.4.   

 

 The one-dimensional, Fourier energy equation for transient heat conduction is 

used to solve this problem geometry.  The energy equation is as follows: 

 

                                                       
t

T
c

x

T
k p 







2

2

                                                  (2.4) 

 

where k is the thermal conductivity,  is the density and cp is the heat capacity of 

the wall material.  In order to solve Equation (2.4) base on the problem geometry in 

Figure 2.1, two boundary conditions and one initial condition are required.  In this case, 

the internal heat generation term is neglected. 
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Figure 2.4  The Schematic of the problem geometry 

 
 
 The convective boundary conditions on both outer and inner surface of the walls 

are indicated as follows:   

 

 At the inner surface, the boundary condition is written as: 

                                               axi
x

TtTh
x

T
k 













0
0

                                           (2.5)                         

        

 At the outer surface, the boundary condition is written as: 

                                                tTtTh
x

T
k Lxsao

Lx














                                      (2.6) 

 

 Refer to the Equation (2.5) and (2.6), ho and hi are heat transfer coefficient of the 

wall outer surface and wall inner surface, respectively.  Tsa(t) is the sol-air temperature, 

which was defined in Equation (2.3).  Tx=0(t) is the wall outer surface temperature 

whereas Tx=L(t) is the wall inner surface temperature.  Ta is the inside air temperature. 

 

 As for initial condition, it is assumed that the wall is isothermal at a temperature 

To, at t = 0.  During the investigations, the inside air temperature, Ta is taken to be a 

k1 
1 
cp1 

k2 
2 
cp2 

k3 
3 
cp3 

kM-1 
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constant at any time during the one-day period.  In order to simplify the computations, 

the problem is assumed to be one-dimensional transient heat conduction, which has a 

periodic boundary condition on the outer surface of the wall, the sol-air temperature 

boundary condition.  This simply means that the temperature profile at the wall outer 

surface is given in the relation as follows: 

        tTtT saLx                              (2.7) 

 

The boundary condition on the wall inner surface is remained as Equation (2.5).  The 

thermophysical properties across each layer are assumed to be homogeneous.  

 

 

2.2 Analytical Solutions 

 

 The separation-of-variables method of analytical solution for one-dimensional 

transient heat transfer differential formulation is given as follows [5, 6, 7]: 

 

  Consider an infinite plane slab of thickness L as shown in Figure 2.5.  At the 

initial  state, which is t < 0, the slab is at a uniform temperature of To, and at t = 0, the 

surfaces of the slab are suddenly brought to a temperature T1.  The governing 

differential equation is: 

                                                          
t

T

x

T









 1

2

2

                                                    (2.8) 

 

 The thermal diffusivity,  is a property of the slab material and is given by: 

     
pc

k


                                                           (2.9) 
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 Figure 2.5  Infinite plane slab subjected to 

 sudden cooling of surfaces 

 

    Equation (2.8) is arranged in a more convenient form by introducing the variable 

, where  

     1TT                                                         (2.10) 

 

 Then, the Equation (2.8) becomes 

     
tx 







 1
2

2

                                                (2.11) 

 

 The initial and boundary conditions are 

    1TToo    at t = 0, 0  x  L                         (a) 

    0    at x = 0, t  0                                (b) 

                                                0                            at x = L, t  0                               (c) 

 

 Assuming that the solution  consists of the product of a function of x and a 

function of t, or 

          txt,x                                                      (2.12) 

 

 

x= 0 x= L
 x 

 T1

 To

L
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 Double differentiating the left term with respect to x, Equation (2.12) becomes

  

    









2

2

2

2

xx
                                                         (2.13) 

 

 Differentiating the left term with respect to t, Equation (2.12) becomes 

    









tt
                                                            (2.14) 

  

 Introducing Equation (2.13) and (2.14) into Equation (2.11) gives  

  

    








 

tx 2

2

                                                   (2.15) 

 

 Separating the variables, Equation (2.15) becomes 

    2
2

2 11












tx







                                       (2.16) 

  

 

 The term ( 2 ) is the separation constant.  Two ordinary differential equations 

can  be obtained. They are 

    02
2

2

 
xd

d
                                                        (2.17) 

    02
2

2

 
td

d
                                                      (2.18) 

  

 The solution for Equation (2.17) is given by 

      xsinCxcosCx  21                                    (2.19) 

 

 whereas the solution  for Equation (2.18) is given by 

      teCt 
2

3                                                          (2.20) 

 

 C1, C2 and C3 are constants. 
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 Substituting Equation (2.19) and (2.20) into Equation (2.12), the solution 

becomes 

        texsinBxcosAt,x 
2

                        (2.21) 

 

 where A = C1 C3 and B = C2 C3.  The evaluations of the constants A and B 

depend on the on the physical boundary conditions.  In order to satisfy the boundary 

conditions, it is necessary that 2  > 0.  

 

  From boundary condition (b), A = 0 for t > 0. From boundary condition (c), B

 cannot be zero, therefore sin  L = 0, or 

    
L

n
n


   n = 0, 1, 2, 3,… 

 

 The final series form of the Equation (2.21) is  

     
L

xn
sineBt,x

n

t
L

n

n


 








 



1

2

                             (2.22) 

  

 Equation (2.22) is known as a Fourier sine expansion with the constants Bn. Bn is 

 determined from the initial condition (a) and is written as follows: 

  
 
n

dx
L

xn
sin

L
B

nL

on
1122

0








        n = 1, 2, 3, …         (2.23) 

     

 Substituting Equation (2.23) into Equation (2.22) gives 

   
   

L

xn
sine

n

t,x

n

t
L

nn

o










 








 



1

2

112
                      (2.24) 

 

 Equation (2.24) is the analytical solution for one-dimensional transient heat 

conduction over an infinite plane slab subjected to step change in surfaces temperature 

with a thickness of L. The T-x (temperature-distance) plots of Equation (2.24) at 

different t values are shown in Figure 2.6 whereas the T-t (temperature-time)  plots at 

different x values are shown in Figure 2.7. 
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Figure 2.6  Temperature distribution across the thickness L of 

infinite plane slab at different time t. 

   
 

 

Figure 2.7  The temperature profiles of different distances, x  

from the surface of the infinite slab at any time, t. 

 
 For solving the one-dimensional transient heat conduction in a semi-infinite slab 

with convective boundary condition, The following solution [6, 7] is used.  The 

schematic diagram of the semi-infinite slab is shown in Figure 2.8. 
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 Initial condition:  T(x,0) = To 

 Boundary conditions:    t,TTh
x

T
k F

x

0
0








 

              T(,t) = To 

 Solution: 
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2
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                                                                           (2.25) 
 
          

 

  

 

 

 

 

 

 

 

 

 

 

  

Figure 2.8  Semi-infinite slab subjected to convection at the surface. 

 

 

 The T-x plots of Equation (2.22) at different t values are shown in Figure 2.9 

whereas the  T-t plots at different x values are shown in Figure 2.10. 
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Figure 2.9  The temperature distributions  across the thickness  
of the semi-infinite slab at different time t 

 
 
 

 
 
 

Figure 2.10  The temperature profiles of different distances, x  
from the surface of the semi-infinite slab at any time, t. 
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CHAPTER 3  NUMERICAL APPROACH 

 

3.1 Introduction of Numerical Methods 

 

In many practical situations, the geometry of the system and the boundary 

conditions are too complex to yield either analytical or analogical solutions.  In this 

case, numerical methods can be very useful tools in solving such problems.  These 

methods are based on finite difference techniques, which are ideally suited for solution 

by means of computer simulations. 

 

Before numerical methods can be applied to a heat-transfer problem, or any 

other physical problem described by a differential equation, some preliminary steps are 

necessary. The purpose of these preliminary steps is to approximate the differential 

equation and the boundary conditions by a set of algebraic equations.  This is 

accomplished by replacing the continuous domain by a pattern of discrete points within 

the domain and introducing finite difference approximations between the points. 

 

In order to solve the heat transfer problems numerically, the system is 

subdivided into a number of small but finite sub volumes and each of then is assigned 

with a reference number.  Each sub volume is assumed at the temperature corresponding 

to its center, or nodal point of the sub volume.  If N points are selected, a set of N 

algebraic equations is obtained.  It can be solved by matrix inversion or a numerical 

method for the values of unknown at the N points. 

 

In this Chapter, the Finite Volume Method [8] is used to develop the solution for 

the one-dimensional unsteady-state heat conduction through a multi-layer composite 

wall with convective and periodic temperature boundary conditions.  As for validation 

of the code, numerical solutions for transient heat transfer through one-layer wall with 

step change in surfaces temperature and with convective surface are developed and the 

results are compared with the analytical solutions taken from reference [5, 6, 7].  
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3.2 Finite Volume Method 

 

The finite volume method was originally developed as a special finite difference 

formulation. For reader information, the method is used to develop the main 

commercially available CFD codes such as FLUENT, FLOW 3D, PHOENIICS and 

CFX.  The finite volume algorithm consists of 3 main steps: 

 

1. Divide the solution domain into finite number of control volumes and 

mesh grid points. 

2. Integrate the governing equations over all the control volumes and 

apply the initial and boundary conditions. 

3. Solve the algebraic equations to find the dependent variable in all the 

grid points in the solution domain. 

 

The numerical solution for the one-dimensional unsteady-state heat conduction 

through a one-layer plane wall is as follows: 

 

The governing differential equation is as in Equation (2.4). Rearrange the 

equation, gives 

 

 

                                (3.1) 

 

 For convenience,  cp is assumed to be constant. 

  

 Since time is a one-way coordinate, the solution is given by marching in time 

from a given initial distribution of temperature. Thus, in a typical “time step” the task is: 

Given the grid-point values of T at time t, find the values of T at time t + t.  At time t, 

the values of T at the grid points are superscripted with “o” and the values of T at time t 

+ t is not superscripted.  The schematic diagram of grid spacing and control volumes 

along the thickness of the wall is shown in Figure 3.1. 
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Figure 3.1  The schematic diagram for grid spacing and control volume. 

 

The discretization equation is now derived by integrating Equation (3.1) over the 

control volume shown in Figure 3.1 and over the time interval from t to t + t. Thus,  

 

 

                             (3.2) 

 

  

where the order of the integrations is chosen according to the nature of the term.  For the 

representation of the term 
t

T




, the grid-point value of T is assumed to prevail 

throughout the control volume. Then,  

 

                                       

                                 (3.3) 

 

The right term of Equation (3.2) can be written as: 

 

      

        (3.4) 
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At this point, an assumption about how TP, TE, and TW vary with time from t to   

t +t.  The assumptions can be generalized by proposing  

 

                                                                  

                                              (3.5) 

 

where f is a weighting factor between 0 and 1. Using similar formulas for the integrals 

of TE and TW, gives 

                   

    

(3.6) 

 

The fully implicit scheme ( f = 1) is used due to its stability for any time and 

space steps.  Therefore Equation (3.6) can be written as : 

 

                                          AP TP = AE TE + AW TW + S                                                (3.7) 
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The Equation (3.7) is the discretization equation that requires an initial 

temperature at t = 0 for all the nodes and two boundary conditions at x = 0 and x = L as 

shown in Figure (3.1).   
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