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G  Volumetric heat generation W/m3 

h  Height μm 
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k  Thermal conductivity mCW/ o   
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ABSTRAK 

 

Asymptotic Waveform Evaluation (AWE), yang telah digunakan dalam simulasi fana litar, 

kini diluaskan penggunaannya dalam menyelesaikan masalah kejuruteraan mekanik. AWE 

adalah lebih cekap dan canggih daripada kaedah berangka tipikal kerana ia memerlukan 

masa pengiraan computer yang lebih singkat tetapi juga menghasilkan kejituan yang sama. 

 

AWE berkebolehan untuk menyelesaikan persamaan pembezaan linear dengan darjah 

pertama, kedua, ketiga atau pun lebih tinggi. Selain itu, AWE juga boleh digunakan untuk 

menyelesaikan satu atau pun satu set persamaan pembezaan. Jadi, AWE sesuai digunakan 

bersama Kaedah Elemen Terhingga, di mana persamaan akhirnya biasanya adalah satu set 

persamaan pembezaan linear yang perlu diselesaikan untuk mendapatkan penyelesaian 

fana. Tetapi, AWE boleh menghasilkan penyelesaian yang tak stabil walaupun bagi sistem 

yang stabil. Anggaran dengan darjah yang lebih tinggi juga tidak dapat selalu 

menghasilkan penyelesaian yang lebih jitu dan stabil. Jadi, ia perlu diubahsuai untuk 

menghasilkan penyelesaian yang stabil.  

 

Dalam projek ini, AWE telah membuktikan kebolehannya dalam menyelesaikan masalah 

pemindahan haba dan juga analisis getaran. AWE, bersama dengan Kaedah Elemen 

Terhingga, digunakan untuk menyelesaikan masalah sirip (fin) dalam satu dimensi dengan 

keadaan sempadan yang dikenakan suhu berubah atau mantap pada tapaknya. Kemudian, 

AWE juga digunakan untuk menyelesaikan persamaan konduksi haba hiperbolik ( Non-

Fourier) pada model elemen terhingga dalam dua dan tiga dimensi. Kejituan dan 

ketidakstabilannya juga dibincangkan dan dua skema kestabilan diperkenalkan untuk 

menyelesaikan masalah ketidakstabilan ini. 

 

Selain itu, AWE juga digunakan dalam analisis getaran rasuk, di mana daya impuls, 

langkah atau pun daya dalam bentuk sinus dikenakan pada hujung rasuk sebagai keadaan 

sempadannya. Akhirnya, AWE digunakan untuk menyelesaikan persamaan pembezaan 

linear dengan darjah ketiga. Sepertimana yang telah dibincangkan di atas, terbukti AWE 

dapat menghasilkan penyelesaian fana dengan kejituan yang sama dengan kaedah Crank-

Nicolson, Rungge-Kutta dan juga softwer Ansys. Akan tetapi, AWE dapat menghasilkan 

penyelesaian dalam masa yang lebih singkat. 



ABSTRACT 

 x

ABSTRACT 

 

 

Asymptotic Waveform Evaluation (AWE), which has been used in transient circuit 

simulation, is extended for solving mechanical engineering problems. AWE is based on the 

concept of approximating the original system with a reduced order system. Thus, it is 

efficient and powerful than conventional numerical method because it requires much less 

computational time but also produces the same accuracy. 

 

AWE is capable of solving first, second, third and even higher order linear differential 

equation. AWE can handle one or even a set of linear differential equations. Thus, AWE is 

suitably used with Finite Element Method (FEM), where the final equation is usually 

reduced to a set of linear differential equations that is to be solved for its transient solution. 

However, AWE is known for producing unstable response even for stable system. Higher 

order approximation also will not always guarantee a more accurate and stable solution. 

Thus, some modification has to be made to stabilize its solution. 

 

In this project, AWE has proved its capability in solving transient thermal and vibration 

problems. AWE, together with FEM, is used to solve one dimensional fin problem with 

varying or constant temperature boundary condition imposed at the base. Then, it is also 

used to solve hyperbolic (Non-Fourier) heat conduction equation on two and three 

dimensional finite element model. The accuracy and instability of AWE are also discussed 

and two stability schemes are introduced to address this problem. 

 

Nevertheless, AWE is also used in vibration analysis of beam, where dynamic force such 

as impulse, step or sinusoidal force, is imposed. Lastly, AWE is used to solve third order 

differential equation. AWE has proved to produce transient solution as accurate as Crank-

Nicolson, Rungge-Kutta and also Ansys software. However, AWE can produce the 

solution much faster than these three methods. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Asymptotic Waveform Evaluation (AWE) is a numerical method that is capable of solving 

first, second, third and even higher order linear differential equations. AWE can handle, 

not only one equation but also a set of linear differential equations. Thus, AWE is suitably 

used with Finite Element Method (FEM) to solve various engineering problems. 

 

Implementation of Finite Element Method (FEM) usually will reduce the governing 

differential equation into a set of linear differential equations. For instance, the governing 

equation for Non-Fourier heat conduction (discussed in Section 3.2.3) is a hyperbolic 

equation. By using FEM, this hyperbolic equation is reduced into a set of second order 

linear differential equation. Then, this set of equations has to be solved in time domain to 

obtain its transient solution.  

 

However, in order to obtain accurate results, large number of elements has to be used, and 

thus this will result in a large set of linear differential equations. Solving this large set of 

equations is very time consuming, especially when the time step required is also very 

small. Usually, this set of equations is solved using conventional numerical method such as 

Rungge-Kutta and Crank-Nicolson, where the whole equations are solved simultaneously 

even though just to obtain the solution at one particular node. Using these conventional 

methods also, the calculation is iterated at every increment of time step to produce the 

transient solution.   

 

As mentioned earlier, the size of the equations involved is usually large and thus, these 

conventional methods will require considerable amount of computational time. 

Furthermore, these conventional methods also require small time step to produce accurate 

results and to avoid numerical instability. With this limitation, some problems can not be 

solved without using high performance computer and also requiring considerable amount 

of time as in Section 3.2.5. 
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AWE, on the other hand, is independent of time step because it produces the transient 

solution in form of equation, rather than numerical solution at every increment of time 

step. AWE is also capable of producing local solution because it can obtain the solution for 

each node independently. Thus, it will reduce the amount of computational time 

significantly. It can also be shown that AWE can produce transient solution as accurate as 

conventional method, but much more efficient in term of time.  

 

However, AWE suffers from instability problem, where higher order approximation will 

not always guarantee a more accurate and stable solution. Thus, AWE may need some 

modification to stabilize its solution. Two stability schemes has been introduced in Section 

3.2.2 and 3.2.4 and these schemes has proved to be successful, where higher order 

approximation has produce accurate and also stable results. 

 

 

1.2 Literature review 

The inspiration of AWE concept first came from the research of Rubinstein et. al. (1983). 

They were doing the research in the RC-trees network simulation by using the efficient 

Elmore delay (first moment of the impulse response) estimate approach. But this estimate 

approach has not always produced an accurate result, because there are a lot of limitations 

in doing a transient analysis. So, the major effort of the early work was to find a solution 

scheme for transient analysis.  

 

The work from McCormick (1989), gave a second spark to this concept. From his research 

in interconnect circuit simulation, he has shown that the circuit moments (the coefficient of 

expansion of circuit driving point of transfer function in a Macluarin series about s=0 in 

the frequency domain) could lead to lower circuit models and reasonably accurate transient 

response results. From the previous effort of these authors in formalization and 

generalization of the algorithm, eventually an nth order extension of the first order Elmore 

delay approximation was developed and name as AWE.  

 

With this new scheme, the response of a higher order system can be simulated by a low 

order approximation. This approximation consists of a few dominants poles (and zeros) in 

the Pade approximation, so as the order of approximation increases, the corresponding 
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approximate transient response will asymptotically approach to the actual response, thus 

the nature of the approximation itself eventually inspiring the name. 

 

Pillage (1990) has showed the capability of AWE in transient analysis, where it was used 

to capture the effect of interconnect on the delay with a simplified model, typically a RC 

tree model. Reasonable results were produced as compared with SPICE simulation, but 

two or three orders faster than SPICE. From his work, AWE is applicable in floating node, 

linear controlled sources, finite input rise time, charge sharing, bipolar circuitry, 

interconnect timing estimation and MOS circuit analysis. 

 

After that, Anastakis (1992) has described a systematic approach for alleviating the 

inherent stability associated with AWE and moment matching method as they were applied 

to circuit analysis problems. In general, it is not possible to obtain a particular order of 

approximation due to inherent instability problems that may result in unstable models of 

stable circuits. In this paper, the instability problems were alleviated by considering partial 

Pade approximation, where a single set of dominant poles computed at an appropriately 

selected node can be used as a common denominator for the response approximation at any 

node. 

 

Then, Lee (1992) has developed a method for calculating the sensitivities of the poles and 

zeros found by AWE. Using the adjoint sensitivity method, it is possible to inexpensively 

compute the sensitivities of the poles and zeros with respect to all the circuit parameters, as 

well as to suppress circuit parasitics. The sensitivities of the poles and zeros found by 

AWE show excellent correlation with those of the real circuit and provide useful 

information in both time and frequency domain. In frequency domain, measures such as 

the sensitivities of phase margin, gain margin, dc gain and also bandwidth are easily 

calculated in terms of these basic pole and zero sensitivities. In the time domain, 

sensitivities of delay, rise time and overshoot can be easily computed as well. 

 

On invitation, a tutorial paper on the literature of AWE was published (Raghavan 1993). 

This invited paper attempted to give an overview of the algorithm of AWE, starting with 

the definition of moments. Then, it was shown that the time domain moments of a signal 

f(t) are related to the Taylor series coefficients about s=0 (Maclaurin Series) of the signal 

`s Laplace transform, F(s). After that, it was shown that the algorithm of AWE is divided 
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into two main parts, namely moment computation and moment matching. The formulation 

given was for equation in the form of first order linear differential equation. 

 

The instability of Pade approximation was also discussed in this paper (Raghavan 1993) 

since it has been historically known that Pade approximation can produce poles with 

positive real parts for stable system. This will cause the time domain response of the 

approximation to be unbounded. Then, the conventional methods of solving this instability 

in AWE were introduced. The concept of AWE macromodels and also distributed elements 

were also presented. An overview of a generalization of the AWE technique, which relates 

AWE to conventional numerical integration techniques, were also given. 

 

In the same year, AWE is used to compute the time response of an arbitrary 3-D 

interconnect structure (Kumashiro 1993). It has been implemented in software called 

3DAWE. To facilitate the application of AWE to a 3D RC mesh network model, AWE 

formulation was rederived based upon a nodal analysis approach. Using this software, a 

typical transient response of a reasonably large 3-D RC network could be obtained within a 

few minutes on a 15 MIPS computer. 

 

Da (1995) presented a first paper on thermal analysis of Printed circuit board (PCB) using 

AWE scheme. He has used the electric thermal network analogy method to study the 

thermal behaviour of printed circuit board. Then, he used finite difference method to 

reduce the governing equation into a set of linear differential equations. This set of 

equations was solved with AWE and then the solution was compared with HSPICE. He 

has shown that the application of AWE to solve time dependent thermal analysis of printed 

circuit boards often resulted in two order speed-up over current iterative techniques, yet 

retaining comparable accuracy. However, the response formulation, poles and residues 

used to predict the transient temperature response for first order ordinary equation seem to 

be incorrect and there are no details to describe the incorporation of boundary conditions. 

 

Recently, Ooi (2003) has presented a general formulation of AWE, where it is applicable 

in solving first and second order ordinary differential equation. The incorporation of 

boundary conditions has also been shown clearly by using the concept of Zero State 

Response (ZSR) and Zero Input Response (ZIR) that is used in control system. This AWE 

scheme has been used together with Finite Element Method (FEM) to solve the transient 
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temperature rise of a simple fin, where the governing equation was reduced to a set of first 

order differential equations. Then, he has solved problems of second order differential 

equations, such as Non-Fourier heat conduction and vibration problems. With this AWE 

scheme also, he has solved the temperature response of micro-channel heat exchanger 

system.  

 

Ooi (2003) has also shown that AWE can produce inaccurate result when higher moment 

approximation is used. By using the case of a simple fin problem, he has shown that AWE 

has produced inaccurate maximum temperature rise when 12, 14 or 16 moments are used. 

Thus, he has suggested the use of lower approximation to stabilize the AWE solution. 

However, lower moment approximation may not always yield stable solution and it may 

also cause the solution to be inaccurate. 

 

From the literature review, it is clear that the application of AWE in solving mechanical 

engineering problems is still at the development stage, where most of the researches and 

application are conducted on circuit simulation. Thus, in this project, AWE scheme is 

further extended in solving thermal and also vibration problems. The incorporation of 

boundary conditions in AWE has been shown by Ooi (2003) but he has only solved 

problems with steady boundary condition and step input function. Therefore, problems 

with unsteady boundary conditions and different input function are solved in this project. 

 

In addition, the instability of AWE when used with Finite Element Method (FEM) is also 

discussed. The instability and inaccuracy associated with the use of lower moment 

approximation is also addressed. Two stability schemes are also introduced to handle the 

inherent instability of AWE. 

 

 

1.3 Objectives 

There are six objectives in this project, which are listed as below: 

 

 To extend the application of AWE in solving thermal and vibration problems.  

 

 To validate the applicability of AWE in solving one dimensional, two dimensional 

and also three dimensional finite element problems. 
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 To verify the accuracy and also efficiency of AWE as compared to conventional 

numerical methods. 

 

 To address the inherent instability of AWE and also the solutions to counter this 

problem. 

 

 To validate the applicability of AWE in solving finite element problems with 

unsteady boundary conditions. 

 

 To extend the application of AWE in solving third order linear differential equation. 
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CHAPTER 2 

THEORY REVIEW 

 

2.1 Overview 

In this chapter, the concept and formulation of Asymptotic Waveform Evaluation (AWE) 

will be discussed. The details will be presented in several sections as following: 

 

 Concept of Asymptotic Waveform Evaluation (AWE) 

 Moment generation 

 Moment matching 

 Transient response 

 

 

2.2 Concept of Asymptotic Waveform Evaluation (AWE) 

The concept of AWE is to approximate the response of a system with a reduced order 

system. The response of a system can be represented by a polynomial equation in s-

domain, where the coefficients of this polynomial are known as the moments (Pillage 

1990). This polynomial equation in s-domain is substituted into the governing linear 

differential equation and by matching the coefficients with the term s of same power, the 

moments can be computed.  

 

Then, the order of this polynomial equation is reduced by approximating it with a 

polynomial fraction using Pade approximation. Finally, this polynomial fraction is 

simplified to partial fractions, where each partial fraction contains a pole and zero. Then, 

each partial fraction is inversed Laplace back to time domain and they are summed up to 

provide the transient solution. 

 

The algorithm of AWE is divided into two parts, which are moment generation and 

moment matching. In moment generation, the moments are calculated by matching the 

coefficients with term s of same power. The details are presented in Section 2.3. In 

moment matching, the poles and zeros of the partial fractions are calculated as shown in 

Section 2.4. Finally, the partial fractions are inversed Laplace back to time domain for the 

transient solution as in Section 2.5. Figure 2.1 shows the flow of AWE algorithm. 
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Figure 2.1:  Flow of AWE algorithm 

 

 

2.3 Moment generation 

The first part of AWE is moment generation. However, before proceeding, the order of 

differentiation of the problem equation has to be determined. This is because different 

formulation is used according to the order of differentiation. The formulations of moment 

generation for first, second and third order differential equations are provided on Sections 

2.3.1, 2.3.2 and 2.3.3 below. 

 

For easier formulation, moment generation are divided into two parts, which are Zero State 

Response (ZSR) and Zero Input Response (ZSR). The concept of response is actually used 

in control system, where the response of a system is the sum of ZSR and ZIR. In ZSR, the 

initial conditions of the system are assumed to be zero, while in ZIR, the forcing functions 

are assumed to be zero. Then, the moments generated for ZSR and ZIR will be used 

respectively to obtain the poles and residues as in Section 2.4. Finally, the responses of 

ZSR and ZIR will be added to form the total system response. 

 

 

2.3.1 First order linear differential equation 

First order linear differential equation has the form of Equation 2.1 below. 

)(tFKTTC               (2.1) 

ZSR ZIR

Moment Generation 

Moment Matching 
( poles and residues ) 

Transient Response 
(ZSR + ZIR) 
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Taking Laplace transform of Equation 2.1 to obtain Equation 2.2. 

  fsKTTssTC  )()0()(              (2.2) 

The solution or response, T of Equation 2.2 can be represented by a polynomial equation in 

s-domain as shown by Equation 2.3. The coefficients of Equation 2.3 are known as 

moments. 






0
)(

n

n
nsMsT                    (2.3) 

Finally, moments are generated for ZSR and ZIR as following. 

 

Zero State Response (ZIR) 

In ZSR, the initial conditions are assumed to be zero. Thus, with 0)0( T , Equation 2.2 is 

reduced to Equation 2.4 below. 

  fsTKCs  )(                (2.4) 

Substitute Equation 2.3 into Equation 2.4 to obtain Equation 2.5 below. 

   fsMsMsMMKCs n
n  ....2

210             (2.5) 

By matching the coefficients of Equation 2.5 with term s of same power, the moments are 

generated from Equation 2.6 below. 

 

fKM 0  

1 nn CMKM   for n = 1,2,3,……,(2q-1)          (2.6)  

 

Zero Input Response (ZIR) 

In ZIR, the forcing function is assumed to be zero. Thus, with 0f , Equation 2.2 is 

reduced to Equation 2.7 below. 

  )0()( CTsTKCs                (2.7) 

Substitute Equation 2.3 into Equation 2.7 to obtain Equation 2.8 below. 

   )0(....2
210 CTsMsMsMMKCs n

n             (2.8) 
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By matching the coefficients of Equation 2.8 with term s of same power, the moments are 

generated from Equation 2.9 below. 

fKM 0  

1 nn CMKM   for n = 1,2,3,……,(2q-1)          (2.9)  

 

 

2.3.2 Second order linear differential equation 

Second order linear differential equation has the form of Equation 2.10 below. 

)(tFKTTCTA                  (2.10) 

Taking Laplace transform of Equation 2.10 to obtain Equation 2.11. 

    fsKTTssTCTsTsTsA  )()0()()0()0()(2          (2.11) 

The solution or response, T of Equation 2.11 can be represented by a polynomial equation 

in s-domain as shown by Equation 2.12. The coefficients of Equation 2.12 are known as 

moments. 






0
)(

n

n
nsMsT                  (2.12) 

Finally, moments are generated for ZSR and ZIR as following. 

 

Zero State Response (ZSR) 

In ZSR, the initial conditions are assumed to be zero. Thus, with 0)0( T  and 0)0( T , 

Equation 2.11 is reduced to Equation 2.13 below. 

  fsTKCsAs  )(2             (2.13) 

Substitute Equation 2.12 into Equation 2.13 to obtain Equation 2.14 below. 

   fsMsMsMMKCsAs n
n  ....2

210
2          (2.14) 

By matching the coefficients of Equation 2.14 with term s of same power, the moments are 

generated from Equation 2.15 below. 

 

fKM 0  

1 nn CMKM   
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 12   nnn CMAMKM   for n = 2,3,4,……,(2q-1)       (2.15)  

 

Zero Input Response (ZIR) 

In ZIR, the forcing function is assumed to be zero. Thus, with 0f , Equation 2.11 is 

reduced to Equation 2.16 below. 

    0)0()0()(2  TATCAssTKCsAs                             (2.16) 

Substitute Equation 2.12 into Equation 2.16 to obtain Equation 2.17 below. 

     0)0()0(....2
210

2  TATCAssMsMsMMKCsAs n
n

       (2.17) 

By matching the coefficients of Equation 2.17 with term s of same power, the moments are 

generated from Equation 2.18 below. 

 

)0()0(0 TACTKM   

01 )0( CMATKM   

 12   nnn CMAMKM   for n = 2,3,4,……,(2q-1)            (2.18)  

 

 

2.3.3 Third order linear differential equation 

Third order linear differential equation has the form of Equation 2.19 below. 

)(tFKTTCTATG                   (2.19) 

Taking Laplace transform of Equation 2.19 to obtain Equation 2.20. 

   
  )()0()(

)0()0()()0()0()0()( 223

sKTTssTC

TsTsTsATTsTssTsG


 

  f        (2.20) 

The solution or response, T of Equation 2.20 can be represented by a polynomial equation 

in s-domain as shown by Equation 2.21. The coefficients of Equation 2.21 are known as 

moments. 






0
)(

n

n
nsMsT                  (2.21) 

Finally, moments are generated for ZSR and ZIR as following. 
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Zero State Response (ZSR) 

In ZSR, the initial conditions are assumed to be zero. Thus, with 0)0( T , 0)0( T  and 

0)0( T , Equation 2.20 is reduced to Equation 2.22 below. 

    fsTKCsAsGs  23            (2.22) 

Substitute Equation 2.21 into Equation 2.22 to obtain Equation 2.23 below. 

   fsMsMsMMKCsAsGs n
n  ....2

210
23         (2.23) 

By matching the coefficients of Equation 2.23 with term s of same power, the moments are 

generated from Equation 2.24 below. 

 

fKM 0  

01 CMKM    

012 AMCMKM   

 123   nnnn CMAMGMKM   for n = 3,4,5,……,(2q-1)      (2.24)  

 

Zero Input Response (ZIR) 

In ZIR, the forcing function is assumed to be zero. Thus, with 0f , Equation 2.20 is 

reduced to Equation 2.25 below. 

      0)0()0()0()( 223  TGTAGsTCAsGssTKCsAsGs        (2.25) 

Substitute Equation 2.21 into Equation 2.25 to obtain Equation 2.26 below. 

  
    )0()0()0(

....
2

10
23

TGTAGsTCAsGs

sMsMMKCsAsGs n
n

 


  0              (2.26) 

By matching the coefficients of Equation 2.26 with term s of same power, the moments are 

generated from Equation 2.27 below. 

 

)0()0()0(0 TGTACTKM    

)0()0(01 TGATCMKM   

)0(012 GTAMCMKM   
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 321   nnnn GMAMCMKM   for n = 3,4,5,……,(2q-1)      (2.27)  

 

 

2.4 Moment matching 

By using conventional methods such as Rungge-Kutta and Crank-Nicolson, all the nodes 

of a system have to be solved simultaneously, even though only the solutions of certain 

nodes are of interest. In contrast, AWE can provide local solution because it is capable of 

obtaining the solution for each node independently and thus, this will reduce the amount of 

calculation significantly.  

 

Each moment generated previously in Section 2.3 contains a set of values, where each 

value corresponds to each node. Thus, in order to obtain the solution for one chosen node 

i , only the moment values that corresponded to that chosen node i  are used in moment 

matching as shown in Equation 2.28. 

 

   inin Mm     for n = 0,1,2,….(2q-1)         (2.28) 

 

As shown in Equations 2.3, 2.12 and 2.21, the response of a system can be represented by a 

polynomial equation in s-domain, T(s). The process of moment matching is to reduce the 

order of the response, Ti(s), at chosen node i . By using Pade approximation, Ti(s) can be 

approximated by a lower order polynomial fraction, as shown in Equation 2.29. 

 

q
n

q
nn

ni sasa

sbsbb
smsmsmmsT







....1

....
....)(

1

1
102

210        (2.29) 

By using Pade approximation, the coefficients of the denominator polynomial in Equation 

2.29 can be obtained by Equation 2.30 (Pillage 1990). 
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
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
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2

1

1

2
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221

1432

321

1210

q

q

q

q

q

q

q

qq

q

q

q

m

m

m

m

a

a

a

a
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         (2.30) 



CHAPTER 2 

 14

In order to inverse Laplace the response Ti(s) in s domain back to response Ti(t) in time 

domain, the reduced order polynomial fraction can be simplify to partial fractions as in 

Equation 2.31. 

 

q

q

q
n

q
n

ps

k

ps

k

ps

k

sasa

sbsbb











 

.....
....1

....

2

2

1

1

1

1
10          (2.31) 

 

From Equation 2.31, it can be seen that the poles (coefficients p) of the partial fractions are 

the roots of the reduced order denominator polynomial as shown in Equation 2.32. 

 

    q
q

n pspspssasa  ........1 211            (2.32) 

 

Thus, by solving Equation 2.33, the poles, p , can be obtained.  

 

0....1 21  q
nsppsp             (2.33) 

 

The residues (coefficients k) of the partial fractions in Equation 2.31 can be obtained from 

Equation 2.34 (Pillage 1990). 
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          (2.34) 

 

 

2.5 Transient response 

The transient response at node i  is given by the sum of ZSR and ZIR in time domain as 

shown in Equation 2.35. 

 

     sZIRsZSRsTi   

     tZIRtZSRtTi               (2.35) 
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The formulation for ZSR and ZIR depends on the input function. Thus, when the input 

function is impulsive, step, ramp or sinusoidal, the formulation of ZSR and ZIR will vary 

accordingly as shown in the following sections. 

 

 

2.5.1 Impulse input 

In this case, the input is an impulse function,   1sF . 















q

r r

r

ps

k
sZSR

1

)(  

 1)(
1




tp
q

r
r

rektZSR             (2.36) 















q

r r

r

ps

k
sZIR

1

)(  

 1)(
1

 


tp
q

r
r

rektZIR             (2.37) 

Substituting Equation 2.36 and 2.37 into Equation 2.35, transient response at node i  for 

impulse input is given by Equation 2.38. 

     11
11

 


tp
q

r
r

tp
q

r
r

rr ekektT            (2.38) 

 

 

2.5.2 Step input 

In this case, the input is a step function,  
s

sF
1

 . 

















q

r r

r

sps

k
sZSR

1

1
)(  

 1)(
1

 


tp
q

r r

r re
p

k
tZSR             (2.39) 
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













q

r r

r

ps

k
sZIR

1

)(  

 1)(
1

 


tp
q

r
r

rektZIR             (2.40) 

Substituting Equation 2.39 and 2.40 into Equation 2.35, transient response at node i  for 

step input is given by Equation 2.41. 

     11
11

 


tp
q

r
r

tp
q

r r

r rr eke
p

k
tT            (2.41) 

 

 

2.5.3 Ramp input 

In this case, the input is a ramp function,  
2

1

s
sF  . 

















q

r r

r

sps

k
sZSR

1
2

1
)(  

 pte
p

k
tZSR tp

q

r r

r r  


1)(
1

2
            (2.42) 















q

r r

r

ps

k
sZIR

1

)(  

 1)(
1

 


tp
q

r
r

rektZIR             (2.43) 

Substituting Equation 2.42 and 2.43 into Equation 2.35, transient response at node i  for 

ramp input is given by Equation 2.44. 

     11
11

2
 



tp
q

r
r

tp
q

r r

r rr ekpte
p

k
tT           (2.44) 
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2.5.4 Sinusoidal input 

In this case, the input is a sinusoidal function,  
22 ws

w
sF


 . 










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
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r r

r
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k
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1
22

)(  
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 
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 
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22
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w

p
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tZSR rtp

q

r r

r r          (2.45) 
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sZIR

1

)(  

 1)(
1

 


tp
q

r
r

rektZIR             (2.46) 

Substituting Equation 2.45 and 2.46 into Equation 2.35, transient response at node i  for 

sinusoidal input is given by Equation 2.47. 

   1)sin()cos(
11

22







 




 
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r
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rtp
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r r

r rr ekwt
w

p
wte

wp
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tT        (2.47) 
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CHAPTER 3 

RESULTS AND DISCUSSION 

 

3.1 Overview 

Asymptotic Waveform Evaluation (AWE) is used to solve various engineering problems to 

show its applicability, accuracy and also efficiency. This chapter will cover the application 

of AWE in the following fields: 

 

a) Heat transfer 

b) Vibration 

c) Third order differential equation 

 

Besides that, this chapter will also discuss the numerical instability in AWE and its 

solutions. 

 

3.2 Solving thermal problems using finite element method and AWE 

A simple one dimensional fin problem is solved using finite element method and also 

AWE. Step by step calculation is provided to show the basic algorithm of using AWE in 

solving a system of first order linear differential equations. A stability scheme is also 

introduced to stabilize the AWE solution by neglecting the unstable positive poles. Then, 

AWE is used to solve Non-Fourier heat conduction equation (hyperbolic equation) on a 

two dimensional and non-dimensionlized strip. Another stability scheme, called partial 

Pade approximation, is also introduced to stabilize the AWE solution. After that, the same 

Non-Fourier heat conduction equation is used to model the self-heating characteristic of a 

three dimensional VLSI interconnection. Finally, a simple one dimensional fin subjected to 

unsteady boundary condition is solved with AWE. 

 

 

3.2.1 Simple one dimensional fin problem 

In this case, a simple one dimensional fin is subjected to higher temperature at the base, as 

shown in Figure 3.1. This problem is taken from Logan (2000). 
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Figure 3.1:  Simple one dimensional fin 

 

Finite element method is used and thus, the fin is meshed with line elements. For easier 

understanding, only three line elements are used. After assembly, the global matrix 

equation is shown in Equation 3.1 and Equation 3.2. 

 

fKTTC                  (3.1)
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   (3.2) 

 

Incorporating the boundary conditions: 851 T  and 01 T   , Equation 3.2 becomes the 

following equations: 
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Thus,  
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For calculating Zero State Response (ZSR), Equation 2.6 is used to calculate the moment, 

M. 
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Same as the calculation for M1, the values for other moments are as follows. 
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2M   










214.1377  

151.4116  
4M  

 










176.2073- 

124.6179- 
3M   










260.2081- 

183.9835- 
5M  

 

The node at the tip of fin, that is node 2, is chosen to be calculated. Thus, only the second 

value for each moment, M, is used. These values are substituted into Equation 2.30 to 

obtain Equation 3.3. 
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


































260.2081  

214.1377- 

176.2073  

214.1377     176.2073-   144.8354  

176.2073-   144.8354    117.5199- 

144.8354     117.5199-    80.7523   
1

a           (3.3) 

 


















1.3860  

0.2145  

0.0084  

a  

 

The roots of equation 3.4 are the poles. 

 

0.0084p3 + 0.2145p2 + 1.3860p + 1 = 0            (3.4) 

 


















0.8230- 

9.5396-

15.1502-

p                (3.5) 

 

Then, Equation 3.5 is substituted into Equation 2.34 to obtain Equation 3.6. 

 




































144.8354- 

117.5199   

80.7523-  

1.7942-    0.0012-   0.0003-   

1.4765      0.0110      0.0044    

1.2151-    0.1048-   0.0660-   
1

k            (3.6) 

 


















80.8311    

166.6400- 

0.0000    

k  

 

By substituting the poles, p and zeros, k into Equation 3.7, the Zero State Response (ZSR) 

can be obtained. 

 

  
4

1

1tp

i

i ie
p

k
ZSR                (3.7) 
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For calculating Zero Input Response (ZIR), Equation 2.9 is used to calculate the moment, 

M . 

 











































36.1281 

26.3125 

25

25

0.1398    0.0699  

0.0699    0.2796  

0.5089    0.4995-

0.4995-   1.0179  

)0(

)0(

1

0

1
0

0

M

CTKM

CTMK

 

 

0
1

1

01

MCKM

MCMK





 





































44.5032- 

31.5470- 

36.1281 

26.3125 

0.1398    0.0699  

0.0699    0.2796  

0.5089    0.4995-

0.4995-   1.0179  
1

1M  

 

Same as the calculation for M1, the value for other moments are as follows. 

 










54.1404 

38.2891 
2M   










79.9497 

56.5295 
4M  

 










65.7945- 

46.5216- 
3M   










97.1496- 

68.6908- 
5M    

 

The node at the tip of fin, that is node 2, is chosen to be calculated. Again, only the second 

value for each moment, M , is used. These values are substituted into Equation 2.30 to 

obtain Equation 3.8. 

    

 




































97.1496  

79.9497-

65.7945  

79.9497    65.7945-   54.1404   

65.7945-   54.1404    44.5032- 

54.1404    44.5032-   36.1281   
1

a            (3.8) 
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
















0.5763   

0.8543- 

0.0947- 

a  

 

The roots of the Equation 3.9 are the poles. 

 

015763.08543.00947.0 23  ppp             (3.9) 

 


















0.8230- 

1.3447  

9.5396- 

p              (3.10) 

 

Then, Equation 3.10 is substituted into Equation 2.34 to obtain Equation 3.11. 

 




































54.1404- 

44.5032   

36.1281- 

1.7942-   0.4113    0.0012-  

1.4765     0.5531    0.0110    

1.2151-   0.7437    0.1048-  
1

k          (3.11) 

 


















30.1785 

0.0000   

5.1785- 

k  

 

By substituting the poles, p and zeros, k  into Equation 3.12, the Zero Input Response 

(ZIR) can be calculated as below. 

 

 
4

1

tp
i

iekZIR              (3.12) 

 

Finally, the temperature response, T is given by Equation 3.13. 

 

  ZIRZSRtT                          (3.13) 
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From the calculation above, the temperature response, T, for the node at the tip of the fin 

can be plotted against time, as shown in Figure 3.2. The temperature response for other 

nodes can be obtained similarly according to the calculation above except that the values of 

the moments used are according to the node chosen.  

 

Figure 3.2:  Temperature response for node at the tip of the fin 

 

 

3.2.2 Stabilizing the unstable solution produced by AWE 

From Figure 3.2, the solution from AWE agrees well with the solution produced using 

Crank-Nicolson. However, when meshing elements used are increased and thus there are 

more nodes, it happens that there are a few nodes where AWE will produce unstable 

solution due to unstable poles. This is because Pade approximation is known for producing 

unstable result for stable model even though higher order of approximation is attempted 

(Anastakis 1992). 

 

Generally, AWE suffers from two main problems (Anastakis 1992). The first one is that it 

is difficult to select the order of approximation since the total number of dominant poles is 

unknown. Secondly, it is not always possible to obtain a particular order of approximation 
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