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ABSTRAK

Tesis ini dijalankan untuk menyiasat kesan geometri permukaan yang berbeza
dan penerapan tahap pra-ketegangan yang berbeza-beza pada getaran struktur membran.
Dalam makalah ini, sebanyak 60 model yang dihasilkan dari struktur membran
antiklastik seperti struktur berbentuk kon dan paraboloid hiperbolik sederhana (hipar
sederhana) telah dianalisis. Perisian elemen terhingga yang dikenali sebagai SOFiSTiK
diguna untuk proses pemodelan dan analisis dinamik struktur membran yang dirancang.
Terdapat dua analisis penting yang telah dilakukan dalam kajian ini: analisis mencari
bentuk dan analisis getaran bebas. Yang pertama mewakili proses struktur membran yang
cenderung mencapai bentuk keseimbangannya di bawah tahap pretensi dan geometri
permukaan yang ditentukan sementara yang terakhir menyiratkan perkembangan
frekuensi semula jadi kerana getaran diri awal yang ditahan oleh struktur membran itu
sendiri tanpa gangguan luaran beban. Berdasarkan analisis ini, serangkaian grafik pada
frekuensi keseluruhan dan frekuensi terendah untuk setiap jenis model diplot. Dalam kes
ini, dua jenis grafik frekuensi ditunjukkan di mana grafik pertama digunakan untuk
menunjukkan hubungan antara frekuensi semula jadi dan geometri permukaan yang
berbeza sementara grafik kedua dihasilkan untuk menunjukkan hubungan di tengah-
tengah tahap frekuensi semula jadi dan pretensi yang diterapkan pada struktur membran.
Telah didirikan bahawa sebahagian besar struktur membran akan menunjukkan
peningkatan frekuensi yang tidak linear di bawah variasi geometri permukaan dan tahap
pretensi. Oleh itu, kesimpulan dibuat di mana kesan geometri permukaan dan tahap
pretensi pada struktur membran adalah signifikan terhadap getaran asas struktur itu
sendiri. Hasil kajian ini dapat dilakukan sebagai digunakan sebagai rujukan untuk pereka
struktur untuk penilaian ciri dinamik struktur membran yang berlaku semasa memuatkan

angin.



ABSTRACT

This thesis was carried out to investigate the impacts of different surface
geometry and varying application of pre-tension level respectively on the vibration of
membrane structures. In this paper, a total of 60 models generated from anticlastic
membrane structures such as cone shaped and simple hyperbolic paraboloid (simple
hypar) structures were analysed. A finite element software known as SOFiSTIiK was
adopted for the modelling process and dynamic analysis of the designed membrane
structures. There were two vital analysis which had been performed in this study: form-
finding analysis and free vibration analysis. The former represents the process of a
membrane structure which tends to achieve its equilibrium shape under the prescribed
pretension level and surface geometry while the latter implies the development of natural
frequency due to initial self-vibration retained by the membrane structure itself without
the disturbance of external loads. Based on this analysis, a series of graphs on overall
frequency and lowest frequency for each type of models were plotted. In this case, two
types of frequency graphs were presented at which the first graph was used to show the
relationship between natural frequency and different surface geometry whilst second
graph was produced to demonstrate the link amidst natural frequency and pretension
level applied on the membrane structures. It had been founded that most of the membrane
structures exhibit a nonlinearly increase in frequency under the variation of surface
geometry and pretension level. Therefore, a conclusion was made where the effect of
surface geometry and pretension level on membrane structures was significant towards
the fundamental vibration of the structures. The outcome of this study can be used as
reference for structural designers for the evaluation of dynamic characteristics of

membrane structures under effect of wind loading.
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CHAPTER 1

INTRODUCTION

1.1  Background of Membrane Structure

A membrane structure can be defined as a lightweight spatial structure with
two-dimensional surfaces at which the equilibrium shape of the membrane is
maintained by tension. In recent decades, membrane structures have been widely
applied in large-span spatial structures from stadiums, airport terminals, pavilions,
botanical gardens and railway stations due to their advantages and beneficial
characteristic.

The construction materials for membrane structures can be membrane, cable
or both. There are a few types of fabrics used in membrane structures with respect to
their aesthetic and mechanical properties. The most common materials for membranes
are ETFE film and coated textiles for various applications of roofs and facades (see
Figure 1.1). For example, ethylene tetrafluoroethylene (ETFE) films, PVC-coated
polyester fabrics (PVC/PES), polytetrafluoroethylene (PTFE) coated glass fibre
fabrics, silicone coated glass fibre fabrics and others. In terms of architectural view,
the unique characteristic of the membrane such as lightweight and transparency would
affect the selection as well as the functions of that fabric on structures. Besides, the
additional properties of membranes are economical, low flammability, a wide range of
available colours, dirt-repellent surfaces, suitable for printing and sewing, high
temperature resistance, non-combustible, high flexibility, waterproof and resistive to
extreme weather conditions or UV radiation.

As for cables, they can be made of mild steel, high strength steel, stainless steel,
aramid fibres or polyester. In fact, cables can either be structural rope or structural

strands for a membrane structure. Recently, synthetic ropes can be applied as
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compared to steel ropes due to their high strength-to-weight ratio and better properties
in fatigue and damping (Freiherrova and Krejsa, 2019). Meanwhile, different cable has
its own functions, such as catenary cable, guy cable, tie back cable, ridge cable, safety
cable, valley cable and leader cable. For instance, in order to create and provide a
natural curved shape of membrane structures, catenary cables are installed inside an
aluminium strap and run along the perimeter of the fabric membrane. As an axial
element, cables possess some significant properties which can enhance the
performance of membrane structure like high tensile breaking strength, small cross-
section, high resistance to corrosion and abrasion, high flexibility, lightweight, long

fatigue life, good stretching and rotational behaviour.

coated textiles

water tight fabric open mesh fabric

fluorpolymer- PTFE- coated glass PVC-coated PTFE-coated glass silicone-coated
coated PTFE fabric polyester fabric fibre fabric glass fabric

3 e

Figure 1.1:  Materials and Fields of Membrane Application

Qilin, Zhang & Zhaoyang (2017) mentioned that membrane structures possess
better flexibility and unique aesthetic as compared to the traditional structures based
on their lightweight property, low and dense natural frequency. Membrane structures

are however sensitive to wind-induced vibration. Thus, its major control load is wind
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load in design. However, other external loads cannot be neglected also, such as snow
loads, earthquake effects and temperature effects.

In order to resist the wind load, membrane structures should possess sufficient
tension and curvature (Son, 2007). For example, the hyperbolic paraboloid membrane
structure allows any point on it to be restrained by the corner points. As a result, two
high points and two low points are introduced whereby the former holds any
downloads and the latter resists the wind uplift. Hence, the smaller height differences
between those high and low points, or the flatter the fabric, will tend to produce greater
resultant loads at the corners and making the unfavourable design of membrane
structure as it might suffer from large deflection.

Generally, there are two main types of membrane structures which are known
as mechanically pre-tensioned and pneumatically pre-tensioned structures. The
mechanically pre-tensioned structure represents the anticlastic surfaces such as cone,
saddle or hyperbolic paraboloid while pneumatically pre-tensioned structure indicates
the synclastic surfaces like air-inflated cushions and dome. The former membrane
surface shows negative Gaussian curvature while the latter represents the positive
Gaussian curvature. For anticlastic membrane surfaces, it indicates the two directional
forces are in opposing directions by pre-stressing the fabric in both directions and they
counterbalance each other (see Figure 1.2 and Figure 1.3). Meanwhile, synclastic
membrane surfaces show the two directional forces are in the same directions and
balanced by air pressure (Son, 2007). This project is mainly focused on the
mechanically pre-tensioned structure which is point-supported membrane and arch-

supported membrane (see Table 1.1).
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