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ABSTRAK 

Permukaan dengan lipatan melengkung yang berasal dari origami boleh memberi 

kelebihan dalam struktur bumbung yang boleh meningkatkan kekuatan sambil 

mengekalkan ciri-ciri estetika. Walau bagaimanapun, masih terdapat banyak kesamaran 

dan kajian yang tidak mencukupi mengenai potensi penggunaan garis lipatan 

melengkung. Walau bagaimanapun, masih terdapat banyak kekaburan dan penyelidikan 

yang tidak mencukupi mengenai potensi penggunaan garis lipatan melengkung. Kajian 

ini bertujuan untuk merumuskan kaedah komputasi yang sistematik untuk penghasilan 

permukaan dengan lipatan melengkung dengan faktor yang berbeza yang menpengaruhi 

konfigurasi permukaan. Kajian ini juga bertujuan mengkaji kesan corak lipatan 

melengkung, ketebalan permukaan dan perubahan nisbah kenaikan-span pada tingkah 

laku struktur permukaan dengan kedutan melengkung dari segi kapasiti menanggung 

beban dan kekakuan. Beberapa kriteria telah ditetapkan untuk pemilihan origami dengan 

lipatan melengkung berdasarkan koleksi yang luas oleh penyelidik sebelumnya. Hasil 

kajian menunjukkan tiga model origami memiliki potensi aplikasi dalam sistem 

bumbung, iaitu Non-inflated Degree-4 Vertices, Four Circular Mountain Ridge Curves 

dan Four Elliptical Mountain Ridge Curves. Kaedah Penangkapan Imej (ICM) diadopsi 

untuk memlukiskan garis panduan model origami dan profil ketinggian dari bentuk 

kertas raster 3-D. Pembentukan permukaan diteruskan sebelum analisis struktur. Model-

model origami ini kemudiannya diskalakan dengan 100 dan diperkaya dengan sifat 

analitik tambahan untuk menilai prestasi struktur. Analisis elemen terhingga di bawah 

keadaan berat sendiri hanya dijalankan sepadan dengan pelarasan, iaitu profil ketinggian 

garis lipatan melengkung, nisbah ketinggian-rentang keseluruhan dan ketebalan 

permukaan. Model yang berprestasi terbaik dari segi pengagihan tekanan yang lebih baik 

dan anjakan yang lebih rendah dengan pertimbangan berat sendiri kemudian akan dipilih. 
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Keputusan yang diperoleh daripada variasi profil ketinggian garis lipatan melengkung 

menunjukkan bahawa semua model di bawah kategori Model 01 (Non-inflated Degree-

4 Vertices) dan Model 02 (Four Circular Mountain Ridge Curves) gagal memenuhi had 

tekanan. Dengan membandingkan kedua-dua jenis model ini, Model 01 menunjukkan 

tekanan dan anjakan yang lebih tinggi. Sebaliknya, hanya model di bawah kategori 

Model 03 yang memenuhi had tekanan. Ini terutamanya disebabkan oleh corak geometri 

model origami yang menyebabkan pengagihan tegasan yang berbeza di permukaan. 

Untuk pengubahsuaian yang lain, hasil FE menggambarkan bahawa semua model di 

bawah kategori Model 03 masih dalam had tegasan dan pesongan yang dibenarkan 

dengan variasi yang kecil. Oleh itu, kewujudan garis lipatan melengkung dan kedalaman 

efektif keseluruhan struktur mendedahkan prestasi yang luar biasa dalam kapasiti 

menanggung beban. 
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ABSTRACT 

Surface with curved creases derived from origami can be advantageous in roof 

structures which can improve strength while preserving the aesthetic values. However, 

there is still a great deal of ambiguity and insufficient research on the potential use of 

curved fold lines. This study targets to formulate a systematic computational method for 

the generation of surface with curved creases with different factors governing the surface 

configuration. This study also aims to investigate the effects of pattern of curved crease 

folds, thickness of surface and the change of the rise-span ratio on structural behaviour 

of surface with curved crease in terms of load-carrying capacity and stiffness. Several 

criteria had been established for the selection of origami with curved creases based on 

the extensive collection by the previous researcher. The outcome shows three origami 

models have potential application in roofing systems, namely Non-inflated Degree-4 

Vertices, Four Circular Mountain Ridge Curves and Four Elliptical Mountain Ridge 

Curves. Image Capturing Method (ICM) is adopted to develop the outlines of the origami 

models and the elevation profiles from the raster 3-D paper forms. Surface formation is 

then proceeded before the finite element analysis. These origami models are then scaled 

with 100 and assigned with additional analytical properties to evaluate the structural 

performance. Finite element analysis under self-weight condition only is carried out 

corresponding to the adjustments, i.e., elevation profiles of curved fold lines, overall rise-

span ratio and surface thickness. The best-performing model in terms of better stress 

distribution and lower displacement with the consideration of self-weight is then 

selected. The results obtained from the variation of elevation profiles of curved fold lines 

show that all models under the category of Model 01 (Non-inflated Degree-4 Vertices)  

and Model 02 (Four Circular Mountain Ridge Curves) failed to meet the tensile stress 

limit. Comparing these two types of models, Model 01 shows relatively higher stress and 
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displacement. In contrast, only the models under category of Model 03 satisfy the stress 

limit. This is mainly due to the geometry patterns of the origami models which lead to 

different stress distributions over the surfaces. For the rest of the modifications, the FE 

results show that all models under the category Model 03 are still within the allowable 

stress and deflection limits with slight variation. Therefore, the presence of curved fold 

lines and the greater overall effective depth of the structure help to enhance the 

performance in load-carrying capacity. 
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CHAPTER 1  
 

INTRODUCTION 

1.1 Background  

The surface with curved fold lines is primarily derived from the Japanese art of 

paper-folding known as "origami”. Origami is turning a single planar sheet of paper into 

various appealing and graceful 3-dimensional shapes without stretching, tearing or 

cutting (Killian et al., 2008). Traditional origami prohibits excessive deformation like 

stretching, tearing and stapling (Miura, 1989).  

Japanese words “ori” means folding while “kami” means sheet of paper are 

directly linked with the term “origami” (Miura, 1989). Origami, while more closely 

related to Japan, has origins in China and Europe as well. Around 105 AD in China, 

paper was invented and zhezhi (folded paper) most possibly appeared soon after the 

invention (Dana, 2019). Paper yuanbao (gold nuggets) were crafted to be used as a sacred 

ritual and tossed into a fire is a staple for the traditional Chinese funerals by 900 AD 

(Peter, 2017). In Japan, paper was firstly initiated in the 6th century. Origami has been in 

the mainstream since Japan's Edo Period (1603–1868). Artists were allowed to cut the 

sheets of paper in the past. In contemporary origami, cutting the sheets of paper is no 

longer allowed where true origami is now sculpted entirely by only folds. In Europe, 

paper-folding was believed to be derived from napkin-folding in the 17th century. Napkin 

folding is a part of table manners practiced in German (Demaine et al., 2011; Nelson, 

2018). Credit to Friedrich Fröbel, the founder of kindergartens, his effort of incorporated 

some hands-on activities including paper-folding enables the origami to prosper across 

the continent (Kelly, 2017). 
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1.1.1 Fold Lines in Origami 

To develop an origami or a paper-folding art, crease pattern is essentially 

important. Crease also known as fold line is a line that is created on the paper when it 

has been folded or crushed. Creases usually occur in flexible materials, such as paper or 

cardboard and do not tear through the surface of the sheet material. The crease partitions 

the sheet of material into regions known as faces (An et al., 2011). 

The basic of folding is derived from either straight line or curve line. Figure 1.1 

shows the straight crease and curved crease. Straight crease origami also known as 

prismatic origami, is bending of sheet material along a straight line to develop polyhedral 

surface (Demaine et al., 2011). Curved crease origami is folded along curved line instead 

of straight line, fabricating a complex and elegant shape (Lichtblau, 2019). Without any 

twisting or other plastic deformation of the material, a developable surface can be formed 

by just simple bending of that material (Postle, 2012). By only pushing the end points of 

the curve crease towards the center, elastic deformation due to bending of paper can be 

modelled (Vergauwen et al., 2013). When two or more creases meet together, the 

intersection point is known as vertex. The number of creases arose from the vertex relates 

to the degree of vertex (Turner et al., 2016). 

There are two main types of folds in origami – mountain (ridge) fold and valley 

(trench) fold. Mountain fold (convex) produces a ridge whereas valley fold (concave) 

produces a trench of paper forms (Arben, 2020). In fact, mountain fold is also a reverse 

valley fold (Hinders, 2019). The fold angle is deemed the supplement of the dihedral 

angle between two faces meeting at the crease as shown in Figure 1.2. Mountain-valley 

creases detected based on the sign of fold angle (An et al., 2011).  

In typical diagram of origami, dashed lines represent valley-fold whereas a 

combination of dashed-dots line represent mountain fold (Hinders, 2019) as shown in 
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Figure 1.3. Both pleat and crimp have almost similar meaning which involves the 

repeating mountain-valley folds. The only thing that differ these two terms is crimp 

involves some reverse-folding (Turner et al., 2016). When the creases and mountain-

valley folds meet together, unique and aesthetic forms of arts can be developed. Vertex 

or node is a point or end point of a line developed when two or more fold lines intersect 

(Norman and Arjomandi, 2017). 

 

Figure 1.1 – Straight Crease and Curved Crease 

 

 

Figure 1.2 – Fold Angle at a Crease 

 

 

Figure 1.3 – Crease can be folded as mountain fold (left side) or valley fold (right side) 
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1.1.2 Evolution of Fold Lines 

Before the curved crease elements breeze in the origami design, folding patterns 

with straight crease were being practiced (Demaine et al, 2011). According to Buri and 

Weinand (2008), Yoshimura (Diamond) pattern, Miura Ori pattern (Herringbone Pattern) 

and Diagonal pattern (parallelogram) are parts of straight crease origami that identified 

to be captivating to be applied in architectural and structural fields. Curved-crease 

sculptures are elegant artworks for almost one century ago. In 1927 to 1928, first curved 

fold Bauhaus model was created by students of Josef Albers with concentric circles and 

alternating mountain and valley folds. The design class by Albers is only emphasizes on 

the design through paper models without taking into account the pragmatic requirements. 

Irene Schawinsky, also a student from Bauhaus recreate the model with a large hole in 

the center later (Koschitz et al., 2008). In 70s, David A. Huffman and Ron Resch 

discovered the paper folding that also uses curved creases (Demaine et al, 2011). This is 

something distinctive with the Bauhaus model. Huffman, the pioneer of techniques for 

curve crease paper-folding, was also a computer scientist. Huffman is keen in 

mathematical analysis of curved folds whereas Resch is more interested in applying 

techniques to fabricate artistic sculptures. Huffman’s work practiced no cut and only fold 

with piece of paper. Based on Huffman, “origami” is used to describe the figurative 

Japanese paper-folding tradition whereas “paper-folding” is used to describe the more 

abstract and practical Western tradition (Lichtblau, 2019).  

Origami is no longer merely an ancient art form, evolution of origami designs has 

become an upsurge of interest in many fields (Dias et al., 2012). The inspiration of 

origami designs has been applied into mathematics, natural sciences, engineering, and 

architecture (Reis et al., 2015). Folding has an advantage in which, like the light-weight 

sandwich panel in Figure 1.4, it can improve stiffness with minimal weight or thickness. 
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The concept is often incorporated in architecture, varying from folded plate roofs to more 

sophisticated structures that combine an improvement in strength with aesthetic 

appearance (Schenk and Guest, 2011). 

  

Figure 1.4 – Light-weight Sandwich Panel 

 

In architecture domain, the concept of origami with folds has been adopted in the 

design of shell structures and folded plate structures. The developability and foldability 

properties are beneficial in designing surface structures (Demaine et al., 2011). The 

dissimilarity between shell structure and folded plate structure is shell structure has 

curvature of surface whereas folded plate structure has flat surface. They are the most 

often roofing method applied for spanning wide spaces without interruption in the 

interior section. Different options of shell structures with folded plate had been 

introduced for the architect or engineer for specific types of application (Ketchum and 

Ketchum, 1997).  

Shell structures are of minimal thickness, lightweight and continuous curved 

surfaces that are assembled without intermediate supports to span large areas like roofs 

(Pereira, 2018). The shapes of the structures allow clear spans without internal supports, 

giving an open and unobstructed interior (InnovaConcrete, 2019). The typical shapes that 

had been widely used are cylindrical, hyperbolic paraboloid and ellipsoidal. They are 

mainly adopted for large structures such as convention centres, industrial buildings, 
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sports complexes and multipurpose halls (Akhtar, 2016). In structural, shell structures 

are said to be effective because of their abilities to resist large compression loads which 

uniformly distributed over the surface. For the sake of minimum thickness of the 

surfaces, little or no tensile strength is produced. The structural efficiency is similar to 

that arch systems. Thus, concentrated loads should not be received directly (Pereira, 

2018).  

Folded plate structures are groupings of flat surfaces, leaned in various directions 

and joined along their longitudinal edges. Folded plate structures, owing to their 

structural, spatial and plastic characteristics, draw both architects and engineers (Buri et 

al., 2011). Folds will strengthen the thin surfaces lead to higher rigidity compared to flat 

surface. Folded plate structures have high capability to sustain load which makes them 

cost-effective over long spans that need column-free for internal space.  

Indeed, the merging of aesthetics and functionality has already a trend for a few 

decades ago. Curved fold line offers new creativity for the architects and engineers in 

designing roof structures. The curved-crease of the surface can improve the stiffness & 

load-bearing capacity effectively with relatively thin section. The smooth corrugated 

profile of the roof surfaces has the aesthetic attribute which can be employed in the 

future. The curved-crease of the surface can improve the stiffness and load-bearing 

capacity effectively.  

In 2014, One Fold in Figure 1.5 is an experimental project that seeks design 

possibilities by folding just once. The free-standing structure was created from a single 

sheet of stainless steel by Patkau Architects. A simple but elegant type of structure is 

conceived by merely using bending and folding (One Fold, 2014). An origami work of 

paper inspires this project. To build a freestanding piece, a sheet of paper folded once 

can then be forced to buckle around the crease. The attempt is then turned into a larger 
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scale with sheet of stainless steel for a landscape shelter. One Fold is a thin-shell 

enclosure with lightweight, durable, demountable and recyclable properties (Canadian 

Architect, 2015). 

  

Figure 1.5 – One Fold, Vancouver, BC, Canada (One Fold, 2014; Canadian Architect, 

2015) 

 

1.2 Problem Statement 

In this modern era, a combination of aesthetic appearance and strength 

augmentation due to the minimal thickness of surface structures with folding can 

effectively benefit architects and engineers in designing roof surfaces or open space 

covering structures. There is a resemblance in term of concept as origami (Ng, 2018). A 

thin sheet of paper's foldability characteristics can help to improve the stiffness when it 

is being folded. Figure 1.6 explained that strength and load-carrying capacity could be 

gained when a thin material becomes corrugated with folds.  

Besides that, it is hard to find actual buildings being constructed with curved fold 

lines on the roof surface through literature search. The only available structures with 

folds are of straight creases. Altering from the conventional straight fold into curved fold 

produces a neoteric creativity form that can hardly be described using simple parameters. 

Therefore, surface with curved folds is quite complicated and needs to be further studied 

(Lichtblau, 2019). 
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Figure 1.6 – The Stiffness and Load Carrying Capacity of Folded Paper (Ng, 2018) 

 

In addition, catching sight of the “One Fold” actual model in Figure 1.5 (One 

Fold, 2014), there are some reasons and motivations emerged to introduce curve fold 

lines in roof surfaces. Sophisticated yet stunning appearance can be developed if the 

curved crease element is adopted. There is a potential to apply this concept for future 

application in the field of architecture. Referring to the classification of curved patterns 

by Ng (2018), it shows that a wide range of curved crease can be produced in circles, 

ellipses, and parabolas as shown in Figure 1.7 and examples of curved crease origami 

derived from these patterns are shown in Figure 1.8. When applying idea of curve folds 

in roof structures, the potential of stiff and durable roofs could be developed. Such kind 

of structures behaved like shell structure which had the high load capacity with minimal 

thickness.  

 

Figure 1.7 – Curve Crease Patterns 
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Figure 1.8 – Examples of Curved Crease Origami (Ng, 2018) 

From the past researches, curved crease origami is extensively being explored. 

However, the study focuses more on the mathematical description of the geometry of 

curved creases (Huffman, 1976; Miura, 1989) and the constructive method either using 

computational software or fabricating the real physical models (Koschitz et al., 2008, 

Hemmerling and Mazzucchi, 2016; Demaine et al., 2016). To implement this concept in 

roof structures, the curved fold lines' behaviour along the surfaces in terms of structural 

need to be identified. Yet, there is still a lack in the studies of the structural behaviour of 

surface with curved fold lines. The effect of surface parameters such as surface thickness, 

rise-span ratio, pattern of curved crease on the structural behaviour need to be further 

studied (Rohim et al., 2013; Ng et al., 2014; Ng, 2018). 

In short, owing to much uncertainty about implementing this idea in actual 

construction, this research can be part of the pathway towards transforming paper model 

with curved fold line into actual physical structures that have the feasibility to impress 

the world. The primary role of this research is to formulate a systematic computational 

method for the generation of surface with curved creases with different factors governing 

the surface configuration. This work can be achieved by generating models using Rhino 

software for surface geometry modelling and using SOFiSTiK software for structural 

analysis. This research aims to evaluate the structural behaviour of surfaces with curved 

fold lines. To satisfy this objective, the effects of surface parameters, the thickness of 

surface, and the change of the rise-span ratio towards the load-carrying capacity, 

stiffness, and deformation need to be investigated. 
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1.3 Objectives 

This research aims to evaluate the structural behaviour of surface with curved 

fold lines. The particular objectives of this study are as follows: 

1. To formulate a systematic computational method for the generation of surface 

with curved creases with different factors governing the surface configuration.  

2. To investigate the effects of pattern of curved crease folds, thickness of surface, 

and the change of the rise-span ratio on structural behaviour of surface with 

curved crease in terms of load-carrying capacity and stiffness. 

1.4 Scope of Work 

This research is an interdisciplinary study involving the fields of structural 

engineering and architecture. It covers the disciplines of origami, roof structures or open 

space covering structures and computational analysis. The motivation of this study was 

the Japanese art of paper folding and the enhancement of aesthetic values by 

transforming straight crease into curved crease in designs. The research focusses on 

surface geometry of origami sculptures with only curved creases and the effect of surface 

configuration on the structural behaviour of surfaces with curved creases. Selection is 

performed based on several criteria, i.e. the number of curved fold lines, the number of 

supporting points, boundary condition, and the folding mechanism. Selected origami-

inspired models of curved fold lines are then regenerated using Rhino software for 

surface geometry modelling. The effects of surface geometry of the origami models in 

terms of surface parameters, thickness of surface and also the rise-span ratio on the 

structural behaviour are studied using finite element analysis via SOFiSTiK software. 

The structural behaviour to be investigated involves the load-carrying capacity and 

stiffness developed by models with curved fold lines. This study's ultimate goal is to 
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establish a suitable model with curved crease that has the capability to be applied in 

surface structures. 

1.5 Significance of Study 

In architectural design, origami or paper folding is not simply an inspiration 

source. Also, the developability and foldability characteristics of origami is beneficial in 

roof structure designs. Since a few centuries ago, straight fold lines are commonly being 

employed in designs for many fields. A fusion of folding and bending a sheet of material 

relates to curved folding. The surface is made up of curved fold lines and smooth 

developable surface patches. In relation, pure folding produces prismatic origami The 

smooth developable surface is developed from pure bending of a sheet of material.   

 Many artists had been practiced this approach (a hybrid of folding and bending) 

to create magnificent models with sheet of paper. The sculptures fabricated from only 

thin, flat sheet materials not only visually extraordinary; they also show favourable 

structural outcomes. Thereby, folded structures have become an ideal implementation 

for light-weight and geometrically stiff roof surfaces in architecture and engineering 

(Hemmerling and Mazzucchi, 2016).  

Shifting from the conventional straight form of folds into the curved fold in real 

physical structures might be complex and required further studies. Nevertheless, the 

fascinating and elegant appearance of structures due to the curved crease is believed to 

have aesthetical attributes. Compared to those with straight creases, curved creases 

worked on the roof surface can enhance the stiffness and strength. Therefore, this 

research will help pave the way for the designers to implement such enticing properties 

in roof design. 
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1.6 Organization of Dissertation 

This dissertation composes of five chapters: Introduction, Literature Review, 

Methodology, Results and Discussion, as well as Conclusions and Recommendations. 

The highlight of every chapter is shown below:  

 Chapter 1 addressed the background of the research study. An extensive 

interpretation of origami with curved fold lines was presented. It was then followed by 

the problem statement that clarified the problem or motivation of this study, objectives 

to be accomplished, scope of work, significance of the study and organization of 

dissertation.  

Chapter 2 presented the literature review on the subjects associated to surfaces 

with curved fold lines. Past research findings corresponding to origami with curved 

crease and behaviour of surface with curved fold lines were reviewed. Research progress 

and recent work on surfaces with curved fold lines were also included. 

Chapter 3 showed a series of procedures carried out for this study. Selection of 

models with curved fold lines were presented. Regeneration of selected origami 

sculptures was conducted using Rhino software. The step was proceeded with the 

modifications of the regenerated models by varying several parameters. Lastly, finite 

element modelling and analysis were carried out via SOFiSTiK software.  

Chapter 4 illustrated the outcomes of this research study. Results of finite element 

analysis that investigated the structural behaviour of geometrical patterns of curved 

creases for the selected origami models were presented. A thorough discussion of the 

results obtained through the analysis was included as well. 

Lastly, a conclusion and a list of recommendations for future research works were 

made in Chapter 5 to wrap up the dissertation. The best performance model that had the 

potential to be applied in roof structures is concluded. 
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CHAPTER 2  
 

LITERATURE REVIEW 

2.1 Introduction 

Roof surfaces or surface structures are the main component or skeleton of a 

building, which shield the internal against rain, snow, sunlight, extremes of temperature, 

and wind. This research studies the surface geometry with curved fold lines, which has 

the potential to be adopted in surface structures or roof structures. Therefore, the studies 

begin with understanding how curved fold lines lying on a thin paper’s surface could 

bear the loads effectively. Such structures are related to form-resistant structures. Form-

resistant structures, as shown in Figure 2.1, are a form of material shaped based on the 

design loads to gain strength (Muljadinata and Darmawan, 2016). The concept has been 

discussed in the previous section about the stiffness generation through folds (Figure 1.6 

in Chapter 1). 

 

Figure 2.1 – Form-resistant Structure (Muljadinata and Darmawan, 2016) 

In this study, the geometrical features of curved creases are being investigated. 

This chapter will present a comprehensive review of literature related to the topic of the 

surface with curve fold lines which covered the principles, the folding behaviour, 

formation of developable surfaces, current application, implementation of curved crease 

folding system, structural behaviour of surface structures and the past research studies 

corresponding to the surfaces with curved fold lines.  
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2.2 Curved-Crease Origami 

In a simple word, origami (with one typical example of crane as shown in Figure 

2.2) is known as paper-folding. Based on a simple technique, an incredible formal 

richness and variety of forms are produced from an open-state to a closed-state (Buri and 

Weinand, 2008). Two types of crease patterns can be identified during the folding 

process, i.e., straight-crease and curved-crease. Rigid origami or straight-crease origami 

forms strictly planar faces with one degree-of-freedom (DOF) mechanism (Vergauwen 

et al., 2013). Complex geometry like the curved crease origami is generated by 

manipulating techniques on the sheet of paper material in terms of bending (elastic 

deformation) and folding (plastic deformation) (Buri and Weinand, 2008; Vergauwen et 

al., 2013; Rabinovich et al., 2019). According to Lee et al. (2018) and Lee et al. (2020), 

origami with curved-crease is a branch of origami with a non-rigid folding motion to 

generate a 3-dimensional non-zero principal curvature of the model.  

 

Figure 2.2 – Traditional Origami Crane (Macri, 2015) 

Over the last 30 years, the art of origami has undergone a revolution where new 

designs of accretive complexity have been evolved. There is no coincidence that the 

increased sophistication of origami designs happens simultaneously with scientists, 

mathematicians, and origami artists discover more of the mathematical laws that dictate 

how paper folds (Hull, 2015).  

The metamorphosis of the Bauhaus model since the 1920s (Figure 2.3) follows 

by the striking elegance of Huffman’s model (Figure 2.4) and Ronald Resch’s model 
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(Figure 2.5) in the 1970s until a more complicated contemporary art (Figure 2.6), has 

proved that the complexity of origami designs is continually being explored and 

transformed from time to time. The advanced evolution of origami design techniques is 

therefore springing out some curiosity and spirit among researchers to further study the 

transition of origami towards mathematical ways. 

     
     (a)                    (b)                (c)  

     
          (d)              (e)            (f) 

Figure 2.3 – Examples of Variation of Bauhaus Models: (a) First Bauhaus Model by 

student of Josef Albers (Demaine et al., 2011); (b) Variation of Bauhaus Model with 

larger concentric circular hole by Irene Schawinsky (erikdemaine.org, n.d.); (c) “Before 

the Big Bang” by Thoki Yenn (erikdemaine.org, n.d.); (d) Variation of Bauhaus Model 

by Kunihiko Kasahara (erikdemaine.org, n.d.); (e) Bauhaus Model with multiple 

circular pieces of paper by Erik Demaine and Martin Demaine (Demaine et al., 2011); 

and (f) Bauhaus Model with Circular Boundary by Koschitz et al. (Koschitz et al., 

2008)  

 

     
    (a)             (b)        (c)  

Figure 2.4 – Examples of Huffman’s Model with Curved Crease: (a) Hexagonal 

column with cusps (Demaine et al., 2011); (b) Rotational Tiling (Demaine et al., 2015); 

and (c) Two degree-2 vertices (Geometric Paper Folding, 1996)  
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           (a)           (b) 

Figure 2.5 – Examples of Ronald Resch’s Model with Curved Crease: (a) Space Curve 

(erikdemaine.org, n.d.); (b) Yellow Kissing Cones (Bhooshan, 2015)  

 

       
         (a)           (b)       (c)             (d) 

Figure 2.6 – Examples of Contemporary Art: (a) Design by Richard Sweeney (Demaine 

et al., 2011); (b) Design by Yuko Nishimura (Demaine et al., 2011); and (c) Design by 

T.Roy Iwaki (Demaine et al., 2011); (d) Design by Hoang Tien Quyet (Stewart, 2017) 

2.2.1 Fundamental Concepts of Folding Present in Origami 

To adopt paper-folding techniques in the design of surface structures or roof 

structures, the transformation or folding process and principles need to be taken into 

account. Folds that can be distinguished during the development of origami are mountain 

folds and valley folds. A combination of mountain-valley folds forms the reverse fold or 

the pleated fold. Robert Lang, an origami artist, states that origami's fundamentals are 

related to mathematical laws. Origami is not only a papercraft. It is also math due to the 

existence of creases pattern when the sheet material is folded (Peter, 2017). Four 

fundamental concepts in terms of mathematical relationships have been used to describe 

the fold pattern (Norman and Arjomandi, 2017; Peter, 2017): 
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i. At any vertex in a fold pattern, the difference between the amount of 

mountain (ridge) folds and valley (trench) folds must be two in either 

direction (Maekawa’s Theorem).  

ii. The sum of alternating angles between fold lines surrounding any vertex 

is 180 degrees (Kawasaki’s Theorem).  

iii. A sheet cannot penetrate a crease at overlaps in the pattern no matter how 

many layers of folds and sheets are stacked together.  

iv. Two-colorability applies to any fold pattern where the same colour would 

never meet along a crease if the entire pattern were coloured with only 

two colours (Two-colorability Law). 

Artistic origami uses elastic material like paper to create different papercrafts. 

Paper is not only the restricted folding material that can be used in fabricating model; 

any kind of thin sheet material which can withstand folding and bending can be utilised, 

for instance, metal, cardboard or polymer sheets (Vergauwen et al., 2014).  

Corrugation of paper is a folding process that reaches its yield point to make it 

permanently (plastic) deforms. Plastic deformation means that the paper is unable to 

return to its initial state. Physics plays a vital role in finding static equilibrium among the 

forces created by the folds on the surface (Turner et al., 2016).  

Besides, paper is used to visualize the forms of patterns with the crease on a 

smaller scale and determine the behaviour acting on it before it is modelled on a larger 

scale with other materials. The strength of a sheet of paper can be gained by folding the 

paper; thus, the weight of the object will eventually reduce (Yu-Ruei, 2016).  

Paper-folding can also be related to morphing structures (Schenk and Guest, 

2011). Morphing structures are load-bearing systems that capable to transform into 

various modes of forms to adapt new functions. As a rule, the ability of structures to take 
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load depends on their stiffness, strength, and geometry stability. Buildings are therefore 

designed in a rigid manner to be stable against any loadings. Morphing structures rebel 

the traditional sense by optimizing the design with sufficient flexibility and stiffness to 

bear the loads (Vasista et al., 2019). 

2.2.2 Folding Behaviour of Origami Model 

Folding behaviour is an important subject that needs to be understood to fabricate 

a sheet material into 3-D form. The main components involved in developing an origami 

model are the boundary condition of sheet material (square, circle, ellipse, etc.), the 

crease patterns (straight-crease or curved-crease and mountain fold or valley fold), the 

actuation points, and the support conditions (pinned, roller or fixed support). Figure 2.7 

shows the example of the main components involved when folding a Huffman model, 

non-inflated degree-4 vertex. Blue dot-dashed lines represent the mountain folds, 

whereas red dashed lines imply the valley folds. The black arrows indicate the actuation 

points. Apart from this, there are still some elements required to determine the folding 

behaviour, such as folding angle and folding stage.  
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Figure 2.7 – Main components involved in developing origami model 

Through folding, a crease line is formed and separates the sheet material into 

surfaces known as faces in general or developable surfaces in a specific manner. When 

one of the element's surface areas is elastically deformed, the kinetic connection along 

the crease line leads the neighbouring surface areas to warp as well (Vergauwen et al., 

2013; Vergauwen et al., 2014; Vergauwen et al., 2017). This formation happened due to 

the internal forces and moments are transmitted through the curved fold lines leading to 

the adjacent surface to fold or bend. Vergauwen et al. (2013) have mentioned that the 

number of actuation points, actuation forces, and required displacements between 

actuation points are the key factors that govern the actuation characteristics. Figure 2.8 

gives an overview of the actuation characteristic for one, two, three and four fold lines 

present on the paper element. The green arrows mean the direction of actuation. Figure 

2.9 illustrates the actuation process that occurred when the four endpoints of the legs are 

pushed towards the center. 
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Figure 2.8 – Overview of curved-crease folding elements based on a composition of 

one, two, three or four creases. (Vergauwen et al., 2013) 

 

 

Figure 2.9 – Actuation Process of the Paper Model (Vergauwen et al., 2014) 

2.2.3 Formation of Developable Surfaces 

In this context of study, the form-finding mechanism initiated by folding is also 

worth being explored. Gaussian curvature or total curvature, K, a curvature intrinsic at 

any point on the surface, is the product of the principal curvatures, κ1 and κ2 at that point 

as defined in Equation 2.1 (Huffman, 1976; Morgan, 2016; Lee, 2019).   

𝐾 =  𝜅1 × 𝜅2          (2.1) 

The reciprocal of the corresponding principal radii of curvature, r1 and r2, are the 

principal curvatures, κ1 and κ2, respectively (refer Equation 2.2). A concave form has a 

positive curvature, a convex form has a negative curvature, and a planar form has zero 

curvature. 

𝐾 =  
1

𝑟1
×

1

𝑟2
        (2.2) 
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The sign of the Gaussian curvature can be used to evaluate the characteristic of a 

smooth surface, as seen in Figure 2.10. If K > 0, a dome-like configuration is developed 

where both principal curvatures are in the similar orientation. A smooth developable 

surface can be developed with one principal curvature being zero and the other principal 

curvature being non-zero if K = 0. If K < 0, a saddle-like surface with opposing principal 

curvatures is developed. 

 

Figure 2.10 – Characteristic of Smooth Surfaces correspond to Gaussian Curvature: (A) 

K > 0: Dome-like surface; (B) K = 0: Developable surface; and (C) K< 0: Saddle-like 

surface. (Lee, 2019) 

In a geometric sense, multiple interconnected developable surfaces are formed 

when a planar sheet of material is folded along the curved fold lines without stretching 

and tearing along the creases (Killian et al., 2008). In other words, origami surfaces are 

made up of at least two developable surfaces subjected to geometric constraints that the 

developability along curved fold lines are preserved (Lee, 2019). Huffman (1976), 

Killian et al. (2008), Lawrence (2011), Hemmerling and Mazzucchi (2016), Vergauwen 

et al. (2017), Nelson (2018), Tachi (2019), and Butler (2020) show up the characteristics 

of developable surfaces as listed below.  

i. Able to unfold or unroll into flattening condition (unwrapped state) whilst 

preserve the original length of fold lines and angles on the surface. 

ii. Composed of planar patches of ruled surfaces where all points on the 

rulings are located at the same tangent plane. 

iii. Able to discretised according to the pre-identified and fixed rulings. 
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iv. Rulings that are either parallel (cylindrical), meet at a fixed point 

(conical), or tangent to the regression curve or space curve (tangent 

developable), respectively. (refer Figure 2.11) 

v. Have zero Gaussian curvature, which is also known as singly curved 

surface. 

vi. Various methods to unroll a 3D-geometry with curved folding exist, 

composed by single-curved surfaces into planar elements. 

Clearly, rulings on the developable surfaces are significant in the geometric 

modelling of surfaces with curved fold lines. This can be explained where an infinite 

number of pairs of developable surfaces can be developed for one unique curved crease, 

as illustrated in Figure 2.12 (Vergauwen et al. 2017). Refer to Figure 2.13, Watanabe and 

Mitani (2019) also clarify the transformation of ruling patterns according to the folding 

motion.  

 

Figure 2.11 – Three Classes of Developable Surface: Cylinder (left), Cone (middle), 

and Tangent Developed (right). (Nelson, 2018) 

 

 

Figure 2.12 – Variation of Basic Shape of Paper: Initial Condition of Paper (Left), 

Bending of Paper along Curved Crease (Middle) and Physical Interaction of Paper 

through Twisting (Right). (Vergauwen et al. 2017)  
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Figure 2.13 – Transition of Ruling Patterns according to Folding Motions (Watanabe 

and Mitani, 2019) 

2.2.4 Current Applications of Origami-Inspired Design with Curved Fold 

 Lines 

The concepts and the aesthetic patterns of origami have been well-known and 

garnered attention in mathematics, engineering designs and applications (Reis et al., 

2015; Norman and Arjomandi, 2017; Rabinovich et al., 2019; Tachi, 2019). Generally, 

those applications are in folded forms of static 3-D solutions where plastic (permanent) 

deformation occurs along the crease lines (Vergauwen et al., 2017). Presently, the 

inspiration of design based on origami is extensively being implemented in sculptural 

art, robotics, biomedical functions, product packaging design, solar energy practices, 

aircraft, and temporary structure design.  

LE KLINT was founded in 1943 as a lightning company. The lamp designs are 

still handcrafted today. ‘Pendant 172’ in Figure 2.14(a) is one of the lampshade models 

with curved creases built in the form of continuous surfaces by Poul Christiansen 

(Demaine et al., 2011; Koschitz, 2014; Demaine et al., 2015). Figure 2.14(b) depicts 

‘ARUM’, a partnership between Zaha Hadid Architects and Robofold. The design 

incorporates lightweight shells and tensile structures in which thin sheets of metal are 

pleated with curved-creases by industrial robots (Etherington, 2012; Gerfen, 2012; 
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Vergauwen et al., 2014; Adriaenssens et al., 2016; Vergauwen et al., 2017). For the 

purpose of furniture use, Andreas Lund designs a collection of moulded plywood stools 

with curved folds known as ‘Sit’ illustrated in Figure 2.14(c) (Vergauwen et al., 2014; 

Vergauwen et al., 2017). With the use of Robofold as well, a coffee table is shown in 

Figure 2.14(d) made out of curved-folded metal is designed by Gregory Epps 

(Vergauwen et al., 2014). In terms of structural element design, Haresh Lalvani creates 

the metal column covers of 8-12 feet tall in folded sheet metal shown in Figure 2.14(e) 

(Demaine et al., 2011). In Figure 2.14(f), Tachi designs a deployable rigid-foldable 

structure with curved folds. The curved folded arches are assembled to form a cellular 

structure (Demaine et al., 2015). 

    
              (a)            (b)                 (c) 

   
              (d)         (e)     (f) 

Figure 2.14 – Design Implementations of Curved Fold Lines: (a)‘Pendant 172’ by Poul 

Christiansen (Demaine et al., 2011); (b) “ARUM” by Zaha Hadid Architects 

(Adriaenssens et al., 2016); (c) ‘Sit” by Andreas Lund (Vergauwen et al., 2017); (d) 

Coffee Table by Gregory Epps (Vergauwen et al., 2014); (e) Metal Column Covers by 

Haresh Lalvani; and (f) Rigid-Foldable Curved Deployable Structure by Tachi 

(Demaine et al., 2015)  

Besides that, Figure 2.15 shows the Undulatus Asperatus cloud pavilion made by 

Brancart et al. (2015) and is hung at the IASS2015 expo. A total of 99 components are 
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