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MEKANISME PENGISYARATAN NF-κB YANG DIARUH OLEH BMP-2 

DALAM PEMBEZAAN ODONTOGENIK SEL TUNJANG GIGI DI ATAS 

PERANCAH MEMBRAN AMNIOTIK MANUSIA 

 

ABSTRAK 

 

 Pengisyaratan tapak jalan NF-κB terlibat dalam organogenesis dan 

pengeruptan gigi manakala, penyingkiran tapak jalan NF-κB mengakibatkan 

penyekatan dalam perkembangan gigi. Walaubagaimanapun, pengaruh tapak jalan 

NF-κB dalam perkembangan gigi dan kajian odontogenesis masih tidak jelas sehingga 

kini. Oleh itu, kajian ini dijalankan untuk mengkaji mekanisme tapak jalan isyarat NF-

κB dalam pembezaan sel-sel tunjang dari gigi susu muanusia yang terlupas (SHED) 

kepada sel-sel menyerupai odontoblas. Analisis pengisyaratan NF-κB terbahagi 

kepada dua fasa. Fasa pertama dijalankan bertujuan untuk mengenalpasti kepekatan 

optimum perencat carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG 132) dan 

ammonium pyrrolidinedithiocarbamate (PDTC). SHED dikultur di atas membran 

amniotik manusia (HAM) dan dirawat dengan protein morfogenetik tulang-2 (BMP-

2). Kumpulan eksperimen dibahagikan kepada empat seperti berikut: SHED sahaja 

(S), SHED dikultur di atas membran amniotik (SA), SHED dikultur di atas membran 

amniotik dirawat dengan BMP-2 (SAB), SHED dikultur di atas membran amniotik 

dirawat dengan BMP-2 dan perencat MG 132 (SABM), dan SHED dikultur di atas 

membran amniotik dirawat dengan BMP-2 dan perencat PDTC (SABP). Berdasarkan 

kepada keputusan penghasilan protein NF-κB, 0.1 μM  daripada MG 132 manakala 25 

μM daripada PDTC dipilih sebagai kepekatan optimum untuk menghalang 

pengisyaratan NF-κB. Kemudiannya, fasa kedua dijalankan untuk mengkaji 
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pengekspresan gen bagi penanda sel tunjang, odontogenik, dan NF-κB . Pasca rawatan, 

SHED dituai pada hari 1, 7, 10, dan 14. Analisis selanjutnya dianalisa menggunakan 

tindak balas rantai polimerase transkriptase berbalik masa nyata (real time RT-PCR). 

Sepanjang eksperimen, ekspresi penanda gen sel tunjang, Nestin, Nanog, dan CD29 

adalah perbezaan nyata dalam kesemua kumpulan. Selain itu, keputusan kajian ini 

menunjukkan bahawa SHED yang dirawat dengan BMP-2 dan dikultur di atas HAM 

menunjukkan peningkatan dalam ekspresi penanda odontogenik iaitu dentine 

sialophosphoprotein (DSPP) (1.80 ± 0.06; 2.41 ± 0.01) dan alkaline phosphatase 

(ALP) (2.01 ± 0.01; 4.60 ± 0.21) pada hari 1 dan 7. Ini menunjukkan bahawa SHED 

berjaya dibezakan kepada sel-sel menyerupai odontoblas. Sementara itu, rawatan 

dengan PDTC atau MG 132 menunjukkan penurunan ekspresi ALP dan DSPP, 

menandakan bahawa isyarat NF-κB terlibat secara langsung dalam pembezaan dan 

pemineralan SHED. Sebaliknya,  interaksi di antara HAM, BMP-2, dan SHED 

meningkatkan ekspresi Aquaporin 5 (AQP5) pada hari ke-7 dan 10 (1.15 ± 0.01; 2.43 

± 0.24) dan Interleukin-8 (IL-8) pada hari ke-14 (0.88 ± 0.36). Walau bagaimanapun, 

rawatan dengan perencat menurunkan ekspresi gen tersebut pada hari ke-14 bagi 

AQP5 dan IL-8 untuk keseluruhan eksperimen. HAM membantu menigkatkan 

ekspresi Interleukin 1 beta (IL-1β) tetapi mengurangkan ekspresinya dengan 

penambahan BMP-2. Penambahan perencat turut menyebabkan pengurangan pada gen 

tersebut. Selain itu, ekspresi tumour necrosis factor (TNF-α) menurun bagi semua 

kumpulan apabila ditambah dengan BMP-2. Corak ekspresi yang sama turut 

ditunjukkan oleh RANKL bagi semua kumpulan, mencadangkan bahawa RANKL 

kurang dipengaruhi oleh HAM dan BMP-2. Hasil kajian juga menunjukkan bahawa 

HAM dan BMP-2 meningkatkan ekspresi Osteoprotegerin (OPG) pada peringkat awal 

pembezaan iaitu pada hari 1 (1.96 ± 0.05). Walau bagaimanapun, PDTC dan MG 132 
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mengurangkan ekspresi OPG selepas hari ke-7. Semua analisis statistik dilakukan 

pada tahap signifikan iaitu p<0.05. Kesimpulannya, berdasarkan analisis 

pengekspresan gen, kajian ini mencadangkan bahawa perencatan NF-κB secara 

langsung terlibat dalam pembezaan odontogenik SHED apabila dikultur di atas HAM 

dan dirawat dengan BMP-2. 
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MECHANISM OF NF-κB SIGNALING IN BMP-2 - INDUCED DENTAL 

STEM CELL ODONTOGENEIC DIFFERENTIATION ON HUMAN 

AMNIOTIC MEMBRANE SCAFFOLD 

ABSTRACT 

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) 

signalling pathway is involved in the tooth organogenesis and eruption process. With 

the elimination of NF-κB pathway could lead to a developmental detention of teeth. 

However, the influence of NF-κB signalling in tooth development as well as 

odontogenesis study remains unclear. Hence, this study was conducted to investigate 

the mechanism of NF-κB signalling in the differentiation of stem cells derived from 

human exfoliated deciduous teeth (SHED) into odontoblast-like cells. Analysis of NF-

κB signalling was divided into two phases. The first phase was aimed to identify the 

optimal concentration of carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG 132) and 

ammonium pyrrolidinedithiocarbamate (PDTC). SHED were cultured on human 

amniotic membrane (HAM) and treated with bone morphogenetic protein-2 (BMP-2). 

Experimental groups were assigned into four as follows: SHED only (S), SHED 

cultured on HAM (SA), SHED cultured on HAM treated with BMP-2 (SAB), SHED 

cultured on HAM treated with BMP-2 and MG 132 inhibitor (SABM), and SHED 

cultured on HAM treated with BMP-2 and PDTC inhibitor (SABP). Based on the NF-

κB protein expression, 0.1 µM and 25 µM of MG 132 and PDTC, respectively, were 

selected as an optimal concentration to inhibit NF-κB signalling. Thereafter, the 

second phase of the study was aimed to investigate the expression of stem cell, 

odontogeneic, and NF-κB gene markers. Following treatment, SHED were harvested 

on day 1, 7, 10 and 14. Further analyses were carried out using real time reverse 

transcription polymerase chain reaction (real time RT-PCR). Results showed that the 
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expression levels of stem cell gene markers, Nestin, Nanog, and CD29 were fluctuated 

in all groups. Besides that, the results of the present study showed that SHED treated 

with BMP-2 and cultured on HAM showed an increased at day 1 and 7 in the 

expression of odontogeneic markers, namely, dentine sialophosphoprotein (DSPP) 

(1.80 ± 0.06; 2.41 ± 0.01) and alkaline phosphatase (ALP) (2.01 ± 0.01; 4.60 ± 0.21). 

This indicated that SHED had successfully differentiated into odontoblast-like-cells. 

Meanwhile, treatment with PDTC or MG 132 showed a decreased expression of ALP 

and DSPP indicating that NF-κB signalling is directly involves in SHED 

differentiation and mineralisation. On the other hand, the interaction of HAM and 

BMP-2 with SHED increased the Aquaporin 5 (AQP5) expression at day 7 and 10 

(1.15 ± 0.01; 2.43 ± 0.24) and Interleukin-8 (IL-8) expression at day 14 (0.88 ± 0.36). 

While, the treatment with inhibitors decreased the expressions of both genes especially 

at day 14 for AQP5 and for IL-8 was throughout the experiment.  As for Interleukin 1 

beta (IL-1β), HAM induced its expression while, the addition of BMP-2 decreased its 

expression. Addition of the inhibitors also down-regulated its expression. Besides, 

Tumour necrosis factor (TNF-α) expression was down-regulated in all the groups 

when BMP-2 was added. A similar pattern of Receptor activator of nuclear factor 

kappa-Β ligand (RANKL) expression were demonstrated for all the treatment groups 

suggesting that RANKL was minimally affected by HAM and BMP-2. Results also 

demonstrated that HAM and BMP-2 increased Osteoprotegerin (OPG) at day 1(1.96 

± 0.05). However, PDTC and MG 132 reduced the expression of OPG after day 7. All 

statistical analyses were performed at the significance level of p<0.05. In conclusion, 

based on the gene expression analysis, this study suggested that inhibition of NF-κB 

directly involves in odontogeneic differentiation of SHED when cultured on HAM 

with the treatment of BMP-2.
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Background of the study 

 

Dental caries is the most prevalent infectious disease among children and adults. This 

oral problem affects the quality of life of approximately 90% of the world’s population 

(López and Baelum, 2007). Dental caries is characterised by infected and necrotic 

dental pulp tissue (Cooper et al., 2010). The dental pulp tissue provides vitality and 

sensitivity to the tooth. The pulp tissue is highly vascularised, innervated and also 

serves as a source of stem cells. These characteristics enable the pulp to play a 

significant role in homeostasis and formation of reparative dentin (Galler et al., 2011).  

 

One of the clinical treatments for dental caries is root canal therapy. This involves 

cleaning and replacement of the infected and necrotic pulp tissue with a mineral 

trioxide compound (Goldberg, 2016). As a result of replacing a living tissue with a 

trioxide compound, the tooth loses its vitality and sensitivity. Sometimes, the tooth is 

also exposed to infections and the complications associated with it (Cordeiro et al., 

2008). In adolescents, root canal treatment poses an even greater problem of root 

maturation (McTigue et al., 2013). 

 

These drawbacks in conventional therapy can be overcome by the use of tissue 

engineering (TE) strategies to regenerate the dental pulp. The three core factors that 

ensure the success of TE are the types of cells, scaffold and growth factors used (Toda 
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et al., 2007). Stem cell research has become a new era and is regarded as one of the 

important fields for the understanding of tissue regeneration and its implementation in 

regenerative medicine. Stem cells exist in an undifferentiated state, capable of 

proliferating over extended periods of time through self-renewing divisions and later 

differentiating into a variety of cells that contribute to organ formation and function 

(Chagastelles and Nardi, 2011). Since the discovery and characterisation of multi-

potent mesenchymal stem cells (MSCs) from bone marrow, it remains an exciting 

prospective cell source for regenerative medicine applications because of their strong 

proliferative potential and multi-lineage differentiation capability. Moreover, the 

identification of stem cells from several dental tissues has made pulp tissue 

regeneration a realistic clinical possibility.  

 

Despite the many types of dental stem cells available such as dental pulp stem cells 

(DPSCs) (Gronthos et al., 2000), periodontal ligament stem cells (PDLSCs) (Gould et 

al., 1977; Gronthos et al., 2006), stem cells from the apical papilla (SCAP) (Sonoyama 

et al., 2006), and stem cells from human exfoliated deciduous teeth (SHED) (Miura et 

al., 2003). This study was carried out on the SHED since the focus of this research is 

odontogenesis. Stem cells from dental pulp are categorised under adult stem cells and 

derived from ectoderm (Ulmer et al., 2010). It exhibits the MSC properties which has 

a self-renewal ability and able to transdifferentiate into another type of cell (Huang et 

al., 2009a). Therefore, markers that have been used for identifying MSCs are Nestin, 

Nanog, and, CD29 (Huang et al., 2009). SHED were selected in this study since there 

are less issues involved in isolation and can be obtained naturally from exfoliated 

deciduous teeth (Wang et al., 2010a).  
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The success in tissue regeneration also depends on the use of a suitable scaffold to 

carry specialised cells ex vivo or to orchestrate and differentiate the homing of 

endogenous cells in vivo (Alshehadat et al., 2016). With regard to that, human amniotic 

membrane (HAM) was selected due to its ability to promote cell growth and 

differentiation of stem cells (Díaz-Prado et al., 2010). It is found in the innermost layer 

of the placenta, consisting of prominent basement membrane and subjacent avascular 

stromal (Solomon et al., 2001). HAM is natural in origin which raises no ethical issue, 

abundantly available and easy to acquire (Alviano et al., 2007). Unlike the synthetic 

scaffold, no modification of structure is needed in HAM to allow micro channel 

formation (Willerth and Sakiyama-Elbert, 2008). Thus, it can serve as an excellent 

scaffold for tissue regeneration, especially due to the presence of extracellular matrix 

(ECM) components that help in cell proliferation and differentiation (Niknejad et al., 

2008). In this study, glycerol-preserved HAM was used as it mimics the structural 

integrity of fresh HAM (Lo and Pope, 2009). It has been shown that when epithelial 

and mesenchymal cells are seeded on a cellular scaffold created from the amniotic 

membrane, the cells were highly interconnected and capable of penetrating the porous 

structure of the amnion scaffold (Niknejad et al., 2008). 

 

Another essential component that is needed to promote odontogeneic differentiation is 

the growth factor. Bone morphogenetic proteins (BMPs) have a prominent role in tooth 

development and formation (Chen et al., 2004), and play a major role in skeletal 

development, bone formation, and MSC differentiation (Chen et al., 2012a). Among 

the osteogeneic BMPs, BMP-2 has been proven to enhance MSC differentiation into 

odontoblast-like cells (Saito et al., 2004).  
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There are many specific markers to determine odontoblastic differentiation. In this 

study, odontoblastic differentiation markers such as dentine sialophosphoprotein 

(DSPP) and alkaline phosphatase (ALP) (Wei et al., 2007) which play important roles 

in stimulating tertiary dentine formation in human dental pulp were selected 

(Casagrande et al., 2010). Tertiary dentine is a third type of dentine secreted as a 

response to external pathological stimuli such as caries. Besides that, Aquaporin 5 

(AQP5), a membrane water channel involved in osteo/odontoblastic differentiation (Yi 

et al., 2012) was also selected. The protein is observed in dental lamina, inner enamel 

epithelium, stratum intermedium, stellate reticulum and the outer enamel epithelium 

of a tooth (Felszeghy et al., 2004).  

 

This complex biological event of odontogenesis involves nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB) signalling pathway. The pathway is 

known to play a role in tooth organogenesis and eruption process (Ohazama and 

Sharpe, 2004). The receptor activator of nuclear factor kappa-Β ligand (RANKL)/ 

osteoprotegerin (OPG) system is considered as an important signal transduction 

pathway in the formation, differentiation, and activation processes of osteoclast 

(Boyce and Xing, 2007). The elimination of NF-κB is an effective approach to inhibit 

osteoclast formation and bone resorptive activity (Abu-Amer, 2013). This may result 

in a developmental detention of teeth (Courtney et al., 2005). NF-κB protein complex 

interacts with other signalling pathways such as Notch signalling and 

phosphatidylinositol-4, 5-bisphosphate 3-kinase (PI3K)/ protein kinase B (Akt) 

pathway during the tooth development and inflammation (Cai et al., 2011; Kuan et al., 

2012). It regulates a variety of pro-inflammatory mediators, including cytokines tumor 

necrosis factor (TNF-α) and Interleukin 1 beta (IL-1β) and chemokines, Interleukin 8 
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(IL-8) (Chang et al., 2005). However, the current knowledge of the role of this pathway 

on tooth development as well as odontogenesis is yet to be explored.  

 

1.2  Research justification 

 

Numerous study have been carried out exhibiting the capacity of mesenchymal stem 

cells (MSCs) to differentiate into odontoblasts like cells with different results and 

success rate. However, to the best of our knowledge, there is no study have addressed 

on the dental pulp regeneration focusing on NF-κB signalling. The inhibition of NF-

κB signalling pathway was carried out to promote odontogeneic differentiation of 

SHED seeded on HAM due to the fact that the inhibition of NF-κB also inhibits 

osteoclastogenesis. Hence, we presume that inhibiting osteoclastogenesis would 

indirectly promote odontogenesis. This study used HAM for three-dimensional (3D) 

construct consisting of SHED and BMP-2. The use of this construct is based on the 

consideration of the abilities of SHED, HAM, and BMP-2 to induce odontogenesis in 

vitro.  

 

1.3  Research objectives 

 

1.3.1 General objective 

 

The study was conducted to investigate the mechanism of NF-κB signalling in bone 

morphogenetic protein-2 (BMP-2) – induced dental stem cell odontogeneic 

differentiation on human amniotic membrane scaffold. 
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1.3.2  Specific objectives 

 

1. To determine the optimal inhibitor concentration of NF-κB inhibitors namely, 

ammonium carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG 132) and 

pyrrolidinedithiocarbamate (PDTC), in stem cells from human exfoliated 

deciduous teeth (SHED) induced with BMP-2  in the presence and absence of 

human amniotic membrane (HAM) using ELISA.  

 

2. To assess the morphological changes of SHED seeded on HAM in the presence and 

absence of NF-κB inhibitors using inverted microscope. 

 

3. To determine the gene expression levels of stem cell markers namely, Nestin, 

NANOG, and CD29, in BMP-2 induced SHED, seeded on HAM, in the presence 

and absence of NF-κB inhibitors. 

 

4. To determine the gene expression levels of odontoblast specific markers namely, 

dentine sialophosphoprotein (DSPP) and alkaline phosphatase (ALP), in BMP-2 

induced SHED, seeded on HAM, in the presence and absence of NF-κB inhibitors. 

 

5. To determine the gene expression levels of NF-κB inducers namely, Interleukin-8 

(IL-8), interleukin 1 beta (IL-1β), and tumor necrosis factor (TNF-α), in BMP-2 

induced SHED, seeded on HAM, in the presence and absence of NF-κB inhibitors. 

 

6. To determine the gene expression levels of NF-κB downstream effectors associated 

with osteo-odontoblastic regulators namely, receptor activator of nuclear factor 
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kappa-Β ligand (RANKL) and osteoprotegerin (OPG), in BMP-2 induced SHED, 

seeded on HAM, in the presence and absence of NF-κB inhibitors. 

 

7. To determine the gene expression levels of Aquaporin 5 (AQP5), in BMP-2 induced 

SHED, seeded on HAM, in the presence and absence of NF-κB inhibitors. 

 

1.4  Research questions 

 

Does NF-κB signalling plays a role in regulating odontogeneic differentiation of 

SHED induced by BMP-2 cultured on HAM? 

 

1.5  Research hypothesis 

 

NF-κB signalling plays a role in regulating odontogeneic differentiation of SHED 

induced by BMP-2 cultured on HAM.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1  Dental pulp and tooth loss 

 

2.1.1  Dental pulp 

 

Dental pulp has essential functions to sustain teeth by supplying nutrient and oxygen, 

innervation, reactionary/reparative dentin formation and immune response 

(Nakashima et al., 2009). The pulp is small in scale but has a complex structure that 

requires challenging therapeutic strategies for repair and regeneration (Janjić et al., 

2016).  An evidence of pulp-like tissue regeneration de novo showed that dental pulp 

stem cells have risen into odontoblast-like cells (Huang et al., 2009b).  

 

2.1.2 Dental pulp structure 

 

Dental pulp is derived from neural crest cell and is a specialised loose connective tissue 

located in the centre of the tooth (Sonoyama et al., 2008). The dental pulp is encased 

with a rigid, non-compliant shell and its survival depends on the blood vessels 

accessing the interior of the tooth through apical foramina and accessory canal 

(Ramazanzadeh et al., 2009). The structure contains cellular, fibrillary, neurovascular, 

and ground substance elements (Trowbridge and Kim, 1994). The cellular elements 

include mesenchymal stem cells (MSCs), odontoblasts, fibroblasts, and defensive cells 

such as lymphocytes, mast cells, basophils, macrophages, eosinophils, neutrophils, and 
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plasma cells (Yu and Abbott, 2007). Proliferation and condensation of these cells 

forms the dental papilla from which the mature pulp is derived (Tziafas and Kodonas, 

2010). The primary function of pulp is to produce primary dentin during early tooth 

development, secondary dentin throughout the entire life span of the tooth, and tertiary 

dentin under pathogenic stimuli (Zhang and Yelick, 2010).  
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2.1.3  Odontoblast 

 

Odontoblast, a layer of cells which lines at the periphery of the pulp in the inner dentin 

surface, is the specialised cell type capable of synthesising dentin (Zhang and Yelick, 

2010) (Figure 2.1). Interactions between epithelial and dental papilla cells promote 

tooth morphogenesis by stimulating a sub-population of mesenchymal cells to 

differentiate into odontoblasts (Yen and Sharpe, 2008). Odontoblasts are thought to 

arise from the proliferation and differentiation of a precursor population, residing 

somewhere within the pulp tissue (Gronthos et al., 2000). In addition, the dental pulp 

has an inherent capability to produce reparative dentine when the local environment is 

favourable (Kitagawa et al., 2007). Morphologically, odontoblasts are columnar 

polarised cells with eccentric nuclei and lengthy cellular processes aligned at the outer 

edges of dentin (Gronthos et al., 2000) (Figure 2.2). Unlike osteocytes, odontoblasts 

are not incorporated in the matrix, except for their processes that are embedded in the 

tubules. This is why dentine is not considered as an individual tissue but rather as the 

dentine-pulp complex (Simon et al., 2011).  
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Figure 2.1: Cross-sectional image of tooth structure with exposed dentine. A tooth 

is made up of several components including the dentin and enamel. (Adapted from: 

https://www.shutterstock.com/search/pulp+cavity). 
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Figure 2.2: Cross sectional schematic diagram of odontoblast and dentine tubules 

of tooth. Dentinal tubules form around each odontoblast process. (Adapted from: 

http://www.tannlegetidende.no/i/2016/1/d2e198). 
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2.1.4  Odontogenesis 

 

Odontogenesis or tooth formation is a process that occurs within developing embryos 

via sequential and reciprocal interactions between mesenchymal and epithelial cells 

(Volponi et al., 2010). The principles of early odontogenesis are being used to devise 

methods to generate teeth in humans (Modino and Sharpe, 2005).  

 

Odontogenesis starts with the condensation of the neural-crest derived 

ectomesenchymal cells around the epithelial bud (Volponi et al., 2010). The formation 

is commonly divided into the following stages: initiation stage, the bud stage, the cap 

stage, the bell stage, and the maturation. The staging of odontogenesis is an attempt to 

categorise changes that take place along a continuum; frequently deemed difficult to 

determine the current stage of a particular developing tooth (Krivanek et al., 2017).  

 

2.1.4(a) Odontoblast specific gene markers 

 

Odontoblast phenotype is widely used in previous studies to determine the 

odontogeneic differentiation of stem cells (Shi et al., 2005; Bakopoulou et al., 2011). 

In this study, two cell surface markers expressed by odontoblast were analysed, which 

are dentine sialophosphoprotein (DSPP) and alkaline phosphatase (ALP). These 

proteins are essential for suitable development and mineralisation of hard tissues such 

as bone and dentine (Suzuki et al., 2012). Other available proteins involved in 

odontogenesis are dentin matrix protein 1 (DMP1) (Lu et al., 2007), osteocalcin 

(OCN) (Yu et al., 2007), osteopontin (OPN) (Rathinam et al., 2015), collagen-1 (COL-

1) (Paduano et al., 2016), runt-related transcription factor 2 (Runx2) (Hu et al., 2011), 
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osterix (OSX) (Zhang et al., 2011), and  matrix extracellular phosphoglycoprotein 

(MEPE) (Staines et al., 2012). 

 

DSPP is an ECM protein, typically found in dentin- and bone-specific gene, which 

plays an important role in dentin mineralisation and tooth development (Wu et al., 

2008). The organic components of dentin consist of 90% type I collagen and 10% non-

collagenous proteins namely, dentin sialoprotein (DSP) and dentin phosphoprotein 

(Fratzl et al., 2004). It was reported that, DSPP up-regulates osteoblast marker genes 

in primary human adult MSCs, mouse osteoblastic and fibroblastic cell lines 

(Jadlowiec et al., 2004). Besides bone and dentin, DSPP also plays an important role 

in growth factor function and cellular signalling transduction in human tissues (Qin et 

al., 2002; Alvares et al., 2006).  

 

ALP is an endogenous enzyme present in many organs such as ovary and thymus 

(McComb et al., 2013). The enzyme activity is most often involved at the beginning 

of osteo/odontoblast differentiation (Min et al., 2010). As an enzyme marker of both 

osteoblasts and odontoblasts, ALP plays a vital role in calcified tissue formation and 

extracellular matrix metabolism (Lee et al., 2006). According to Beck (2000), this 

enzyme is bound to the membrane of osteoblasts and functions to enhance osteogenesis 

by degrading pyrophosphate. It works by inhibiting crystallisation at the calcification 

site and degrades organic phosphate esters, to increase the inorganic phosphate 

concentration (Beck et al., 2000). In addition, it has also been reported that the activity 

of ALP in odontoblast-like cells is higher than in undifferentiated cells (Pang et al., 

2006). Therefore, ALP is believed to stimulate the formation of mineralised nodule 
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and calcium deposition in most cells that have differentiated into odontoblasts, as it is 

considered as an early marker of odontoblastic differentiation (Wu et al., 2008).  

 

2.1.4(b) Aquaporin5 and its role in odontogenesis 

 

Aquaporins (AQPs) are the type of integral membrane proteins that facilitate water 

movement into the cell by forming pores in the membrane of biological cells (Borgnia 

et al., 1999). AQP5 is localised in many types of cells such as salivary acinar, alveolar, 

and cornea cells. Moreover, it is one of the 13 membrane proteins from the family of 

aquaporins that control the movement of water (Yakata et al., 2011). Among these, 

AQP1, AQP2, AQP4, AQP5, AQP6, or AQP8 are exclusively selective for water, 

while AQP3, AQP7, AQP9, or AQP10 are proposed as aqua glyceroporins which can 

transport water and small neutral solutes such as glycerol (Nico and Ribatti, 2011). 

AQP5 controls cell homeostasis as it is down-regulated in atrophic salivary acinar cells 

(Azlina et al., 2010). Felszeghy (2004) demonstrated that AQP5 is expressed in 

various human and mouse dental structures during odontogenesis but there was no 

AQP5 expression detected in dental pulp cells when dental hard tissues were present. 

However, after pre-dentin formation, an intense signal was evident for these water 

channel throughout the entire cytoplasm of young odontoblasts (Felszeghy et al., 

2004). Meanwhile, previous study reported that AQP5 is involved in osteogeneic stem 

cell differentiation (Yi et al., 2012) and associates with NF-κB signalling (Yao et al., 

2010). It was reported that AQP5 is down-regulated during osteogeneic stem cell 

differentiation (Yi et al., 2012), and the down-regulation of AQP5 is associated with 

NF-κB signalling (Yao et al., 2010). These findings relentlessly supported the negative 

role of AQP5 in osteogeneic stem cell differentiation. Other than that, some findings 
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also suggested AQP5 is associated with cancer cell proliferation and migration (Jung 

et al., 2011; Wang et al., 2015).  

  

2.1.5 Dental pulp impairment 

 

When the teeth suffer from impairment caused by chemical, mechanical, thermal or  

microbial causes, they lead to inflammation and disease affecting local tissue, lymph 

as well as vascularity (Demarco et al., 2011) (Figure 2.3). Dental caries, one of the 

common health problems, frequently occurs among children (Werle et al., 2016). The 

carious infection is caused by cariogenic bacteria such as Streptococci and 

Lactobacilli. The interaction between the two strains of bacteria resulting in acidic 

environment and thus deepened the lesion (Farges et al., 2015). The infection at the 

pulp area is difficult to manage since it has minimal blood supply affecting the 

inflammatory regulation to combat infections (Demarco et al., 2011). Injured dental 

pulp has limited potential for self-recovery. If the infected pulp area has a severe 

inflammation, it leads to irreversible pulpitis (Farges et al., 2015). Irreversible pulpitis 

indicates that vascularity function can no longer be achieved in that infected area 

(Wang et al., 2010c). 

 

On the other hand, if the inflammation is mild, involves moderate attrition, erosion, or 

superficial fracture, the odontoblasts can usually survive and continue to produce the 

dentin barrier beneath the injury, allowing the underlying soft pulp tissue to retain its 

function (Zhang and Yelick, 2010). The essential strategy to preserve dental pulp when 

it is infected is, to protect the remaining odontoblasts (Ward, 2002). However, when 

the infections are strong and rapidly progressing, deep dentin caries, severe abrasion, 
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or fracture, the primary odontoblasts will be destroyed (Zhang and Yelick, 2010). In 

such cases, the post-mitotic terminally differentiated odontoblasts lack the ability to 

proliferate to replace the injured odontoblasts or to produce new dentin (Ricucci et al., 

2014). However, the MSCs within the dental pulp have the ability to differentiate into 

odontoblasts and to secrete reparative dentin (Obeid et al., 2013).  
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Figure 2.3: Cross sectional schematic diagram of tooth exposing damaged pulp. 

Bacteria and other decayed debris that goes into the pulp chamber results into an 

infected or abscessed tooth. (Adapted from: http://dentalwestwood.com/root-canals/).  
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2.1.6 Advancement in dental pulp treatment 

 

Traditional treatment in dental pulp impairment is regenerative endodontics. It is based 

on the concept of tissue engineering (TE). Regenerative endodontics can be defined as 

biologically based procedures designed to replace damaged structures, including 

dentine and root structures, as well as cells of the pulp-dentine complex (Murray et al., 

2007). Clearly, it is a field of active research that is dynamically growing in both basic 

research and clinical applications. It has been reported that the scope of regenerative 

endodontics may be increased to include the replacement of periapical tissues, 

periodontal ligaments, gingiva and even the whole tooth. This would give patients a 

clear alternative to the artificial tooth implants that are currently available (Garcia-

Godoy and Murray, 2006).  

 

Since stem cells could be differentiated into other cell lineages, dental pulp 

regeneration has caught the interest of many researches (Huang et al., 2009a). The 

possible approach taken to regenerate dental pulp is through transplantation of stem 

cells into the pulp area for the differentiation into functional tissue including 

vascularisation (Trope, 2010; Huang, 2011). Pulp vasculature is essential for nutrient 

and oxygen transportation and inflammatory regulation (Nakashima et al., 2009).  

 

2.2 Understanding tissue engineering concept for dental pulp  

regeneration 

 

Regeneration of pulp is an unmet need in endodontic therapy (Nakashima et al., 2009). 

TE paves the way for researches in the new field of regenerative endodontics to 
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overcome the limits of conservative treatment (Janjić et al., 2016). TE based 

approaches have been considered as an attractive strategy for dental pulp regeneration 

(Nakashima and Reddi, 2003; Nör, 2006; Rosa et al., 2013). TE evolved from the field 

of biomaterials development and perhaps is best defined as the involvement of cells, 

scaffolds, and signalling factors, alone or in combination,that aims to improve or 

replace biological tissues. TE was also known as an interdisciplinary field that applies 

the principle of engineering and life sciences towards the development of biological 

substitutes that restore, maintain, or improve tissue function or a whole organ (Lanza 

et al., 2011). In addition, TE also aims to stimulate the body either to regenerate tissue 

on its own or to grow tissue outside the body which can then be implanted as natural 

tissue (Nadig, 2009). TE with the triad of; i) an appropriate cell source ii) a supportive 

matrix (scaffold) and iii) inductive biological factors or signals create better 

regenerative therapies (Murray et al., 2007). Therefore, choice of scaffolds, growth 

factors, and cells are the key considerations in developing a strategy for TE. 

 

2.2.1 Scaffold 

 

Scaffold is developed to support the host cells during TE, promoting their 

differentiation and proliferation throughout their formation into a new tissue (Niknejad 

et al., 2008). Therefore, the design and selection of the biomaterials used for 

scaffolding is a critical step in TE (Mano et al., 2007). Scaffolds can be artificial or 

natural. Natural scaffolds are usually more biocompatible when compared with 

synthetic scaffolds (Liu et al., 2007). During TE, cell seeded onto scaffolds is the first 

step in establishing a 3D culture, and plays a crucial role in determining the 

progression of the tissue formation (Song et al., 2008). Successful cell seeding of the 
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scaffold depends on the type and source of the living cells as well as ECM components 

of the scaffold (Benders et al., 2013) to support 3D tissue formation in the therapeutic 

application (Badylak et al., 2009). Since the construction of a scaffold must mimic the 

ECM, therefore the natural source scaffold that can be easily obtained which is human 

amniotic membrane (HAM) were chosen. ECM components of the HAM such as 

collagen, elastin, laminin, and fibronectin have been shown to be an excellent 

candidate of a scaffold for TE application (Chen et al., 2012b).  

 

2.2.1(a) Human amniotic membrane (HAM) 

 

HAM thickness varies from 0.02 mm to 0.5 mm and consists of three main histological 

layers: the epithelial layer, the thick basement membrane and the avascular 

mesenchymal tissue (Mamede et al., 2012a). The basement side comprised of 

epithelium and basement membrane while the stromal side has three distinct layers; 

which are compact, fibroblast and spongy layers (Hashim et al., 2016). The basement 

membrane contains large amounts of proteoglycans that are rich in heparan sulphate 

and that serves as a permeable barrier to amniotic macromolecules and several 

molecules with a structural function enabling the maintenance of membrane integrity 

(Toda et al., 2007). Those molecules are actin, α- actinin, spectrin, ezrin, several 

cytokeratins, vimentin, desmoplakin and laminin (Mamede et al., 2012a). The most 

investigated molecules is laminin because it contributes to cell survival, 

differentiation, shape, movement and is involved in the maintenance of tissue 

phenotypes (Takashima et al., 2004; Toda et al., 2007). 
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Besides that, the outer layer of HAM is composed of mesenchymal fibroblast-like cells 

that are probably derived from the mesodermal embryonic plate scattered in a full-

term membrane (Díaz-Prado et al., 2011) (Figure 2.4). The content of collagen-rich 

mesenchymal layer increases its tensile strength. The outermost layer of the amnion as 

zona spongiosa, because its abundant content of proteoglycans and glycoproteins 

produces a spongy appearance in histological preparations (Rocha and Baptista, 2015). 

This layer lying adjacent to the chorion laeve is an almost acellular structure and 

contains a non-fibrillar meshwork mostly of type III collagen (Benirschke et al., 2012). 
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Figure 2.4: Schematic diagram of human amniotic membrane (HAM). Basement 

side comprised of epithelium and basement membrane while stromal side has 3 distinct 

layers; which are compact, fibroblast and spongy layers. (Adapted from Hashim et al., 

2016). 
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2.2.1(b) Applications and potentials of HAM in tissue engineering  

 

Possessing many favourable properties, such as in-expensiveness and its availability, 

makes HAM a potential biomaterial scaffold for TE applications, especially for soft 

TE. In addition, this material is made up of many ECM proteins, cytokines, and growth 

factors that could enhance cell proliferation and function (Gholipourmalekabadi et al., 

2015). When epithelial and mesenchymal cells are seeded on a cellular scaffold created 

from the amniotic membrane, the cells were highly interconnected and capable of 

penetrating the porous structure of the amnion scaffold (Niknejad et al., 2008).  

 

In early 19th century, HAM was initially designed for skin transplantation and, later, 

HAM was also used for management of skin burns and superficial wounds (Mamede 

et al., 2012a). Studies have indicated that the use of this membrane is mainly 

associated with the early induction of the repair process, as well as the promotion of 

pain relief and hemostasis (Rinastiti et al., 2006). Interestingly, the antibacterial 

properties of this membrane have also been reported when it is applied to infected 

wounds. Their findings demonstrated that the high concentration of lysozyme is a 

powerful bactericidal enzyme that against many gram-negative microorganisms 

(Werber and Martin, 2013).  

 

The special properties and availability of HAM made it an ideal candidate for many 

other purposes in research including periodontal regeneration. HAM is known to be 

suitable substrate for culturing periodontal ligament cells as these cells are capable of 

proliferating, maintaining their original properties and provide strong cell adhesion on 

the basement side of cryopreserved HAM (Adachi et al., 2014).  




