SULIT

Second Semester Examination 2021/2022 Academic Session

July/August 2022

EAS458 - Pre-Stressed Concrete Design

Duration : 1 hour

Please ensure that this examination paper contains FIVE (5) printed pages including appendix before you begin the examination.

Instructions: This paper contains THREE (3) questions. Answer TWO (2) questions.

All questions MUST BE answered on a new page.

1. (a) A concrete beam of 10 m span, 250 mm wide and 300 mm deep, is pre-stressed by two cables. The cross-sectional area of each cable is $139 \mathrm{~mm}^{2}$, and the initial stress in the cable is 1336 MPa for each cable. Cable 1 is in a parabolic profile with an eccentricity of 50 mm above the centroid at the ends, and 50 mm below the centroid at the centre of the span. Cable 2 is in a straight line with 100 mm uniform eccentricity below the centroid. Determine the maximum service load (excluding the self-weight) this beam can carry by considering only the allowable section stresses at the mid-span with no tension.
Use $\gamma_{\text {con. }}=25 \mathrm{kN} / \mathrm{m}^{3}, f_{\mathrm{ck}}(t)=27 \mathrm{MPa}$ and concrete strength C40/50. Assume total losses are 20\%.
[40 marks]
(b) Based on the solution in (a), discuss any significant effect on the determination of the maximum service load this beam can carry if the concrete class is increased to C50/60.
[10 marks]
2. (a) A post tensioned beam with cross-sectional dimension of $400 \mathrm{~mm} \times$ 900 mm is equipped with a double tendon arrangement. The depth of the tendons at midspan measured from the top of the beam to the centre of the tendon is 600 mm and 750 mm . Each tendon consists of pre-stressing strand with area, $A_{p s}=1056 \mathrm{~mm}^{2}$ and characteristic tensile strength, $f_{p k}=1860 \mathrm{~N} / \mathrm{mm}^{2}$. If the initial pre-stress applied to each tendon is $1100 \mathrm{~N} / \mathrm{mm}^{2}$ and 30% losses are anticipated, verify that $x=372 \mathrm{~mm}$ can be used as the depth of the neutral axis. Subsequently, determine the ultimate moment of resistance for the section. Consider $f_{c k}=40 \mathrm{~N} / \mathrm{mm}^{2}, E_{p}=205 \mathrm{kN} / \mathrm{mm}^{2}, \gamma_{\mathrm{m}}=1.15$ and $\gamma_{\mathrm{p}}=$ 0.9 .
[45 marks]
(b) Briefly discuss ONE (1) of the most practical solutions to increase the moment of resistance of a pre-stressed beam.
3. A pre-stressed concrete beam shown in Figure 1 is constant in cross-section over a 25 m simply supported span equipped with a parabolic tendon profile. The tendon is located 300 mm below the centroid at both ends and 750 mm at mid-span. The beam supports an ultimate uniformly distributed load of 42 kN / m and $f_{c k}=40 \mathrm{~N} / \mathrm{mm}^{2}$.

Given data:
Pre-stress force after losses $=2600 \mathrm{kN}$
$A_{s 1}=3500 \mathrm{~mm}^{2}$
$A=520 \times 10^{3} \mathrm{~mm}^{2}$
$A_{p s}=3700 \mathrm{~mm}^{2}$
$f_{y k}=500 \mathrm{~N} / \mathrm{mm}^{2}$ for the shear links
$f_{\text {cth }}=2.2 \mathrm{~N} / \mathrm{mm}^{2}$
$\gamma_{c}=1.5$

Figure 1
(a) Determine shear force for the section.
(b) Assess if shear reinforcement is required.
(c) Evaluate the crushing strength $\mathrm{V}_{\mathrm{Rd} \text {, max }}$ of the concrete strut.
(d) Determine the area and spacing of links.
(e) Determine the minimum link requirement.
(f) Determine the additional longitudinal force.

APPENDIX

Governing inequalities:

At transfer:

$$
\begin{aligned}
& \frac{P_{\mathrm{m} 0}}{A_{\mathrm{c}}}-\frac{P_{\mathrm{m} 0} e}{Z_{\mathrm{t}}}+\frac{M_{0}}{Z_{\mathrm{t}}} \geq f_{\mathrm{ct}, 0}--- \text { top fibre } \\
& \frac{P_{\mathrm{m} 0}}{A_{\mathrm{c}}}+\frac{P_{\mathrm{m} 0} e}{Z_{\mathrm{b}}}-\frac{M_{0}}{Z_{\mathrm{b}}} \leq f_{\mathrm{cc}, 0}--- \text { bottom fibre }
\end{aligned}
$$

At service:

$$
\begin{aligned}
& \frac{P_{\mathrm{m}, \mathrm{t}}}{A_{\mathrm{c}}}-\frac{P_{\mathrm{m}, \mathrm{t}} e}{Z_{\mathrm{t}}}+\frac{M_{\mathrm{T}}}{Z_{\mathrm{t}}} \leq f_{\mathrm{cc}, \mathrm{t}}--- \text { top fibre } \\
& \frac{P_{\mathrm{m}, \mathrm{t}}}{A_{\mathrm{c}}}+\frac{P_{\mathrm{m}, \mathrm{t}} e}{Z_{\mathrm{b}}}-\frac{M_{\mathrm{T}}}{Z_{\mathrm{b}}} \geq f_{\mathrm{ct}, \mathrm{t}}--- \text { bottom fibre }
\end{aligned}
$$

