SULIT

Second Semester Examination
2021/2022 Academic Session
July/August 2022

EAS254 - Structural Analysis

Duration : 3 hours

Please ensure that this examination paper contains SEVEN (7) printed pages including appendix before you begin the examination.

Instructions: This paper contains FIVE (5) questions. Answer ALL questions.

All questions MUST BE answered on a new page.

1. Figure 1 shows a frame subjected to a concentrated moment of M at point B, a uniformly distributed load of w acting vertically along span BC and a point load of P at mid-span of span AB. Use the virtual work method to determine the slope at A and displacement at C along the inclined plane $B C$ (x-axis). Take $E=200 \mathrm{GPa}$ and $I=100 \times 10^{6} \mathrm{~mm}^{4}$. Ignore the axial work. The values of all applied loads are given in Table 1.
[20 marks]

Figure 1

Table 1

Last digit of index number	P (kN)	w $(\mathrm{kN} / \mathrm{m})$	Second last digit of index number	M (kNm)
0	25	7.5	0	20
1	30	8	1	22.5
2	35	8.5	2	25
3	40	9	3	27.5
4	45	9.5	4	30
5	42.5	10	5	32.5
6	37.5	10.5	6	35
7	32.5	11	7	37.5
8	27.5	11.5	8	40
9	22.5	12	9	40.5

Note: If your index number is 50038, use $P=27.5 \mathrm{kN}, w=11.5 \mathrm{kN} / \mathrm{m}$ and $\mathrm{M}=27.5$ kNm.
2. Figure 2 shows a beam carrying a point load of 100 kN at spans $A B, B C$ and DE acting at 30° and 150° with certain distance. Meanwhile, span BC carrying a uniform distributed load of $10 \mathrm{kN} / \mathrm{m}$ and span CD carrying a distributed load varying from $10 \mathrm{kN} / \mathrm{m}$ at C to $0 \mathrm{kN} / \mathrm{m}$ at D . Supports A and E are fixed, whereas supports B, C and D are pinned. $E l$ is constant for the beam.
(a) Compute the internal moments at the joint of the beam by using Moment Distribution Method. Fixed end moment is given in the Appendix.
[15 marks]
(b) Draw the bending moment diagram and the qualitative deflected shape for the beam.
[5 marks]

Figure 2
3. Figure 3 shows a frame carrying a point load of 40 kN and 100 kN at the midspan of $A B$ and $B C$ and an additional $20 \mathrm{kN} / \mathrm{m}$ of uniform distributed load at span AB. Meanwhile, span DE carrying a distributed load varying from 20 kN / m at midspan $D E$ to $0 \mathrm{kN} / \mathrm{m}$ at D and E . A point load of 10 kN is loaded at overhang portion for span DG. Supports A, C and F are fixed and support E is pinned. $E l$ is constant for the frame.

Compute the internal moments at the joint of the frame by using Slope Deflection Method. Fixed end moment is given in the Appendix.
[20 marks]

Figure 3
4. Figure 4 shows a single overhanging concrete beam that supports a trapezoidal load with a minimum and maximum of $15 \mathrm{kN} / \mathrm{m}$ and $30 \mathrm{kN} / \mathrm{m}$, respectively, along with span $A B$. In addition, the beam supports a uniformly distributed load of $15 \mathrm{kN} / \mathrm{m}$ along with span BC and a concentrated load of 20 kN at C . The beam is fixed at A and supported by a roller at B . El of the beam is constant. Answer the following questions using the method of least work.
(a) Using a vertical reaction force at B as a redundant force, determine the reactions at supports A and B.
[17 marks]
(b) If a roller is placed at point C , state the analysis procedure to determine the reaction force at supports A, B, and C .
[3 marks]

Figure 4
5. Figure 5 shows a rigid-jointed frame is loaded with the working loads. Determine the value of M_{p} if the collapse load factor is 1.5 . Consider all possible mechanisms.
[20 marks]

Figure 5

APPENDIX

