SULIT

Second Semester Examination
2021/2022 Academic Session
July/August 2022

EAP215 - Water Supply and Treatment Engineering

Duration : 2 hours

Please ensure that this examination paper consists of NINE (9) pages of printed material before you begin the examination.

Instructions: This paper contains FIVE (5) questions. Answer FOUR (4) questions.
All questions MUST BE answered on a new page.

1. (a) Determination of population projection can be done using four methods. Identify a suitable method and calculate the population projection for the large and established City X in the year 2041 based on the given data in Table 1.
[10 marks]

Table 1: Population in City X

Year	Population
1961	858,545
1971	$1,015,672$
1981	$1,201,553$
1991	$1,691,538$
2001	$2,077,820$
2011	$2,585,862$

(b) Explain the physical characteristics of turbidity and total suspended solids related to water quality.
[6 marks]
(c) Describe the importance of the pH evaluation at the abstraction point where the water supply is abstracted and at the final point of a water treatment plant. Distinguish between the two observations.
[5 marks]
(d) The Environmental Quality (Sewage and Industrial Effluent) Regulations, Environmental Quality Act is the main reference to check water quality from the water supply abstraction. Explain TWO (2) comparisons between standard A and B in this matter.
2. The treatment process of $55,000 \mathrm{~m}^{3} /$ day of water requires $40 \mathrm{mg} / \mathrm{L}$ of alum as a coagulant. The natural alkalinity of the river water is equivalent to $6 \mathrm{mg} / \mathrm{L}$ of CaCO^{3}.
(a) Determine the dosage of lime as CaO needs to be added to react with alum after the natural alkalinity is exhausted.
[6 marks]
(b) Determine the required quantities of quicklime (containing $80 \% \mathrm{CaO}$) and alum in kg/day.
[4 marks]
(c) The design flow for a water treatment plant (WTP) is $5.8 \times 10^{3} \mathrm{~m}^{3} / \mathrm{d}$. The rapid mixing tank will have a mechanical mixer and the average alum dosage will be $42 \mathrm{mg} / \mathrm{L}$. The theoretical mean hydraulic retention time of the tank will be 1 minute. The dynamic viscosity is $8.91 \times 10^{-4} \mathrm{Ns} / \mathrm{m}^{2}$. Determine the following:
i) The quantity of alum needed on a daily basis in $\mathrm{kg} /$ day.
ii) The dimensions of the tank in meters for a tank with equal length, width, and depth.
iii) The power input required for a G of $950 \mathrm{~s}^{-1}$ and water temperature of $25^{\circ} \mathrm{C}$ (express the answer in kW)
3. (a) Two sets of jar tests are conducted on raw water containing 50 NTU and an alkalinity concentration of $38 \mathrm{mg} / \mathrm{L}$ expressed as CaCO_{3}. Given the data as shown in Table 2, estimate the optimal pH , coagulant dose and the theoretical amount of alkalinity that would be consumed at the optimal dose. The reaction occurs when water is added with alum is shown as:

$$
\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} .14 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{HCO}_{3}^{-} \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3}+6 \mathrm{CO}_{2}+14 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{SO}_{4}{ }^{2-}
$$

Molecular weights of the elements are shown as:

Oxygen $=16$, sulphur $=32$, aluminium $=27$, hydrogen $=1$ and carbon $=$ 12.

Table 2

Jar Test 1							
Jar	1	2	3	4	5	6	
pH	5.0	5.5	6.0	6.5	7.0	7.5	
Alum dose (mg/L)	25	25	25	25	25	25	
Turbidity (NTU)	15	8	6.5	3.2	6	11	
Jar Test 2							
Jar	1	2	3	4	5	6	
pH	6.5	6.5	6.5	6.5	6.5	6.5	
Alum dose (mg/L)	15	20	25	30	35	40	
Turbidity (NTU)	13	9	2.5	3.6	6	13	

(b) An over and under baffle flocculators consists of three sections, each 6 m long. The baffles are made of wood. The depth of water at the downstream end is 2.6 m and the floor slope is 1 in 100 , which is sloping down towards the outlet. When the flow rate is 15 million litres per day (MLD) is passing through it and the water temperature is $25^{\circ} \mathrm{C}$, the overall head loss is measured to be 125 mm and the velocity gradient is $25 \mathrm{~s}^{-1}$.

Calculate the width of the flocculator and the Camp Number. Given the density of water at $25^{\circ} \mathrm{C}$ is $978 \mathrm{~kg} / \mathrm{m}^{3}$ and its dynamic viscosity is 8.91 x $10^{-4} \mathrm{Ns} / \mathrm{m}^{2}$.
[10 marks]
...6/-
4. (a) A horizontal sedimentation tank has a capacity of 4 million litres per day (MLD), retention time of 3.5 hour and a surface loading of 1.3 $\mathrm{m} /$ hour. The tank is designed with length:breadth ratio of $4: 1$. Calculate the dimensions of the tank and the length of the outlet weir. Sketch the diagram of the outlet weir based on your design. $\mathrm{Cd}=1.0$
[8 Marks]
(b) Determine the effective size (d_{10}, in mm) and the uniformity coefficient (UC) for the sand filter media characterized by the sieve analysis results presented in the Table 3. Plot the \% weight passing versus media size in the analysis.
[9 marks]

Table 3

Sieve Number $(\mathrm{mm}$ size opening)	\% Weight Passing
$14(1.41)$	100
$16(1.19)$	100
$18(1.00)$	94
$20(0.84)$	83
$25(0.71)$	57
$30(0.59)$	30
$35(0.50)$	8
$40(0.42)$	5
$45(0.35)$	1
$50(0.297)$	0

(c) Determine the surface area of a settling tank for the city of Pekaka with $0.8 \mathrm{~m}^{3} / \mathrm{s}$ design flow using the design overflow rate of $33.5 \mathrm{~m}^{3} / \mathrm{d} . \mathrm{m}^{2}$. Compare this surface area with that which results from assuming a typical overflow rate of $20 \mathrm{~m}^{3} / \mathrm{d} \cdot \mathrm{m}^{2}$. Determine the depth of the clarifier if the detention time is 100 minutes.
5. (a) The following Figure 1 and Figure 2 show two different scenarios of a water supply system. Elaborate the scenarios with respect to the hydraulic gradient line, energy line and the available consumer head.
[6 marks]

Figure 1: Scenario 1

Figure 2: Scenario 2
(b) Figure 3 shows a water reticulation system. Estimate the flow rate in each pipeline using Hardy-Cross Method and Hazen-William formula for up to two iterations. Adopt Hazen-William coefficient, C, as 100. Use initial flowrate of 70 litres per second (L/s) from point A to B. The lengths and diameters for pipes $A B, B C, C D$, and $A D$ are as follows:

Figure 3: Reticulation system

Pipe AB: length $=900 \mathrm{~m}$ and diameter $=250 \mathrm{~mm}$
Pipe BC: length $=650 \mathrm{~m}$ and diameter $=200 \mathrm{~mm}$
Pipe CD: length $=1000 \mathrm{~m}$ and diameter $=250 \mathrm{~mm}$
Pipe AD: length $=550 \mathrm{~m}$ and diameter $=200 \mathrm{~mm}$

This formula might help in your calculation:

$$
H_{L}=\frac{12.25 \times 10^{9}}{D^{4.87}} L\left[\frac{Q}{C}\right]^{1.85}
$$

APPENDIX

$$
\begin{aligned}
& P_{n}=P_{i}+n I \\
& P_{n}=P_{i}\left(1+\frac{i}{100}\right)^{n} \\
& P_{n}=P_{i}+n(I+m) \\
& P_{n}=P_{i}\left(1+\frac{(1-k}{100}\right)^{n} \\
& G=\left(\frac{P}{\mu \forall}\right)^{1 / 2} \\
& P=\frac{1}{2} C_{d} \rho A \vee^{3} \\
& P=\rho Q g h \\
& h_{L}=K Q^{2} \\
& \frac{d_{1}}{d_{2}}=\frac{1}{2}\left[\left(1-8 F^{2}\right)^{1 / 2}-1\right] \\
& F=\frac{V_{1}}{\left(g d_{1}\right)^{1 / 2}} \\
& \operatorname{Re}=\frac{\rho v d}{\mu} \\
& \Delta H=\left[\left(v_{1}^{2}+5 v_{2}^{2}+4 v_{3}^{2}\right) / 2 g\right]+\text { normal channel friction } \\
& h=\frac{n v_{1}^{2}+(n-1) v_{2}^{2}}{2 g} \\
& \Delta=\frac{g d^{2}\left(\rho_{s}-\rho_{w}\right)}{18 \mu} \\
& v_{s} \\
& t=\frac{2 \pi H}{Q} \int_{R 1}^{R 2} r d r=\frac{\pi\left(R_{2}^{2}-R_{1}^{2}\right) H}{Q} \\
& V_{s}=\frac{Q}{A} \\
& D=V_{s} t \\
& H
\end{aligned}
$$

