<u>SULIT</u>

Second Semester Examination 2021/2022 Academic Session

July/August 2022

EAH325 – Engineering Hydrology

Duration : 2 hours

Please ensure that this examination paper consists of **NINE (9)** pages of printed material before you begin the examination.

Instructions: This paper contains FIVE (5) questions, answer any FOUR (4) questions.

All questions **MUST BE** answered on a new page.

...2/-

SULIT

- -2-
- 1. (a) Describe **THREE (3)** factors that will affect the evaporation process.

[6 marks]

(b) A Class A pan was set up adjacent to a lake. At the beginning of a certain week, the water level inside the pan was 203 mm. Later in that week, there was a 41 mm of rainfall water. Subsequently, 22 mm of water was removed from the pan to keep the water level within the specified depth range. Calculate the pan evaporation and the lake evaporation if the depth of the water in the pan at the end of the week is 189 mm. Use a suitable pan coefficient.

[5 marks]

(c) A reservoir with an average surface spread of 4.5 km² in March has a water surface temperature of 20°C and relative humidity of 27%. Wind velocity measured at 2.0 m above the ground at a nearby observatory is 35 km/h. Calculate the average evaporation loss from the reservoir in mm/day, the total depth, and volume of evaporation loss for March.

[14 marks]

...3/-

2. (a) With the aid of sketches, describe the following terms:

- i) Saturated zone
- ii) Unsaturated zone
- iii) Aquifuge
- iv) Hydraulic conductivity
- v) Pumping test

[15 marks]

(b) The saturated medium has a porosity of 0.45 and discharge per unit area of 1×10^{-5} m³/s/m². The water level in two observation wells at a distance of 400 m apart are 12 m and 8 m for higher end and lower end, respectively. Determine the hydraulic conductivity of the medium.

[10 marks]

3. (a) There are factors to be considered in the selection of method for water level recording station. With the aid of a sketch, select and explain the most appropriate method that is recommended for discharge measurement near hilly area.

[10 marks]

...4/-

(b) Table 1 shows the characteristics of a river reach of 1.5 km apart during a high flood event. Given velocity head coefficient, 1.12 and loss coefficient, 1.0. Calculate the discharge of the river.

[15 marks]

Upstream:	Cross-sectional area	A ₁	=	170 m ²
	Wetted perimeter	P ₁	=	50 m
	Manning's roughness coefficient	N 1	=	0.03
	Reduced level of water		=	77.3 m

TABLE 1

Downstream:	Cross-sectional area	A ₂	=	175 m ²
	Wetted perimeter	P ₂	=	51 m
	Manning's roughness coefficient	N2	=	0.025
	Reduced level of water		=	77.0 m

....5/-

 The 2-hr Unit Hydrograph for a river basin in Northern Seberang Perai is given in **Table 2**. Determine the catchment area and volume of direct runoff due to effective rainfall given in **Table 3**. Use superposition method in the determination of direct runoff hydrograph.

[25 marks]

Ordinate	0	1	2	3	4	5	6	7	8	9	10	11	12
(hr)													
UH	0	5	18	28	35	45	47	37	25	16	9	3	0
(m ³ /s/cm)													

Table 2 The 2-hr Unit Hydrograph

Table 3 Effective Rainfall Hyetograph

Time (hr)	Rainfall Depth (mm)
0 - 2	50
2 - 4	90
4 - 6	60

- 5. (a) The platform for a residential development is designed for 100 years (return period) flood. Determine the following for the residential area:
 - i) The exceedance probability of 100 years flood.
 - ii) The probability of no flooding in 10 years period.
 - The probability of no flooding in the first 5 years and flooding in the 6th year.

...6/-

- iv) Probability at least one flood will occur in 10 years.
- Determine the return period if the risk is 20% that the residential area will be flooded at least once during the next 5 consecutive years.

[10 marks]

- (b) Local authority plans to construct a road in Southern Seberang Perai. The design of the platform of the road requires some analysis on the flood probability and magnitude. The mean and variance of the 100 years of annual streamflow record in the locality are 120 m³/s and 30 m⁶/s², respectively. Assuming the data is log-normally distributed, determine the followings:
 - i) the return period for a streamflow discharge \geq 150 m³/s.

[8 marks]

ii) the magnitude of 50-year return period flood.

[7 marks]

ATTACHMENT

Types of pan	Average value	Range
Class A Pan	0.70	0.60-0.80
Colorado Sunken Pan	0.78	0.75-0.86
USGS Floating Pan	0.80	0.70-0.82

<u>Formulas</u>

$$e_{w} = 4.584 \exp\left(\frac{17.27t}{237.3+t}\right)$$
$$u_{9} = u_{h}\left(\frac{h_{h}}{h}\right)^{1/7}$$
$$E_{L} = K_{M} \left(e_{w} - e_{a}\right) \left(1 + \frac{u_{9}}{16}\right)$$
$$E_{a} = 0.35 \left(1 + \frac{u_{2}}{160}\right) \left(e_{w} - e_{a}\right)$$
$$f_{p} = f_{c} + \left(f_{0} - f_{c}\right) e^{-K_{h}t}$$
$$PET = \frac{AH_{n} + E_{a}\gamma}{A + \gamma}$$
$$P_{r,n} = {}^{n} C_{r} P^{r} q^{n-r}$$
$$= \frac{n!}{(n-r)!r!} P^{r} q^{n-r}$$

		•	8	/-
	-	•	-	

-8-

Appendix

Normal Distribution Table

Norma	1										
Deviate z	.00	.01	02	.03	.04	.05	.06	.07	.08	.09	
~				.00		.00		.07	.00	.00	
-4.0	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
-3.9	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
-3.8	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
-3.7	.0001	.0001	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
-3.6	.0002	.0002	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	
-3.5	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	0002	
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003	
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005	
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007	
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010	
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014	
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019	
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026	
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036	
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048	
-2.4	0082	0080	0078	0075	0073	0071	0069	0068	0066	0064	
-2.3	0107	0104	0102	0099	0096	0094	0091	0089	0087	0084	
-2.2	0139	0136	0132	0129	0125	0122	.0119	.0116	.0113	.0110	
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143	
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183	
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233	
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294	
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367	
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455	
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559	
1.4	0000	0702	0779	0764	0740	0725	0721	0709	0604	0691	
-1.4	8000.	.0793	0934	0918	.0749	0885	0869	0853	0838	0823	
-1.2	1151	1131	1112	1093	1075	1056	1038	1020	1003	0985	
-1.1	1357	1335	1314	1292	1271	1251	1230	1210	1190	1170	
-1.0	1587	1562	1539	.1515	1492	1469	.1446	1423	.1401	1379	
9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611	
8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867	
7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148	
6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451	
5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776	
	2446	2400	2272	1226	2200	1004	2220	2102	215.0	21.21	
4	.3446	.3409	.331Z	.3330	.3300	.3264	.3228	.319Z	.3156	.3121	
3	.3621	.3783	.5745	.3707	.5009	.3032	.5594	.5557	.5520	.3483	

...9/-

<u>SULIT</u>

	_	
_	a	_
_	J	-

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998

-00000000-