POST ANNEALING TREATMENT OF TiO₂ NANOTUBES FOR DEFECTIVE BLACK OXIDE FORMATION AND APPLICATION IN HEAVY METAL REMOVAL

GUAN MIN LI

UNIVERSITI SAINS MALAYSIA

2022

SCHOOL OF MATERIALS AND MINERAL RESOURCES ENGINEERING UNIVERSITI SAINS MALAYSIA

POST ANNEALING TREATMENT OF TiO2 NANOTUBES FOR DEFECTIVE BLACK OXIDE FORMATION AND APPLICATION IN HEAVY METAL REMOVAL

By

GUAN MIN LI

Supervisor: Professor Dr. Zainovia Lockman

Dissertation submitted in partial fulfilment of the requirements for the degree of Bachelor of Engineering with Honours (Materials Engineering)

Universiti Sains Malaysia

August 2022

DECLARATION

I hereby declared that I have conducted, completed the research work and written the dissertation entitled: "**Post Annealing Treatment of TiO₂ Nanotubes for Defective Black Oxide Formation and Application in Heavy Metal Removal**". I also declared that it has not been previously submitted for the award for any degree and diploma or other similar title of this for any other examining body or University.

Name of Student : Guan Min Li

Signature:

Date : 12 August 2022

Witnessed by

Supervisor : Prof. Dr. Zainovia Lockman

Date : 12 August 2022

Signature:

فنسينك

ACKNOWLEDGEMENT

I would like to take this opportunity to thank School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia (USM) for providing sufficient resources, equipment, facilities and workplace in completing the project. I would also like to thank Dean of the school, Profesor Ir. Dr. Mariatti Jaafar.

Next, I would like to express my sincere gratitude and appreciation to my supervisor, Prof. Dr. Zainovia Lockman for her valuable guidance, motivation, advise, comments and patience in assisting me to bring this experimental and thesis work to completion.

I would also like to extend my gratitude to Dr. Anasyida for giving briefing in preparation of research proposal and thesis. I would also like to thank technicians including Mr. Azam, Mr. Syafiq, Mr. Shahrul, Mr. Azrul and Mrs. Haslina for their valuable technical assistance.

Besides that, I would like to express my appreciation to the research team under Prof. Zainovia especially Nurhaswani Alias and Nor Fasihah binti Zaaba for providing guidance and help during the experimental work. I would also like to acknowledge my coursemates under Prof. Zainovia's team, Yong Hui Sin, Nurrafiq Arina Binti Rafindi and Tan Gang Yang who working together and sharing knowledge among each other.

Last but not least, a special credit to my family and friends for their physical and mental support, as well as encouragement throughout the project.

TABLE OF CONTENTS

DEC	LARATIONii
ACK	NOWLEDGEMENTiii
TAB	LE OF CONTENTSiv
LIST	OF TABLES vii
LIST	OF FIGURESix
LIST	OF ABBREVIATIONSxiv
LIST	OF SYMBOLSxv
ABS	ΓRAKxvi
ABS	ГRACT xvii
СНА	PTER 1 INTRODUCTION1
1.1	Research Background1
1.2	Heavy Metal Pollution1
1.3	Chromium Pollution
1.4	Nanomaterials4
1.5	Photocatalytic Process on TiO ₂ and Black TiO ₂
1.6	Problem Statement
1.7	Objectives
1.8	Scopes of Work
1.9	Outline of Chapters9
СНА	PTER 2 LITERATURE REVIEW11
2.1	Introduction11
2.2	Nanomaterials for Photocatalytic Reaction11
2.3	Fundamental and Toxicity of Chromium13
2.4	Environmental Pollution by Wastewater Containing Hexavalent Chromium 14
2.5	Wastewater Treatments for Chromium Removal

	2.5.1	Adsorption
	2.5.2	Chemical Precipitation17
	2.5.3	Electrochemical Technology 18
	2.5.4	Ion Exchange 18
	2.5.5	Membrane Filtration 19
	2.5.6	Photocatalytic Reaction 19
2.6	Titanium and Titanium Dioxide (TiO ₂)	
2.7 TiO ₂ Nanomaterials as Photocatalysts		
	2.7.1	Synthesis of TiO ₂ Nanotubes by Anodization
	2.7.2	Annealing of As-Anodized TiO ₂ Nanotubes in Air
2.8	Defectiv	e Black TiO ₂ Photocatalyst
	2.8.1	Synthesis of Black TiO ₂ Nanotubes by Hydrogenation
2.9	Photocatalytic Mechanism of Black TiO ₂ Photocatalyst40	
CILAI	PTER 3	METHODOLOGY41
CHAI		
CHA 3.1	Introduc	tion
3.13.2	Introduc Material	tion
3.13.23.3	Introduc Material Experim	tion
3.1 3.2 3.3	Introduc Material Experim 3.3.1	tion
3.1 3.2 3.3	Introduc Material Experim 3.3.1 3.3.2	tion
3.1 3.2 3.3	Introduc Material Experim 3.3.1 3.3.2 3.3.3	tion
3.1 3.2 3.3	Introduc Material Experim 3.3.1 3.3.2 3.3.3 3.3.4	tion
3.1 3.2 3.3	Introduc Material Experim 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	tion
3.1 3.2 3.3	Introduc Material Experim 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6	tion
3.1 3.2 3.3 3.3	Introduc Material Experim 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 Characte	tion
 3.1 3.2 3.3 	Introduc Material Experim 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 Characte 3.4.1	tion
 3.1 3.2 3.3 	Introduc Material Experim 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 Characte 3.4.1 3.4.2	tion

	3.4.4	Raman Spectroscopy	
	3.4.5	X-ray Photoelectron Spectroscopy (XPS) 50	
	3.4.6	Photoluminescence Spectroscopy	
	3.4.7	UV-Vis Spectroscopy	
CHAI	PTER 4	RESULTS AND DISCUSSION	
4.1	Introduct	tion53	
4.2	Synthesis	s of TiO ₂ Nanotubes by Anodization53	
	4.2.1	Effect of Anodization Voltage	
	4.2.2	Growth of TiO ₂ Nanotubes Due to Anodization Voltage	
4.3	Effect of	Annealing of TiO ₂ Nanotubes in Air	
4.4	Synthesis	s of Black TiO ₂ Nanotubes by Hydrogenation63	
	4.4.1	Effect of Hydrogenation 64	
	4.4.2	Hydrogenation of TiO ₂ Nanotubes	
4.5	Photocat	alytic Reduction of Chromium(VI)76	
	4.5.1	Photocatalytic Reaction of TiO ₂ and Black TiO ₂ Nanotubes 83	
CHAPTER 5 CONCLUSION AND FUTURE RECOMMENDATIONS			
5.1	Conclusi	on88	
5.2	Recommendations for Future Research		
REFE	REFERENCES		
Appendix A: ICDD Reference Code 04-006-9240101			
Apper	ndix B: IC	CDD Reference Code 01-089-3725107	

LIST OF TABLES

Table 2.1: Examples of nanomaterials for photocatalytic reaction 12
Table 2.2: Comparison of advantages and disadvantages of various wastewater treatment method (Peng and Guo, 2020) (Crini and Lichtfouse, 2018) (Shrestha <i>et al.</i> , 2021)
Table 2.3: Comparative study on hydrogenation pressure, gas, temperature and timeused to produce black TiO2 and their applications
Table 3.1: List of materials and reagents used in this work
Table 4.1: Average diameter, length and aspect ratio of as-anodized TiO2 NTs at different anodization voltage
Table 4.2: Percentage of elements that present in as-anodized TiO2 NTs at different anodization voltage 58
Table 4.3: List of crystalline phases, peak positions and corresponding planes for air- annealed TiO2 NTs
Table 4.4: Average diameter and length of 60 V as-anodized TiO2 NTs and 60 V air- annealed + hydrogenated TiO2 NTs
Table 4.5: Percentage of elements that present in TiO_2 NTs anodized in EG/10wt%H ₂ O/0.5wt%NH ₄ F at 60 V for 60 minutes (60 V as- anodized TiO ₂ NTs) and TiO ₂ NTs annealed in air 450 °C for 2 hours and hydrogenated in 10% H ₂ / 90% Ar gas at 500 °C for 1 hour (60 V air-annealed + hydrogenated TiO ₂ NTs)
Table 4.6: Crystalline phases that presents in TiO_2 NTs hydrogenated in 10% H ₂ / 90% Ar gas with and without annealing in air after anodization70
Table 4.7: Peak position and FWHM at the frequency of the strongest E _g mode for TiO ₂ NTs annealed in air (air-annealedTiO ₂ NTs), TiO ₂ NTs annealed in air and hydrogenated in 10% H ₂ / 90% Ar gas (air-annealed +

hydrogenated TiO_2 NTs) and TiO_2 NTs hydrogenated in 10% H_2 /		
90% Ar gas (hydrogenated TiO ₂ NTs)72		
Table 4.8: 50 ppm Cr(VI) removal efficiency for TiO ₂ NTs synthesized with different		
anodization voltage after 30 minutes in dark and 90 minutes under		
sunlight irradiation		
Table 4.9: 50 ppm Cr(VI) removal efficiency for TiO ₂ NTs with different annealing		
condition after 30 minutes in dark and 90 minutes under sunlight		
irradiation83		
Table 4.10: Review on photocatalytic reduction of Cr(VI) by others works		

LIST OF FIGURES

Figure 1.1: Dimensions of materials with nano-scale size (Kebede and Imae, 2019).5
Figure 1.2: Photocatalytic reduction of Cr(VI) with TiO ₂
Figure 1.3: Overview flowchart for this work
Figure 2.1: Comparison of size between nanomaterials and bulk materials (A. Roy, 2014)
Figure 2.2: Schematic diagram of chemical precipitation for heavy metal removal (Qasem <i>et al.</i> , 2021)
Figure 2.3: Schematic diagram of ion exchange process (Qasem <i>et al.</i> , 2021) 19
Figure 2.4: Schematic diagram of membrane filtration process for removal of heavy metal (Shrestha <i>et al.</i> , 2021)
Figure 2.5: Crystal structure of hcp α and bcc β titanium phase (Leyens <i>et al.</i> , 2003)23
Figure 2.6: Formation of discrete nanotubes with scallop-shaped bottom in the presence of compressive stress and ions migration across the barrier layer. Adapted from Taib <i>et al.</i> (2017), Dou <i>et al.</i> (2018) and P. Roy <i>et al.</i> (2011)
Figure 2.7: Evolution of morphology of TiO ₂ NTs (Ge et al., 2016)
Figure 2.8: ESR spectra of oxygen vacancies and Ti ³⁺ defects in TiO ₂ at different hydrogenation temperature (Liu <i>et al.</i> , 2003)
Figure 3.1: Flow chart for synthesis of TiO ₂ NTs and black TiO ₂ NTs
Figure 3.2: Flow chart for application of TiO ₂ NTs and black TiO ₂ NTs in heavy metal removal
Figure 3.3: Experiment set-up of anodization
Figure 3.4: Heating profile for annealing of titanium foil in air
Figure 3.5: Heating profile for annealing of titanium foil in 10% H ₂ /90% Ar gas 47

- Figure 4.4: EDX spectrum of TiO₂ NTs anodized at 40 V in electrolyte containing EG/10wt%H₂O/0.5wt%NH₄F for 60 minutes (Oxford EDX Window 50mm, Centre for Global Archaeological Research)......57
- Figure 4.5: EDX spectrum of TiO₂ NTs anodized at 60 V in electrolyte containing EG/10wt%H₂O/0.5wt%NH₄F for 60 minutes (Oxford EDX Window 50mm, Centre for Global Archaeological Research)......58
- Figure 4.6: Photographs of titanium foil (a) grinded with 600 grit silicon carbide paper before anodization, (b) after anodization (before annealing) in electrolyte with EG/10wt%H₂O/0.5wt%NH₄F for 60 minutes and (c) after annealing in air at 450 °C for 2 hours.......60
- Figure 4.7: XRD pattern of TiO₂ NTs anodized in EG/10wt%H₂O/0.5wt%NH₄F at 60V for 60 minutes and TiO₂ NTs annealed in air at 450 °C for 2 hours (Bruker D8, School of Material and Mineral Resources Engineering)61
- Figure 4.8: Raman spectrum of TiO₂ NTs anodized in EG/10wt%H₂O/0.5wt%NH₄F at 60 V for 60 minutes (as-anodized TiO₂ NTs) (Renishaw inVia Raman microscope, Science and Engineering Research Centre) 63

- Figure 4.12: FESEM images of cross section of 60 V-anodized TiO₂ NTs annealed in air and hydrogenated in 10% H₂ / 90% Ar gas at 500 °C for 1 hour (60 V air-annealed + hydrogenated TiO₂ NTs) at: (a) 20kx and (b) 50kx (Verios 460L, FEI, Science and Engineering Research Centre)67
- Figure 4.14: EDX spectrum of 60 V air-annealed + hydrogenated TiO₂ NTs (Oxford EDX Window 50mm, Centre for Global Archaeological Research). 68
- Figure 4.16: XRD pattern of (a) TiO₂ NTs annealed in 10% H₂ / 90% Ar gas after anodization (hydrogenated TiO₂ NTs) and (b) TiO₂ NTs annealed in air and hydrogenated in 10% H₂ / 90% Ar gas (air-annealed +

h	ydrogenated TiO ₂ NTs) (Bruker D8, School of Material and Mineral
F	Resources Engineering)70
Figure 4.17: Ra (in T N F	man spectrum of as-anodized TiO ₂ NTs, TiO ₂ NTs annealed in air air-annealed TiO ₂ NTs), TiO ₂ NTs annealed in air and hydrogenated n 10% H ₂ / 90% Ar gas (air-annealed + hydrogenated TiO ₂ NTs) and TiO ₂ NTs hydrogenated in 10% H ₂ / 90% Ar gas (hydrogenated TiO ₂ NTs) (Renishaw inVia Raman microscope, Science and Engineering Research Centre)
Figure 4.18: XF (PS survey scan spectrum of air-annealed + hydrogenated TiO ₂ NTs XPS, PHI Quantera SXM scanning X-ray microprobe, ULVAC-Phi, nc., Japan)73
Figure 4.19: XP (S spectra of air-annealed + hydrogenated TiO ₂ NTs for (a) Ti 2p and b) O 1s (XPS, PHI Quantera SXM scanning X-ray microprobe, JLVAC-Phi, Inc., Japan)
Figure 4.20: Pl	L spectra for TiO ₂ NTs which subjected to different annealing condition (RTPL spectroscope, Kimmon Koha, Tokyo, Japan)75
Figure 4.21: Col s T a	lour change of sample solution for photocatalytic reduction of Cr(VI) olution under sunlight irradiation with air-annealed + hydrogenated TiO_2 NTs synthesized using anodization voltage of (a) 20 V, (b) 40 V and (c) 60 V
Figure 4.22: Col s a	lour change of sample solution for photocatalytic reduction of $Cr(VI)$ olution under sunlight irradiation with TiO ₂ NTs synthesized using modization voltage of 60V and annealing in (a) air, (b) H ₂ /Ar gas and c) air followed by H ₂ /Ar gas
Figure 4.23: Gra n v	aph of C/C_o versus time for photocatalytic reduction of $Cr(VI)$ under natural sunlight for TiO ₂ NTs synthesized with different anodization voltage
Figure 4.24: Gra n c	aph of C/C_0 versus time for photocatalytic reduction of $Cr(VI)$ under natural sunlight irradiation for TiO_2 NTs with different annealing condition

Figure 4.25: Graph of 50 ppm Cr(VI) removal efficiency versus time for $TiO_2 NTs$
synthesized with different anodization voltage
Figure 4.26: Graph of 50 ppm Cr(VI) removal efficiency versus time for TiO ₂ NTs
with different annealing condition
Figure 4.27: Energy band diagram for TiO ₂ and black TiO ₂ NTs. Adapted from S.
Chen, Xiao, et al. (2018) and Valentin et al. (2009)

LIST OF ABBREVIATIONS

1D	One-dimensional		
a.u.	Arbitrary unit		
Cr(III)	Trivalent chromium		
Cr(VI)	Hexavalent chromium		
EDTA	Ethylenediamine tetraacetic acid		
EDX	Energy Dispersive X-ray		
EG	Ethylene glycol		
EPR	Electron Paramagnetic Resonance		
ESR	Electron Spin Resonance		
FESEM	Field Emission Scanning Electron Microscopy		
HRTEM	High-Resolution Transmission Electron Microscopy		
ICDD	International Centre for Diffraction Data		
ISO	International Organization for Standardization		
NH ₄ F	Ammonium fluoride		
NHE	Normal Hydrogen Electrode		
NTs	Nanotubes		
PL	Photoluminescence		
UV-Vis	Ultraviolet-visible Spectroscopy		
XPS	X-ray Photoelectron Spectroscopy		
XRD	X-Ray Diffraction		

LIST OF SYMBOLS

0	Degree
°C	Degree Celsius
•HO ₂	Superoxide acid
•O ₂ -	Superoxide anion radicals
•OH	Hydroxyl radicals
20	Diffraction angle
Å	Angstrom (10^{-10} m)
e	Electrons
eV	Electronvolt
h^+	Holes
H ₂ /Ar	Mixed gas of 10% hydrogen gas and 90% argon gas
hv	Photon energy
nm	Nanometer
ppm	Part per million
TiO _(2-x)	Black / oxygen-vacancy rich titanium dioxide
TiO ₂	Titanium dioxide
V ²⁻	Oxygen vacancy
wt%	Weight percent

RAWATAN SELEPAS PENYEPUHLINDAPAN TIUB NANO TIO2 UNTUK PEMBENTUKAN OKSIDA HITAM DAN APLIKASI DALAM PEMBUANGAN LOGAM BERAT

ABSTRAK

Pencemaran alam sekitar oleh air sisa akibat kewujudan ion kromium adalah salah satu isu serius di seluruh dunia kerana ketoksikan dan tidak terbiodegradasinya. Rawatan air sisa boleh dijalankan dengan proses fotomangkin dengan kehadiran TiO₂ sebagai fotomangkin. Namun, TiO₂ hanya boleh diaktifkan di bawah sinaran ultraungu kerana jurang jalurnya yang luas. Penghasilan oksida dengan kecacatan melalui penghidrogenan akan mewujudkan jurang pertengahan yang mengecilkan jurang jalur dan membolehkan penjanaan pembawa caj oleh cahaya matahari. Oleh itu, objektif projek ini adalah untuk menilai keberkesanan TiO₂ nanotiub yang tulen dan hitam untuk penyingkiran ion Cr(VI). Sintesis TiO₂ nanotiub dilakukan melalui anodisasi dengan voltan yang berbeza, diikuti dengan pengyepuhlindapan dalam udara. Dua set TiO₂ nanotiub hitam disediakan: (i) penghidrogenan selepas penyepuhlindapan dalam udara dan (ii) penghidrogenan selepas anodisasi tanpa penyepuhlindapan dalam udara. Penambahan diameter tiub nano diperolehi apabila voltan anodisasi meningkat. Kehadiran fasa anatase disahkan dalam TiO₂ NTs selepas penyepuhlindapan. TiO₂ nanotiub dengan penghidrogenan selepas penyepuhlindapan dalam udara mempunyai penggabungan semula pembawa caj yang terendah kerana adanya kekosongan oksigen dan ion Ti³⁺. Kecekapan penyingkiran Cr(VI) tertinggi dicapai oleh TiO₂ NTs beranil udara dan dihidrogenasi yang disintesis pada 60 V dengan 43.43% di bawah cahaya matahari. Uuntuk keadaan penyepuhlindapan yang berbeza, TiO₂ nanotiub dengan penghidrogenan selepas penyepuhlindapan dalam udara mencapai kecekapan penyingkiran Cr(VI) tertinggi dengan 42.23%.

POST ANNEALING TREATMENT OF TIO2 NANOTUBES FOR DEFECTIVE BLACK OXIDE FORMATION AND APPLICATION IN HEAVY METAL REMOVAL

ABSTRACT

Environmental pollution by wastewater due to presence of chromium ions is one of the serious issues around the world owing to its toxicity and non-biodegradability. Wastewater treatment can be done by photocatalytic process in the presence of TiO₂ as photocatalyst. However, TiO_2 can only be activated under ultraviolet radiation owing to its wide band gap. Producing defective oxide via hydrogenation will create mid-gap states to narrow the band gap and allow generation of charge carriers by sunlight. Thus, the objective of this project is to assess the effectiveness of pristine and defective black TiO₂ nanotubes for removal of Cr(VI) ions. The synthesis of TiO₂ nanotubes is performed via anodization with different anodization voltage, followed by annealing in air. Two sets of defective black TiO₂ nanotubes are prepared: (i) hydrogenation after annealing in air and (ii) hydrogenation after anodization without annealing in air. Increment in diameter of nanotubes is observed when anodization voltage increased. The presence of anatase phase is confirmed in nanotubes after annealing. TiO₂ nanotubes subjected to annealing in air and hydrogenation show the lowest recombination of charge carriers due to presence of oxygen vacancies and Ti³⁺ ions. For different anodization voltage, the highest Cr(VI) removal efficiency is achieved by air-annealed + hydrogenated TiO₂ nanotubes synthesized at 60 V with 43.43% under sunlight irradiation. For different annealing conditions, TiO₂ nanotubes subjected to both annealing in air and hydrogenation show highest removal efficiency of 42.23%.

CHAPTER 1

INTRODUCTION

1.1 Research Background

In the modern age, environmental pollution issue is getting more serious. The well-known contaminants that lead to environmental pollution is heavy metals. Water pollution is one of the serious environmental pollutions caused by presence of heavy metals. However, water is the basic need for human, animals and aquatic life. Thus, heavy metal pollution in water source may cause serious threats to both marine life and wild populations, as well as severe diseases in human body such as cancer, birth defects, kidney dysfunction, immune system dysfunction and etc. (Balali-Mood *et al.*, 2021). This is because heavy metals have different toxicity, non-degradable and tend to accumulate in human and animal life. Thus, this work is on synthesis of black titanium dioxide nanotubes for heavy metal removal in water.

1.2 Heavy Metal Pollution

Heavy metals are described as natural occurring elements which have atomic number greater than 20 and relatively high density. As the name suggests, heavy metals are categorized under metals and metalloids. Heavy metals are usually non-biodegradable and toxic even at ppb levels. Examples of heavy metals are copper (Cu), iron (Fe), manganese (Mn), zinc (Zn), nickel (Ni), cobalt (Co), cadmium (Cd), lead (Pb), mercury (Hg), arsenic (As) and chromium (Cr) (Y. Liu *et al.*, 2017).

Heavy metals are commonly released into environment through anthropogenic activities, such as release of industrial wastewater and automobile exhaust, electroplating, mining, incineration of fossil fuels and smelting (Sharma *et al.*, 2020). As heavy metals are classified as inorganic pollutants, the existence of heavy metals in the ecological

environment may pose harms to human health and ecosystem. Thus, heavy metal pollution is one of the serious issues which will affect human, ecosystem and environment and this issue is gaining more attention nowadays.

1.3 Chromium Pollution

Chromium is a metallic element with steel grey appearance, high melting point (1907°C) and density of 7.19 gcm⁻³, thus it is classified as heavy metal (Lunk, 2015). Chromium rarely exists as pure state (Cr (0)) in nature and it is usually obtained from chromite ores (FeCr₂O₄). It will transform into green chromic oxide (Cr₂O₃) due to heating (Shanker, 2019). It is categorized as highly toxic metal and release of chromium to the environment may cause adverse impact to human health and ecosystems with long term exposure. In this world, the production of chromium is approximate 10^7 metric tons per year, where 60 to 70% of the production is used in metal alloy and stainless-steel production, while another 15% is used in chemical and industrial processes (N. Sharma *et al.*, 2020).

In Malaysia, the source of water used for consumption and agricultural are mainly come from the rivers. Thus, the quality and cleanliness of river water need to be controlled properly as water is essential for human survival and ecological sustainability. According to World Health Organization (2010), the concentration of Cr(VI) ions in drinking water should not exceed 0.05mg/L. However, there is report on the chromium pollution in the sediments of Sungai Kelantan with the range of $16 - 172 \mu g/g$ due to sand mining, logging, land reclamation activities, as well as rainfall events which leads to terrestrial runoff (Rahim *et al.*, 2019). Another research by Ahmed *et al.* (2020) on the concentration of chromium in Langat River shows that chromium was detected in the river but still within the permissible limit. The increasing of chromium concentration in Langat River

is said to be due to the weathering of serpentinite rock-derived oxisols and metal finishing activities from the industries near to the river.

Chromium pollution not only happens in Malaysia, but also in other countries. In India, Karunanidhi et al. (2021) reported that the mean concentration of chromium in the groundwater reached 0.09 mg/L, which has exceeded the permissible limit of chromium stated by World Health Organization. The source of chromium pollution is reported to be the existence of leather tanning industries in massive scale. Mani Tripathi and Chaurasia (2020) also reported that the concentration of chromium detected in the water collected from Dharamkata, India was 2070 µg/L, exceeding the permissible limit. The rise in chromium concentration is due to discharge of untreated tannery effluents. Ahmad et al. (2021) has conducted a study on the chromium concentration in water due to emission from automobile in Pakistan. The range of chromium concentration in water is from 0.50 to 1.14 mg/kg, indicating environmental pollution due to release of chromium by emission of smokes from automobiles. According to He and Li (2020), surface water of Luo River in China has high concentration of chromium which cause water pollution and environmental issue. The chromium pollutant is coming from the groundwater which has high chromium concentration. Different samples from rivers which are connected with Luo River shown chromium concentration detection within the range of 0.005 to 0.251 mg/L. Meanwhile, in North Carolina, the chromium concentration from 0.012 to 22.9 µg/L was detected in the Piedmont groundwater. However, the source of the chromium was not stated clearly (Vengosh et al., 2016).

The major anthropogenic source of chromium release to environment is from industrial activities, such as metal processing, welding, production of ferrochrome and chrome pigment, tannery facilities and chromate production. High concentration of chromium in environment is commonly related to the release of wastewater and air containing chromium from the industries (Tchounwou *et al.*, 2012).

Chromium consists of many oxidation states, ranging from -2 to +6. However, the existence of chromium in nature usually is in the states of trivalent chromium and hexavalent chromium. Trivalent chromium is the most stable state, followed by hexavalent chromium (Tumolo *et al.*, 2020). At low pH, Cr(III) and Cr(VI) will exist as $[Cr(OH_2)_6]^{3+}$ and $Cr_2O_7^{2-}$, respectively. Meanwhile at high pH, Cr(III) exists as $[Cr(OH_4)_6]^{-1}$ and Cr(VI) exists as CrO_4^{2-} (Lunk, 2015).

1.4 Nanomaterials

According to ISO/TS 80004-1:2010, nanomaterials are defined as material built with any external dimensions, internal structure or surface structure in nanoscale range, which is within the range of 1 to 100nm. Thus, nanomaterials can be classified into four categories as shown in Figure 1.1, which includes zero-dimensional (0-D), onedimensional (1-D), two-dimensional (2-D) and three-dimensional (3-D), depending on the number of dimensions fall within nanoscale range. 0-D nanomaterials refer to the material with all dimensions (x-, y- and z-axis) in nanoscale range, for instance nanoparticles. 1-D nanomaterial is the material with two dimensions (x- and y-axis) in nanoscale range, such as nanotubes, nanorods, nanowires and nanofibers. Meanwhile, 2-D nanomaterial is the material with one dimension, usually thickness, in nanoscale range. Examples of two-dimensional nanomaterial are nanosheets, nanofilms, nanolayers and graphene. The nanomaterial with all three dimensions falls outside nanoscale range is known as 3-D nanomaterial. The three-dimensional material is usually made up of multiple arrangement of nanosized materials such as nanoparticles, nanotubes, nanorods or nanolayers in different orientation, forming dimensions greater than 100 nm.

Figure 1.1: Dimensions of materials with nano-scale size (Kebede and Imae, 2019)

1.5 Photocatalytic Process on TiO₂ and Black TiO₂

Photocatalytic process is an advanced process which uses photocatalysts and light, such as ultraviolet or visible light, as source of energy to trigger oxidation and reduction process for removal of heavy metals from industrial wastewater. The photocatalysts required for this process are commonly semiconductor, for instance titanium dioxide (TiO₂), zinc oxide (ZnO) and etc, which consists of filled valence band and empty conduction band for excitation of electrons and generation of holes with the presence of photon energy which are greater than the band gap energy (X. Gao and Meng, 2021). In short, photocatalytic process includes transformation of ionic species into solid metal and deposition of solid metal on the surface of catalysts (Litter, 2015). Photocatalytic process also involves separation of photogenerated holes and electrons and recombination of charge carriers which will reduce the number of excited charge carriers. Thus, photocatalysts with narrower band gap are preferred for photocatalytic process in removing heavy metals by capturing more visible light (Ren *et al.*, 2021).

Titanium dioxide (TiO₂) is a semiconductor and common photocatalyst used for photocatalytic reaction as it possess high chemical stability and photostability, good commercial availability, low toxicity, cost effective, good thermal stability and excellent resistance to light-induced corrosion (Z. Li *et al.*, 2022). The photocatalytic reaction is strongly depends on the ability of photocatalysts to generate charge carriers which leads to formation of electrons that responsible for heavy metal removal or degradation (Sreekantan *et al.*, 2014). The conduction band of TiO₂ has a reduction potential of -0.3 V vs. NHE, while the potential for valence band is 2.9 V vs. NHE (Humayun *et al.*, 2018). Meanwhile, the reduction potential of $Cr_2O_7^{2-}/Cr^{3+}$ is +1.33 V vs. NHE, which is more positive than the conduction band, thus photocatalytic reduction of Cr(VI) as shown in Figure 1.2 is possible.

Figure 1.2: Photocatalytic reduction of Cr(VI) with TiO₂

Meanwhile, defective black TiO₂ is the titanium dioxide with band gap modification which formed with surface disorders and existence of oxygen vacancies and Ti³⁺ defects (Y. Zhang *et al.*, 2022). This is because TiO₂ nanotubes usually exhibit large band gap and rapid recombination of charge carriers, which will then lead to reduction in the performance of TiO₂ in photocatalytic reactions. Defective black TiO₂ is synthesised by introducing defects, such as surface disorders and oxygen vacancies into the TiO₂. Through introduction of defects, the photocatalytic performance can be improved as the band gap of TiO₂ will be reduced for visible light absorption and the recombination rate

of charge carriers will also be lowered for effective separation of photogenerated charge carriers (Y. Zhang *et al.*, 2022).

In this work, the TiO₂ nanotubes synthesised by anodization will be annealed in reducing atmosphere, which is 10% H₂ / 90% Ar gas, for hydrogenation process to produce black TiO₂ nanotubes. The hydrogenation time for this proposed work is shorter than other studies that will be discussed later in Section 2.8.1. For anodized TiO₂ nanotubes, annealing in air usually will be done to improve the crystallinity of nanotubes before hydrogenation. As hydrogenation process requires temperature similar to annealing in air, the hydrogenation process without annealing in air after anodization is proposed in this work. Next, the hydrogenated TiO₂ nanotubes without annealing in air will be used for chromium(VI) reduction which is not done before.

1.6 Problem Statement

The presence of heavy metals in the environment and long exposure to the heavy metals may cause harmful effect to human health due to their high toxicity. One of the methods to remove heavy metal ions in wastewater is through photocatalytic reduction. Titanium dioxide (TiO₂) is a semiconductor which commonly used as photocatalyst. However, TiO_2 in nanoparticular forms tend to agglomerate after solution treatment, leading to difficulty in separation from the tested solution. Thus, in this project, TiO_2 photocatalyst will be synthesised in the form of nanotubes via anodization using titanium foils. Nanotubes with different dimensions due to application of Cr(VI).

Besides that, amorphous TiO_2 shows low photocatalytic activity due to presence of large amounts of imperfections which will act as recombination centres for electron and hole pairs. Although anatase TiO_2 is commonly used as photocatalysts, TiO_2 has several limitations such as wide band gap and rapid recombination of electron and hole pairs. Thus, TiO₂ can only absorb light in ultraviolet range, which is only about 7% of the solar spectrum. The photocatalytic activity of TiO₂ nanotubes under sunlight is limited. Anodized nanotubes subjected to different annealing conditions may give different crystallinity and defects to the nanotube structures. Thus, the annealing conditions need to be studied to overcome the wide band gap and rapid recombination of electron and hole pairs in TiO₂ nanotubes. Besides that, the application of TiO₂ nanotubes subjected to different annealing conditions in photocatalytic reduction of chromium(VI) has not been extensively studied.

1.7 Objectives

- 1. To investigate the effect of an odization voltage on the morphology of TiO_2 nanotubes.
- To compare the effect of annealing condition on the morphology, structure, crystallinity and electron-hole recombination of TiO₂ nanotubes and black TiO₂ nanotubes.
- To compare the Cr(VI) removal efficiency of TiO₂ nanotubes and black TiO₂ nanotubes synthesized by different anodization voltages and different annealing conditions.

1.8 Scopes of Work

This project included the investigation on the formation of black TiO_2 nanotubes via anodization and annealing, followed by hydrogenation. To synthesis TiO_2 nanotubes, titanium foil was used as substrate for growth of nanotubes by immersing in EG electrolyte with alteration of anodization voltage. After anodization, one set of the TiO_2 nanotubes was annealed in air to transform the amorphous phase to anatase phase.

Meanwhile, another set of TiO₂ nanotubes was annealed in reducing atmosphere without annealing in air. Black TiO₂ nanotubes were then synthesized via annealing in reducing atmosphere with flowing of 10% H₂ / 90% Ar gas in tube furnace. The crystalline phase, structure and morphology of white and black TiO₂ nanotubes were determined using XRD, Raman Spectroscopy, FESEM and HRTEM. The chemical state and electron-hole recombination behavior of TiO₂ nanotubes were determined using XPS and PL Spectroscopy. The removal efficiency of white and black TiO₂ nanotubes was determined using Cr(VI) aqueous solution. The concentration of chromium ions remained in the solution after exposure to sunlight together with TiO₂ nanotubes for a period of time was measured using UV-Vis spectroscopy. The overview flowchart for this work is shown in Figure 1.3.

Figure 1.3: Overview flowchart for this work

1.9 Outline of Chapters

This project consists of five main chapters. The chapter one discusses on the introduction, problem statement, objectives and scope of this project. In second chapter,

the literature review, basic concept and theory related to nanomaterials, chromium and its removal techniques, white and black TiO_2 nanomaterials and their synthesis methods, and photocatalysis will be discussed. The materials, experimental procedures and characterization techniques will be discussed in chapter three. Meanwhile, chapter four consists of results and discussions regarding this work. Lastly, chapter five includes the conclusion of this project and suggestion of recommendation for future works.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This project is focused on the formation of TiO_2 nanotubes (NTs) on titanium foil by anodization and black TiO_2 nanotubes (NTs) via hydrogenation. The application of TiO_2 NTs and black TiO_2 NTs as photocatalyst for removal of hexavalent chromium (Cr(VI)) is also one of the focuses for this project. In this chapter, the toxicity and pollution of hexavalent chromium in wastewater will be discussed. This chapter also discusses on the techniques that can be used for removal of hexavalent chromium from wastewater and synthesis methods for TiO_2 NTs and black TiO_2 NTs.

2.2 Nanomaterials for Photocatalytic Reaction

Nanomaterials are widely studied nowadays as they may possess remarkable sizedependent properties which are not exist in their larger forms due to its high surface-tovolume ratio. Thus, nanomaterials may have different physical, chemical, electrical and optical properties as compared to the larger forms of same materials due to the differences in size and surface area for reaction to occur. The ability to fine-tune the properties of nanomaterials also contribute to the wide application of nanomaterials in photocatalytic reaction. For photocatalytic reaction, nanomaterials with higher surface area and more active sites for reaction to occur will be required to improve the reaction rate for better photocatalytic performance. Besides that, nanomaterials are very small in size where they are generally within nanoscale range, thus reducing the distance for photogenerated electrons and holes to reach the surface faster for photocatalytic reaction, leading to lower recombination rate of electron and hole pairs (Tahir *et al.*, 2020). The comparison of size between nanomaterials and bulk materials was shown in Figure 2.1. Some examples of nanomaterials for photocatalytic reaction are shown in Table 2.1..

Figure 2.1: Comparison of size between nanomaterials and bulk materials (A. Roy, 2014)

Nanomaterials	Photocatalytic application	Reference
TiO ₂ nanotubes	Degradation of methylene blue	(Farrugia et al.,
	(MB) and paracetamol	2021)
Fe ₂ O ₂ nanoparticles	Degradation of Rhodamine B (RhB)	(Kusior <i>et al.</i> , 2019)
Bi-doped carbon quantum	Photocatalytic hydrogen evolution	(Y. Wang et al.,
dots / CdS		2018)
Cu-doped TiO ₂	Degradation of MB	(Mingmongkol et
nanoparticles		al., 2022)
TiO ₂ nanoparticles	Removal of cadmium (II) and lead	(Fatehizadeh et al.,
	(II)	2014)
r-GO/Ag nanocomposite	Degradation of MB and RhB	(Pratheesya et al.,
		2019)
Cobalt oxide-loaded	Degradation of 2-chlorophenol	(A. Sharma and
TiO ₂ /reduced graphene		Lee, 2016)
oxide nanocomposite		

Table 2.1: Examples of nanomaterials for photocatalytic reaction

Nanomaterials can be classified into four categories, which are zero-dimensional, one-dimensional, two-dimensional and three-dimensional. Among the four categories of nanomaterials, one dimensional nanomaterial such as nanotube is more preferable to use as photocatalyst in contrast to nanoparticles as nanoparticles have higher tendency to form agglomeration when in contact with liquid, thus reduce the photocatalytic performance. Nanotubes also allow better carrier transport as compared to nanoparticles. The highly ordered and self-organized tubular structure of nanotubes also provide effective site for adherence and reaction (Indira *et al.*, 2015).

2.3 Fundamental and Toxicity of Chromium

Chromium is one of the metallic elements with steel grey appearance and high melting point (1907°C). It has body-centered cubic (BCC) crystal structure and the density of 7.19 gcm⁻³ (Lunk, 2015). Chromium is usually obtained from chromite ores (FeCr₂O₄). It will transform into green chromic oxide (Cr₂O₃) due to heating. With presence of oxygen, chromium will produce thin oxide layer on surface which is impermeable to oxygen and thus provide protection for metal from corrosion (Shanker, 2019).

The common exposure route for chromium is through ingestion, inhalation and dermal exposures, eventually deposits in body organs, such as heart, lungs, kidney and liver. Excessive amount of chromium accumulated in organs will possess health risk or potential threats to human health as chromium is carcinogenic to humans. Consumption of high concentration of chromium may lead to respiratory, cardiovascular, gastrointestinal, skin ulcerations, nausea, hepatic and renal systems and hematological issue (Karunanidhi *et al.*, 2021). According to Occupational Safety and Health Administration of United States Department of Labor, the exposure limit of chromium

should not exceed an airborne concentration of $5\mu g/m^3$. United States Environmental Protection Agency also reported that the acceptable concentration of chromium in drinking water is within 0.1ppm. Meanwhile, the recommended concentration of chromium discharged in water is within the range of 0.05 to 2ppm (Tumolo *et al.*, 2020).

The toxicity of chromium is affected by its oxidation state. Hexavalent chromium is highly toxic pollutant as several researches proved that chromium(VI) is more toxic than chromium(III) and study of chromium(VI) even at part per billion also shows toxicity (Pradhan *et al.*, 2017). Besides that, as chromium(VI) is strong oxidizing agent with the ability to accelerate generation of reactive oxygen species, it will have higher toxicity than chromium(III) (Shanker, 2019). However, chromium released into environment due to anthropogenic activity are usually in the form of chromium(VI) (Tchounwou *et al.*, 2012).

2.4 Environmental Pollution by Wastewater Containing Hexavalent Chromium

Although around 70% of earth is composed of water, however only 3% of them is fresh water and 0.06% can be used without any contaminants or problems (Ahuja, 2021). Production of wastewater from industry is one of the major sources of water and environmental pollution, especially wastewater that containing heavy metal ions such as chromium, cadmium, lead, arsenic and etc. The presence of heavy metal ions is not desirable in water sources especially drinking water as the heavy metal ions in high concentration may be carcinogenic and causes serious threats to human health and ecological systems. As chromium(VI) is highly soluble in water, it may form HCrO₄⁻, CrO_4^{2-} and $Cr_2O_7^{2-}$ (Hudaya *et al.*, 2013). Long and continuous exposure to chromium even at very low concentration also may cause adverse effect to organs and immune system. Chromium(VI) can be easily reduced to chromium(III) which is less toxic with the aid of reducing agent.

Chromium(VI) in wastewater usually comes from industrial or anthropogenic activities, such as mining, metal and alloys production and finishing, paint manufacturing, wood processing, electroplating or coating, paper processing, and etc. For instance, chromium(VI) salts can be used for wood preservation, while chromium carbide can be used as additive for production of hard metals and preparation of coating materials. Chromic acids will also be used for electroplating or chromizing which will produce chromium layer on the metal surface for specific purposes, such as improve wear and corrosion resistance. Chromium is also commonly used to produce stainless steel owing to the ability to resist corrosion by forming hard, self-healing oxide layer on the metal surface which can prevent the oxygen from penetrating and reacting with the iron underneath. Besides that, the generation of energy and second-generation fertilizers from incineration of municipal waste may release ashes which will increase the chromium(VI) content in water and soil, is also an important concern that need to be aware (Tumolo et al., 2020). Chromium is also used as chromium based catalysts for various chemical processes, such as oxidative dehydrogenation of light alkanes, ethylene oligomerization and etc. (Malinowski et al., 2020; P. Liu et al., 2021). With the rapid growth and development of industrialization, the release of wastewater that containing heavy metals ions became a huge issue which receiving increased attention.

2.5 Wastewater Treatments for Chromium Removal

Wastewater are usually discharged from domestic activities and industrial processes on daily basis which containing various organic and inorganic chemical compounds. This may pose serious threats to humans and ecosystem as the wastewater may contain pollutants or toxic materials owing to the absence of proper treatment before release into environment. Presence of heavy metal in wastewater also may leads to water crisis due to the toxicity and non-biodegradable nature of heavy metal ions (Ahuja, 2021). Thus, wastewater treatment can be said as the plausible solution to the problems and challenges related to wastewater in order to transform toxic pollutants into less or nontoxic materials.

Conventional wastewater treatments used to remove chromium include chemical precipitation, electrochemical technology, ion exchange, membrane filtration, coagulation and adsorption. All these techniques have their own advantages and drawbacks. For instance, the wastewater treatments are not able to remove heavy metal ions completely and they tend to generate secondary waste products which require additional process for disposal. Some of the wastewater treatments also may requires expensive materials and equipment. Thus, research and development of the wastewater treatment method with maximum effectiveness and efficiency to remove heavy metal ions still under progress. Advanced technologies such as photocatalysis was developed for wastewater treatment with some improvement such as higher removal efficiency and lower sludge or waste generation.

2.5.1 Adsorption

Adsorption is one of the most popular methods for wastewater treatment as it can utilizes both natural and synthetic materials as adsorbents. It is done where the molecules to be removed are concentrated and adhered on the surface of adsorbent by being adsorbed in the pores of adsorbent. However, the high production and regeneration cost of activated carbon has limited the usage of activated carbon for wastewater treatment. A cheaper and more sustainable technology for adsorption technique has been developed

16

where the agricultural by-products and industrial wastes are used as bio-sorbent for removal and recovery of chromium ions from wastewater (Owlad *et al.*, 2009).

2.5.2 Chemical Precipitation

The working principle of chemical precipitation in wastewater treatment is conversion of heavy metal ions into insoluble solid as shown in Figure 2.2 under basic conditions which will be adjusted using alkali. According to Pourbaix Diagram, precipitate of chromium (III) hydroxide (Cr(OH)₃) will be formed at pH range from 8 to 11 (Mella *et al.*, 2015). Precipitation reagent will also be added to aid the formation of insoluble solids in the solutions. To remove the precipitates or insoluble solids, chemical coagulation can be done to convert the precipitates into clump and remove by filtration or sedimentation.

Figure 2.2: Schematic diagram of chemical precipitation for heavy metal removal (Qasem *et al.*, 2021).

Through chemical precipitation, the heavy metal usually precipitates in the form of oxides, hydroxides, sulphide or carbonate for removal from wastewater. According to Peng and Guo (2020), direct precipitation of Cr(VI) without the need of reduction to Cr(III) can be done using lead sulphate as precipitating agent and the chromium removed as PbCrO₄. However, lead sulfate is one of the second pollutants which will cause harms to the environment, making it not an effective solution for wastewater treatment.

2.5.3 Electrochemical Technology

Electrochemical reduction is a process where the chromium removal is done by reducing chromium(VI) under an acidic condition using acidic medium such as sulphuric acid (H₂SO₄). This is because the reduction of chromium(VI) is acid-dependent and the reduction efficiency of chromium(VI) can be improved by increasing the acid concentration. As the name mentioned, this method is related to electricity, thus electrode will be needed for this process. With the application of DC power supply, free electrons will be supplied as reducing agent into the process for reduction of chromium Peng and Guo (2020). To remove the chromium(III) in the form of precipitates, reagent need to be added into the highly acidic solution after electrochemical reduction in order to allow precipitation of chromium(III) to proceed in an alkaline medium (Shrestha *et al.*, 2021).

2.5.4 Ion Exchange

Ion exchange is a reversible stoichiometric chemical process where the heavy metal is removed from wastewater using solid which has the capability for exchange of cations or anions. In other words, the ions from the solution or electrolyte can be exchanged with a similarly charged ions that attached to an insoluble solid to maintain the overall electroneutrality between the solid and electrolyte. For chromium removal, insoluble resin is commonly used by releasing ions of similar charge for exchange without causing structural change in the resin. Resin is the most popular selection for ion exchange process (Peng and Guo, 2020). The efficiency of heavy metal removal by ion exchange method is also depending on the ionic strength and pH where high ionic strength and presence of free acids will reduce the heavy metal removal efficiency (Shrestha *et al.*, 2021). The schematic diagram of ion exchange process is shown in Figure 2.3.

Figure 2.3: Schematic diagram of ion exchange process (Qasem et al., 2021)

2.5.5 Membrane Filtration

Membrane filtration is a method where the heavy metals are separated from the wastewater by forcing the wastewater through a semi-permeable membrane via diffusion. The diffusion rate of feed water through the membrane for different type of membrane filtration for heavy metal separation is depending on the concentration of ions present in the water, pressure and temperature applied (Shrestha *et al.*, 2021). The schematic diagram of membrane filtration process for heavy metal removal is shown in Figure 2.4.

Figure 2.4: Schematic diagram of membrane filtration process for removal of heavy metal (Shrestha *et al.*, 2021)

2.5.6 Photocatalytic Reaction

Photocatalytic reaction is a green technique which can be activated by sunlight or ultraviolet light and works by either oxidizing or reducing the heavy metals in the wastewater to be treated. It is gaining more attention as compared to conventional techniques as it is cleaner, cheaper, more practical and it is a promising solution to achieve environmental sustainability. During photocatalytic reaction, the photocatalysts will generate highly reducing photogenerated electrons which will transfer to the conduction band (CB) and strongly oxidizing photogenerated holes in valence band (VB) with irradiation of light which have higher photon energy than the band gap of photocatalysts (X. Gao and Meng, 2021).

Photocatalytic process includes transformation of ionic species into solid metal and deposition of solid metal on the surface of catalysts (Litter, 2015). Photocatalytic process also involves separation of photogenerated holes and electrons, as well as recombination of charge carriers which will reduce the number of excited charge carriers. During the photocatalytic reaction to remove chromium from wastewater, chromium(VI) will be reduced by the photogenerated electron, while the photogenerated holes in valence band will leads to oxidation of water to generate hydroxyl radicals and hydrogen gas. The hydroxyl radical produced during the photocatalytic reaction has strong oxidation power with high oxidation potential (2.80 eV). The hydroxyl radical can be used to decompose organic compounds in water into less harmful compounds in order to treat and clean the industrial wastewater (Lee and Park, 2013). The mechanism of photoreduction of chromium by photocatalyst is shown below (Malakootian and Mansuri, 2015):

Photocatalyst + photon (hv)
$$\rightarrow$$
 hvB⁺ + eCB⁻ Equation 2.1

$$h_{VB}^{+} + H_2O \rightarrow \bullet OH (hydroxyl radical) + H^+$$
 Equation 2.2

$$Cr_2O_7^{2-} + 14H^+ + 6e_{CB^-} \rightarrow 2Cr^{3+} + 7H_2O$$
 Equation 2.3

Photocatalytic reduction is also greatly influenced by the pH value. According to Pourbaix diagram, chromium(VI) exists as H₂CrO₄ which is neutral molecule when pH value is below 2.0. Meanwhile, when pH value is greater than 2.0, the predominant chromium species are HCrO₄⁻, CrO₄²⁻ and Cr₂O₇²⁻ which are negatively charged. The surface charge of photocatalysts which serves for heavy metal adsorption purpose will be

affected by the pH of solution. At the same time, different photocatalysts have different point of zero ionic charge. When the pH of solution is below the point of zero charge, the surface charge of photocatalysts will be positively charged, leads to stronger adsorption of oppositely charged heavy metal species on the surface of photocatalyst and thus better photocatalytic performance. Thus, the negatively charged chromium(VI) species will be strongly adsorbed to the surface of photocatalysts with positive charge at pH value greater than 2.0 due to the electrostatic interaction between opposite charges (Hudaya *et al.*, 2013). However, the surface charge of photocatalysts will also decrease at pH value above 4.0. The optimum pH value for photocatalytic reduction is in the range of 2.0 to 4.0, where the concentration of anions, such as $CrO4^{2-}$ and $HCrO4^{-}$, is higher, thus enhancing the adsorption of chromium(VI) (Zhao *et al.*, 2019).

There are various techniques that can be used for chromium removal from wastewater and they will be selected based on the criteria that are required based on different situation and condition. The advantages and disadvantages of the wastewater treatment techniques are being discussed in Table 2.2. In this project, the technique selected for chromium removal is photocatalytic reaction.

Table 2.2: Comparison of advantages and disadvantages of various wastewater
treatment method (Peng and Guo, 2020) (Crini and Lichtfouse, 2018) (Shrestha et al.,
2021)

Wastewater		Advantages		Disadvantages		
treatment						
method						
Adsorption	\checkmark	Simple equipment	×	Non-selective of materials		
	\checkmark	High effectiveness with		for adsorption		
		fast kinetics for adsorption	×	High regeneration cost for		
	\checkmark	Possible use of biosorbent		adsorbent		
		for sustainability				

\checkmark	Simple tools and	×	Production of large amount
	equipment		of sludge / secondary
\checkmark	Suitable for wastewater		pollution
	with high loads of	×	Less effective for
	pollutant		wastewater with high acid
\checkmark	Cost effective and		content and low heavy metal
	efficient		ions concentration
\checkmark	Rapid and well-controlled	×	High equipment and
	operation for separation of		maintenance cost, and power
	pollutants		consumption
\checkmark	Less sludge generation	×	pH sensitive process
\checkmark	Biodegradable and	×	Requires addition of
	environmental friendly		chemicals
\checkmark	Rapid and efficient	×	High initial cost due to
	treatment		utilization of resin and high
\checkmark	Capability for selective		maintenance cost
	metal removal and	×	Tendency to contaminate or
	recovery		foul ion exchange media
\checkmark	Lower sludge production		
\checkmark	Little or no generation of	×	Fouling or clogging of
	additional pollutants		membrane
\checkmark	No addition of chemicals	×	High operation and
	required		maintenance cost
\checkmark	No phase change		
\checkmark	Low secondary pollution	×	Must be activated by light
	or sludge generation		energy
\checkmark	Low cost, high stability	×	Light absorption range
\checkmark	Rapid removal or		depends on the width of band
	degradation of pollutants		gap of photocatalysts
		☑ Simple tools and iequipment Suitable for wastewater ☑ Suitable for wastewater iwith high loads off pollutant and efficient and ☑ Cost effective and ☑ Rapid separation and ☑ Rapid and efficient ☑ Biodegradable and ☑ Biodegradable and ☑ Rapid and efficient ☑ Rapid removal and ☑ Lowersludge production efficient ☑ No addition of chemicals efficient ☑	☑ Simple tools and ☑ □ Quitable for wastewater with high loads of ☑ □ Quitable for wastewater ☑ <

2.6 Titanium and Titanium Dioxide (TiO₂)

Titanium (Ti) is a metallic element located in the Group 4 of periodic table with silvery or greyish appearance. It is the fourth most abundant metallic element distributed in the Earth's crust. However, it is rarely appearing as pure state in nature. Titanium usually can be found in mineral salts, such as ilmenite (FeTiO₃). Titanium has low density, which is only 4.51 gcm⁻³. Titanium will crystallize in hexagonal close packed (hcp) structure, which also known as α -titanium at low temperature, but exhibit body-centered cubic (bcc) structure at high temperature, which also called β -titanium, as shown in Figure 2.5 (Leyens *et al.*, 2003).

Figure 2.5: Crystal structure of hcp α and bcc β titanium phase (Leyens *et al.*, 2003)

Titanium dioxide (TiO₂), which also known as titania, is made up of titanium and oxygen with covalent bonds and partial ionic character (Sousa and Illas, 1994). It is generally white in colours. TiO₂ is gaining lots of interest from researchers due to its contribution to many applications and fields, for instance photocatalytic reduction of heavy metals and pollutants, pigment, food technology, cosmetics, electronic and electrical devices, building materials, drug delivery system, biomedical materials, antibacterial agents and etc. (Haider *et al.*, 2019). TiO₂ is a semiconductor with wide band gap of 3.0 - 3.2eV which limits its light absorption to ultraviolet light range. In other words, the photon energy needs to have energies higher than the band gap energy of TiO₂

in order for electron transport between valence band and conduction band and creation of holes in valence band.

2.7 TiO₂ Nanomaterials as Photocatalysts

Photocatalyst is a material which play an important role in photocatalysis to speed up the reaction for heavy metal removal with photon. As a semiconductor photocatalyst, TiO_2 need to fulfil several conditions, where it should not possess any form and properties changes during the photocatalytic reaction and it is required to provide different mechanism routes to achieve acceleration in the rate of photocatalytic reaction (Lee and Park, 2013). TiO_2 is a common photocatalyst used for photocatalytic reaction as it possesses high chemical stability and photostability, good commercial availability, low toxicity, cost effective, good thermal stability and excellent resistance to light-induced corrosion (Z. Li *et al.*, 2022).

For photocatalytic reaction, the photogenerated electrons need to be reduced to form superoxide acid (•HO₂) and superoxide anion radicals (•O₂⁻) as shown in Equation 2.4 and 2.5 respectively. Meanwhile, photogenerated holes are required for oxidation of OH⁻ to form hydroxyl radicals (•OH) as demonstrated in Equation 2.6. The superoxide anion radicals and hydroxyl radicals are strong oxidizing agents which will oxidize numerous organic and inorganic compounds and pollutants (Yan *et al.*, 2013).

$$O_2 + H^+ + e^- \rightarrow \bullet HO_2$$
 Equation 2.4

$$O_2 + e^- \rightarrow \bullet O_2^-$$
 Equation 2.5

$$OH^- + h^+ \rightarrow \bullet OH$$
 Equation 2.6