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PELAKSANAAN PENDERIAAN TERMAMPAT BAGI ANGGARAN

SALURAN YANG JARANG DI DALAM SISTEM OFDM

ABSTRAK

Permintaan yang meningkat bagi perhubungan berkadar data tinggi di atas saluran

perlunturan tanpa-wayar bebilang-jalan, biasanya memerlukan maklumat terkini ten-

tang saluran tersebut diketahui pada penerima. Hal ini diperolehi melalui pengetahuan

terkini tentang Maklumat Keadaan Saluran (CSI) di penerima dalam menghasilkan

pembinaan semula sambutan dedenyut saluran dari isyarat penerima. Bagi sistem OF-

DM berpandukan pengesanan jelas, anggaran saluran bagi reka bentuk penerima perlu

tepat supaya prestasi CSI boleh ditingkatkan. Walau bagaimanapun, maklumat tersebut

jarang ada priori dan perlu dianggarkan. Isyarat termampat menggunakan maklumat

terkini yang menyatakan kebanyakan isyarat fizikal adalah jarang dan memerlukan be-

berapa ukuran untuk memperolehinya. Oleh itu, cabaran utama bagi CE berasaskan

CS di dalam sistem OFDM adalah; pertama, reka bentuk untuk ukuran matriks yang

tepat, mengeksploitasikan struktur isyarat jarang bagi sesetengah jelmaan asas. Ke-

dua, berpandukan kepada maklumat terkini tentang ukuran vektor dan matriks, untuk

mencari sokongan bagi vektor isyarat tidak diketahui dengan tepat daripada beberapa

ukuran yang hingar. Pengoptimuman nilai simbol perintis dan penempatannya sebagai

masalah pengoptimuman tak-bersambung berkemungkinannya tidak menunjukkan CE

termampat yang jelas. Oleh itu, simbol perintis bersambung dan skim penempatannya

dicadangkan untuk mengoptimumkan kedua-dua nilai simbol perintis dan penempa-

tannya sebagai satu masalah pengoptimuman reka bentuk. Hasil simulasi menunjukk-

an bahawa skim yang dicadangkan adalah berkesan dan memberi keputusan dari segi

xix



CE yang lebih baik daripada skim yang lain, serta boleh menghasilkan 18.75% pe-

nambahbaikan pada kecekapan jalur lebar dengan prestasi CE yang sama berbanding

dengan CE persegi kurang (LS). Gabungan beberapa algoritma pembinaan semula bo-

leh menyebabkan kemungkinannya tergabung beberapa indeks anggaran yang tidak

tepat di saluran yang hingar. Maka, rangka kerja gabungan yang baru, dikenali seba-

gai Rangka Kerja Kerjasama bagi Algoritma (CoFA) dicadangkan untuk mendapatk-

an pemulihan isyarat jarang yang tepat daripada beberapa ukuran linear. Tambahan

lagi, bagi aplikasi pendam lemah, algoritma bernama Pengejaran Tahap Ditentukan

(SdMP) dicadangkan untuk menghasilkan pembinaan semula isyarat yang cepat dan

mudah dikendalikan. Dengan menggunakan sifat isometri terhad, analisis teori bagi

algoritma CoFA dan SdMP yang dicadangkan untuk CE memperolehi lebih kurang

11.1%, 18.3%, 28.9% dan 42.8% serta 5.6%, 13.9%, 22.8% dan 33.3% penambahba-

ikan pada nilai 2× 10−3 MSE apabila dibandingkan dengan algoritma FACS, gOMP,

OMP dan ROMP. Tambahan lagi, pada nilai 2×10−3 BER, algoritma CoFA dan SdMP

yang dicadangkan memperolehi 9%, 14%, 19.5% dan 25%, serta5%, 10%, 14% dan

22.5% penambahbaikan apabila dibandingkan dengan algoritma FACS, gOMP, OMP

dan ROMP. Kesimpulannya, algoritma CoFA dan SdMP boleh dianggap sebagai algo-

ritma yang paling cekap tenaga apabila dibandingkan dengan algoritma FACS, gOMP,

OMP dan ROMP.

xx



COMPRESSED SENSING IMPLEMENTATIONS FOR SPARSE CHANNEL

ESTIMATION IN OFDM SYSTEMS

ABSTRACT

The ever-increasing demand for high-data-rate communication over a wireless mul-

tipath fading channel usually necessitates that at the receiver, prior knowledge about

the channel is known. This is often achieved using knowledge of current Channel

State Information (CSI) to produce at the receiver channel impulse response recon-

struction obtained from the received signals. For coherent detection based OFDM sys-

tem, CE is critical for the receiver design as accurate CSI can remarkably improve

performance. However, such information is seldom available a priori and needs to be

estimated. CS uses the prior knowledge that many physical signals are sparse and ac-

quire them with few measurements. Therefore, the main challenge in CS-based CE

in OFDM system is two-fold: firstly, the design of proper measurements matrix, ex-

ploiting signal sparsity structure over certain transform basis. Secondly, based on prior

knowledge of the measurement vector and measurement matrix, to accurately find the

support of the unknown signal-vector from very few noisy measurements. The opti-

mization of pilot symbols values and their placement as a disjoint optimization prob-

lem may not necessarily exhibit low coherence compressed CE. Hence, a joint pilot

symbol and placement scheme is proposed that optimizes over both the pilot sym-

bol values and their placements as a single design optimization problem. Simulation

results demonstrate that the proposed scheme is effective and offer a better CE perfor-

mance compared to other schemes, and can realize 18.75% improvement in bandwidth

efficiency with the same CE performance compared to the Least Squares (LS) CE. Fus-

xxi



ing different reconstruction algorithms may result in the probability of fusing several

incorrectly estimated indices over noisy channels. Hence, a new fusion framework

namely, Collaborative Framework of Algorithms (CoFA) is proposed, to pursue accu-

rate recovery of the sparse signals from few linear measurements. Additionally, for low

latency applications an algorithm namely, Stage-determined Matching Pursuit (SdMP)

is proposed to provide tractable and fast signal reconstruction. By using the restricted

isometry property, the theoretical analysis of both CoFA and SdMP algorithms and the

sufficient conditions for realizing an improved reconstruction performance were pre-

sented. Simulation results demonstrate that the proposed CoFA and SdMP algorithms

for CE have around 11.1%, 18.3%, 28.9% and 42.8% and around 5.6%, 13.9%, 22.8%

and 33.3% performance improvement at MSE value of 2× 10−3 when compared to

FACS, gOMP, OMP and ROMP algorithms, respectively. Additionally, at BER value

of 2× 10−3 the proposed CoFA and SdMP algorithms for CE have around 9%, 14%,

19.5% and 25% and around 5%, 10%, 14% and 22.5% performance improvement

when compared to FACS, gOMP, OMP and ROMP algorithms, respectively.
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CHAPTER ONE

INTRODUCTION

1.1 Background

Advancements in wireless communication systems translates into advancements in

human civilization. Presently, cost-efficient Wireless Communications Service (WCS)

that operates in the 2.3 GHz portion of the Radio Frequency (RF) spectrum are now

available to billions of people living in the world today (Gozalvez, 2011). The con-

tinued demand within the ever-growing digital world for data services confers no in-

dication of ever slowing down. With such needs growing exponentially, significant

pressure has remained fixed on the evolution of new and continually enhancing tech-

nology. One such measure is the construction of a new sensing/sampling paradigm

(Donoho, 2006), which deals with a particular class of sparse signal modeling problem

known as Compressed Sensing (CS). Nonetheless, wireless communication system has

to withstand transmission and propagation delays which are considerably much hostile

with several design challenges as compared to the wired system (Zou et al., 2016).

In a distinctive scattering environment, a radio signal can be reflected, refracted,

or scattered as it propagates the wireless channel environment from the transmitter to

the receiver (Tse and Viswanath, 2005). This effect creates multiple transverse paths

of the transmitted signal, causing the receiver to perceive a superposition of multiple

copies of the transmitted information traversing separate paths (Tse and Viswanath,

2005). Hence, each signal copy will encounter dissimilarities in delay, attenuation,

as well as a shift in phase, while propagating from source to destination as shown in

1
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Figure 1.1: Wireless channel multipath propagation.

Figure 1.1. This consequently attenuates or amplifies the amplitude of the transmitted

signal (Rappaport et al., 1996). The effect of attenuation causes fading which reduces

the resultant/received signal amplitude and, consequently, alters the rate and reliability

of the transmitted signal in the wireless channel environment. The effect of ampli-

fication, on the other hand, increases diversity (Krikidis et al., 2010) −the number

of independent propagation paths, in which the wireless channels transverse without

violating constraints which consequently improves the reliability of the wireless sys-

tem. The impact of fading can greatly be suppressed by providing the communication

system receivers with known channel state information of the signal transmitted. In-

variably, it could be said that the Channel State Information (CSI) actually describes

to the communication system receivers how the received signal at the channel output

has been attenuated (Ji et al., 2017). The presence of the CSI at the transmitter block

induces multiplexing gain and reliability while if present at the receiver block induces
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the receiver’s immunity against fading.

High speed applications now, require high sampling rate, which generates a high

data “flood” that critically overburdens the role of Analog-to-Digital Converter (ADC)

(i.e., the data-acquisition) in signal processing (Bhadoria et al., 2014; Eldar and Ku-

tyniok, 2012; Patel and Chellappa, 2013). Moreover, after signal acquisition, the ac-

quired data is compressed for an efficient transmission. Hence, a significant amount of

the acquired data, the least “significant information” content is “thrown away” (Palangi

et al., 2017), for lossless compression. The aspect of universal compressibility, how-

ever, uplifts some very logical questions as Donoho (2006) puts it “why go to so much

effort to acquire all the data when most of what we get will be thrown away? Can

we not just directly measure (take random linear combinations of the entries of the

transmitted signal vector) the significant information content that will not end up being

thrown away?”. Compressed Sensing (CS) theory asserts that this is indeed achievable.

By using CS, a signal can be reconstructed from a randomly chosen small set of possi-

bly noisy measurements, provided that the transmitted signal is sparse with respect to

some basis (Donoho, 2006). In many applications, data acquisition (measurement) for

use is critical, one of such system is the Orthogonal Frequency Division Multiplexing

(OFDM) system (Liu et al., 2014).

OFDM has been broadly utilized in modern and emerging wireless communication

systems mainly due to its efficient spectrum utilization, high-data-rate transmissions,

and ability to manage multipath fading channels (Liu et al., 2014; Mohammadian et al.,

2017a). It has been used in Digital Video/ Audio Broadcasting (DVB/DAB) (Sheng

et al., 2017) and in the Wireless Local Area Networks (WLANs) standards such as

3



the IEEE 802.11a (D’Amico et al., 2017), which operates in the 5GHz portion of the

unlicensed band and the newly introduced IEEE 802.11g extension (Au, 2016), which

uses the frequency band of 2.4GHz. Nonetheless, Channel Estimation (CE) is critical

for coherent detection based OFDM systems, as accurate Channel State Information

(CSI) can notably improve performance (Mohammadian et al., 2017b; Shu et al., 2017;

Zhang et al., 2016a). In OFDM system, a reliable way to obtain a successful CSI at the

receiver is primarily realized through the use of pilot tones and several pilot-symbol-

aided CE schemes have been investigated (Abdelkader et al., 2010; Mohammadian

et al., 2017b; Shu et al., 2017). Nonetheless, the assumption that the underlying statis-

tical models for wireless channels are rich multipath, and apply a huge number of pilot

signal to achieve a better CSI accuracy will probably result in a lower system spectral

efficiency (Bajwa et al., 2010).

Interestingly, recent research has shown that the wireless communication channel

is indeed characterized as a channel that possesses only a few dominant paths in prop-

agation; this is as a result of the signal well approximated, as a linear combination of

a few coefficients taken from a known basis, e.g., the Fourier basis or wavelet basis

(Wang, 2012). These paths which are considered dominant are in time, largely sepa-

rated, and thus, exhibit within the Channel Impulse Response (CIR) a sparse nature.

This has now given rise to a new paradigm in the field of CS that is focused on acquir-

ing the sparse signal at a rate appreciably below the Nyquist rate, which is, however,

contrary to the rich multipath channel assumptions that the most existing models of

wireless channels acquire (Bajwa et al., 2010; Eldar and Kutyniok, 2012). CS has

revealed itself as a new signals sampling paradigm for acquiring high-dimensional sig-

nals that are compressible, and has dragged a lot of recognition with a wide variety
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of applications (Bajwa et al., 2010; Donoho et al., 2006). Typically, if the signal is

sparse and incoherent on a known basis, a perfect reconstruction of the underlying

signal can be achieved through optimization techniques from far fewer measurements

than what is generally considered necessary (Blanchard et al., 2011a; Eldar and Ku-

tyniok, 2012). Since, CS simultaneously accomplishes data acquisition (i.e., sensing)

and compression, then there will be a significant reduction in the number of linear

measurements that is required to be processed. Research has, however, revealed that

the Restricted Isometry Property (RIP) is a sufficient condition for sparse signal re-

covery from noisy measurements which employs random matrices (Blanchard et al.,

2011a). Based on RIP, it has been demonstrated that random pilot locations will pro-

duce distinctive CS measurements and can guarantee the sparse recovery with a high

probability (He et al., 2016; Ren et al., 2015). This, however, suggests that optimal pi-

lot pattern is obtained by the use of uniformly random pilot allocation. But, randomly

generating pilot patterns is in general, computationally complex in practice (Candes

et al., 2006; Pejoski and Kafedziski, 2015). This, however, necessitates the fixing of

the pilot pattern through means of deterministic allocation (Kamali et al., 2014; Ma-

soumian and Tazehkand, 2015; Qi et al., 2015b). However, no results have since been

established on how the pilot pattern are to be fixed for an improve performance in

CS based sparse CE in OFDM system. Since different pilot allocation scheme gives

rise to different CS measurements (Ambat et al., 2013; Hurley and Rickard, 2009),

a well-designed measurements matrix design scheme is then desirable for a good CS

behaviour. Therefore, research is needed for the development of new sampling tech-

nique (pilot structure) and CS reconstruction algorithms for an enhanced sparse CE

performance in OFDM systems.
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1.2 Problem Statement

Signal reconstruction from random incomplete measurements plays a significant

role in the task of signal processing, where it belongs to a general class of sparse chan-

nel (signal) estimation problem. By considering the signal sparse property, the problem

of sparse-signal recovery from noisy measurements can be overcome, whereby requir-

ing the developments of algorithms for signal reconstruction from noisy, incomplete

linear CS measurements. CS is a very efficient sub-Nyquist signal sampling scheme

that allows, under certain assumptions, the accurate recovery of signals that are sparse

or nearly sparse in a known representation (Donoho, 2006; Needell and Vershynin,

2010). The efficiency of the CS scheme relies on the measurement scheme employed

with respect to this representation and the reconstruction algorithm used for support

identification (i.e., to identify the sparse set of representation coefficients). Typically,

given a sparse signal h ∈ RN that is k-sparse (i.e., with at most k non-zero entries),

observed via a measurement matrix A (where A denotes a matrix with dimensional-

ity reduction m×N since, it maps RN into Rm, with N relatively larger than m, i.e.,

m�N), yields a set of very few linear measurements, Ah= y∈Rm. Let the ith column

of A be represented by ci, where i∈ [N] such that [N] := {1,2, . . . ,N}. As the entries in

y is a linear combination of k columns of A, it then means that the reconstruction of the

CIR h can be formulated as the problem of identifying the locations of {c1,c2, . . . ,ck}

in which the target signal lie as depicted in Figure 1.2. Through CS, the dimensionality

reduction in the number of measurements give rise to the reduction in the number of

samples below the Nyquist rate and translates into a reduction in the number of pilot

overhead, which enhances the spectrum utilization efficiency of the system; although,

the performance of the sparse recovery block may degrade. Nonetheless, by exploit-
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Figure 1.2: Underdetermined system as a system of linear equations (Zhang et al.,
2014; Zhang and Drew, 2015).

ing the sparsity of the CIR, it is still possible to capture the necessary information in

the frequency domain in the fewer number of pilots but requires optimal pilot patterns

for estimating the sparse channel. On the assumption that h is k-sparse, leads to two

obvious and important questions:

First, what is the easiest possible model that adequately describes the observation

signal vector that does not unnecessary adds complexity? In other words, how would

the measurement matrix, A, be constructed to accurately describe the observations y?"

Hence, a good construction of A is desirable to adequately describe the observation

y which will possibly lead to an accurate estimation of h. Most existing works on

the deterministic pilot pattern design for sparse Channel Estimation (CE) in Orthog-

onal Frequency Division Multiplexing (OFDM) system are based on the assumption

that the pilot symbols are equally-powered (Chen et al., 2013; Mohammadian et al.,
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2017a). This assumption may not necessarily exhibit low coherence compressed CE.

This, therefore, calls for the optimization of pilot symbols and their placement which

in existing works are considered as a disjoint optimization problem. Hence, the joint

pilot placement and symbol design optimization problem for sparse CE in OFDM sys-

tems is considered based on minimizing the mutual coherence of the Fourier submatrix

associated with the pilot subcarriers. In order to avoid the disjoint optimization of the

pilot placements and pilot symbol design sub-problems, a joint pilot symbol and place-

ment scheme is required that will optimize over both symbol values and placement as

a single design optimization problem to minimize the mutual coherence of the mea-

surement matrix.

Second, based on prior knowledge of the measurement vector y and measurement

matrix A, how can one accurately estimate h from y = Ah? In other words, what are

efficient reconstruction algorithms? Hence, the ability of a basis to provide an exact

reconstruction of the transmitted signal depends on how well the reconstruction al-

gorithm is designed. For noisy measurements, the cardinality of the support set, say

|Γ|, is often far larger than k (i.e., |Γ| � k) and may require additional rightly chosen

support indices (Ambat et al., 2013). According to data fusion principle, fusing com-

pletely the estimated support set of different reconstruction algorithms can improve

signal recovery performance. It can, however, lead to the increased probability of esti-

mating incorrect support indices, and thus degrades the signal reconstruction accuracy.

Hence, since it is evident that the estimate collected by each individual algorithm usu-

ally contains partially correct information regarding the sparse signal, exploiting the

partial information can possibly lead to a better sparse signal estimate. Therefore, this

possibility will be explored and then propose a new scheme (that potentially corrects
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erroneously estimated atoms chosen from the sensing basis) to improve the perfor-

mance of arbitrary sparse signal reconstruction algorithms.

Additionally, since low latency applications requires computationally fast recon-

struction algorithms, the Orthogonal Matching Pursuit (OMP) algorithm (Cai and Wang,

2011) therefore requires further acceleration. Existing algorithms such as General-

ized OMP (gOMP) (Wang et al., 2012), Regularized OMP (ROMP) (Needell and

Vershynin, 2009), Compressive Sampling Matching Pursuit (CoSaMP) (Needell and

Tropp, 2009), and Subspace Pursuit (SP) (Dai and Milenkovic, 2009) have tried to

speed up the OMP algorithm. Thus, causing a significant compromise in the accuracy

of sparse signals from noisy CS measurements. Therefore, without significantly com-

promising accuracy, an algorithm is required that can provide fast execution time as

compared to the existing algorithms.

1.3 Aim and Objectives

The main aim of this thesis is to improve the CS reconstruction methods for Sparse

Channel Estimation in OFDM Systems. The key objectives of this research include the

following:

1. To propose a new deterministic method that jointly optimizes pilot symbol and

placement in OFDM systems, which can improve the accuracy of sparse signal

reconstruction from a limited number of noisy compressed measurements.

2. To propose a new fusion framework of algorithms which can improve the accu-

racy of sparse signal reconstruction in OFDM systems from a limited number of

noisy compressed measurements.
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3. To propose a new sparse signal recovery algorithm for OFDM systems, for pur-

suing efficiency (in terms of accuracy and complexity) in the reconstruction of

sparse signals.

1.4 Research Contributions

The thesis contribution context diagram is presented in Figure 1.3. There are three

main contributions of this thesis which are presented as follows.

1. To develop a new joint pilot symbol and placement scheme that optimizes over

both the pilot symbol values and their placement as a single design optimization

problem, to minimize the mutual coherence of the measurement matrix associate

with the pilot subcarrier. The proposed method avoids the disjoint optimization

 OFDM system model suitable 
for a time-invariant frequency-

selective fading channel, 
where the channel output is 

observed in AWGN

Projection Matrix 
Theory

Reduced number 
of measurements

Improved sparse signal 
estimate

(Contribution of the thesis )

Development of a 
new Pilot pattern 

design

Reconstruction 
algorithms

Greedy pursuits

Improved sparse signal 
estimate

(Contribution of the thesis)

Development of two new 
signal reconstruction 

algorithms

Figure 1.3: The thesis contribution context diagram.
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of pilot placements and pilot symbol as two separate optimization subproblems.

2. To develop a new fusion framework, namely Collaborative Framework of Al-

gorithms (CoFA), to improve the accuracy of sparse signals reconstruction in

OFDM systems. The CoFA scheme exploits both the estimated support-set and

sparse coefficients of algorithms to estimate the support-set of the target signal.

By using the Restricted Isometry Property, the theoretical analysis of the CoFA

scheme and the sufficient conditions (guarantees) for realizing an improved re-

construction performance are presented.

3. To develop a new sparse signal recovery algorithm, namely Stage-determined

Matching Pursuit (SdMP), for pursuing efficiency (in terms of accuracy and

complexity) in the reconstruction of sparse signals in OFDM systems. By using

the restricted isometry property, the theoretical analysis of the SdMP algorithm

and the sufficient conditions (guarantees) for realizing an improved reconstruc-

tion performance are presented.

1.5 Scope of Work

The scope of this research is limited to the mathematical formulation, algorithm

development, and implementation of the overall strategy on a Matlab Software Plat-

form. Therefore, the proposed methods are analyzed mathematically. The mathemati-

cal models in the form of equations represent the input-output relationship of the wire-

less communication system. These equations are the representation of the system being

modeled. Next, the thesis verifies the correctness of the simulated proposed reconstruc-

tion algorithms with the mathematical expressions. The results for verification of the

mathematical models and simulations are accurate to satisfy the level of prototyping
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and testing. Thus, hardware implementation is not within the scope of this thesis. How-

ever, the thesis relied on the processing and generation of random signals as discussed

in Appendix C.

1.6 Organization of the Thesis

The remainder of this thesis is organized as follows:

Chapter 2 presents an overview of the fundamental theories that are used in this

work and also prior work in the literature. It begins by discussing the fading phe-

nomena in wireless communication channels. Subsequently, it introduces the wire-

less channel impulse response statistics, followed by the OFDM system fundamentals.

Then, the underlying idea behind the CS theory is introduced. This is accomplished in

a more conceptually based approach to gradually introduce and reveal the fundamental

problem of CS in its simplest mathematical form. The chapter ends with some reviews

of prior work on sparse CE in OFDM systems and the specific research problems iden-

tified in the literature.

Next, Chapter 3 introduces the overall research methodology. It begins by de-

signing a joint pilot symbol and placement scheme using the method of deterministic

pilot allocation. Subsequently, a new fusion framework namely, Collaborative Frame-

work of Algorithms (CoFA) was developed, to improve the accuracy of sparse signal

reconstruction in OFDM systems. Then, a new algorithm namely, Stage-determined

Matching Pursuit (SdMP) was developed, for pursuing efficiency in the reconstruction

of sparse signals in OFDM systems.

12



In Chapter 4, the complexity analysis and simulation results of the proposed joint

pilot symbol and placement scheme, is first presented. Next, the theoretical analysis

and the sufficient conditions (guarantees) for realizing an improved reconstruction per-

formance using the proposed CoFA scheme is presented, followed by a discussion of

numerical experiments using the CoFA scheme. Finally, the chapter then presents a

discussion on the theoretical analysis of the proposed SdMP algorithm and the suf-

ficient conditions (guarantees) for realizing an improved reconstruction performance,

followed by the complexity analysis and simulation results of the proposed SdMP al-

gorithm. Chapter 5 concludes the thesis and discusses future work.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter presents a detailed discussion of the principles and recent research

activities regarding fading channels, OFDM systems, Compressed Sensing (CS) and

sparse Channel Estimation (CE) techniques. The chapter is organized into seven main

sections. The first section presents an introduction to wireless communications, set-

ting the basic background to comprehend the subsequent sections. The second section

discusses the wireless Channel Impulse Response (CIR) statistics and Orthogonal Fre-

quency Division Multiplexing (OFDM). The third section presents a review on CS and

sparse signal reconstruction algorithms, which shows that a low coherence compressed

CE (i.e., a good measurement matrix design) and a suitable nonlinear reconstruction

algorithm are desirable for an enhanced CE performance. The fourth section presents

the mathematical model of CS based sparse CE in OFDM systems. The fifth section

presents a review on the measurement matrix design. While the fifth and sixth sections

presents the CS reconstruction algorithms, and a comprehensive review of the litera-

ture revealing the performance gap that currently exists, respectively. The last section

summarizes the chapter.

2.2 Fading

Wireless communication is one of the most ubiquitous of modern technologies and

had been limited however by fading. Typically, fading in wireless communications
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occur as a result of multipath propagation (also regarded as multipath induced fading),

or due to shadowing caused by obstacles (Panic et al., 2013). It is experienced when

the radio signal arrives at the receiver at slightly different time delays or at slightly

different frequency shift due to the effects of electromagnetic wave scattering in the

environment. Hence, these random variations (attenuation) in the received signal level

is referred to as multipath fading (Fan and Tsai, 2015). In order to compensate for the

distortions and attenuations that occurs during transmission, the wireless channels have

been widely studied (Barbu et al., 2017; Fan and Tsai, 2015; Liu et al., 2014), and dif-

ferent channel models have been introduced (Liu et al., 2014). These effects are mostly

summarized as reflection, shadowing, path loss and scattering that attenuates the un-

predictability of existing paths between the transmitter and the receiver, which can

typically be classified into large-scale fading (i.e., slowly varying) and small-scale fad-

ing or multipath fading (i.e., rapidly fluctuating signal envelop) (Fan and Tsai, 2015).

Large-scale fading is caused by path loss and large obstacles such as buildings and

hills and it is characterized as a function of the received signal strength as a function

of distance (Dey and Rossi, 2017; Kumar, 2015). Hence, the fluctuations in signal

strength due to the effect of large-scale fading are slowly varying. Small-scale fading

is due to the amplification (constructive) or attenuation (destructive) of the power of the

transmitted signal that is received from different multipath component (Dey and Rossi,

2017). In general, it can be concluded that large-scale fading is more relevant to the

design of optimization models for cell site planning, whereas the small-scale multipath

fading is more relevant to the design of optimization models for reliable and efficient

communication systems (i.e., to track the channel impulse response for reliable CE),

hence, the focus of this thesis.
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Basically, small-scale fading is guided by the nature of the transmitted signal and

radio environments (Panic et al., 2013; Zhang et al., 2017). Small-scale fading is avail-

able in two types which result in the spreading of the transmitted signal in time which

translates into Intersymbol Interference (ISI) (Kumar, 2015; Li et al., 2017; Zhang

et al., 2017), denoted as multipath delay spread, while the frequency-variation of the

channel results in frequency spreading which translates into Doppler frequency spread

as shown in Figure 2.1. Hence, wireless channels exhibit time-variant characteristics

due to multipath fading and frequency selectivity characteristics due to the Doppler

spread. Frequency non-selective (flat fading, i.e., Bc � Bs, where Bs and Bc denote

the transmitted signal bandwidth and the channel coherence bandwidth, respectively)

channel or frequency selective channel (i.e., Bc < Bs) are two categories of multipath

channels with time delay spread (multipath delay spread) (Kumar, 2015). In the flat

fading channel, the channel bandwidth is much larger than the bandwidth of the trans-

mitted signal while in the frequency selective fading channel, the channel is smaller

than the bandwidth of the signal (Kumar, 2015; Li et al., 2017). Additionally, the

frequency selective fading channel experience a decorrelated fading caused by the dif-

ferent frequency components of the signal which are affected independently, and there-

fore, a deep fade does not simultaneously affect all parts of the signal but, suffers from

Small-Scale Fading Multipath (time) Spread Flat Fading

Frequency Selective Fading

Doppler Frequency Spread Fast Fading

Slow Fading

Figure 2.1: Small-Scale Fading
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ISI (which limits the data rate) which must be mitigated (Kumar, 2015).

2.3 Channel Impulse Response Statistics

The Channel Impulse Response (CIR) representation of a complex baseband mo-

bile wireless communication channel can be expressed in complex notation as (Chiueh

and Tsai, 2008; Trivedi, 2013)

h(t,τ) =
L−1

∑
l=0

αl(t)δ (τ− τl), (2.1)

where h(t,τ) is the response at delay τ to an impulse at time t, where δ (τ) denotes the

Dirac-delta function. The αl(t) are the time-varying complex amplitude (magnitude

and phase) of tap l, with delay τl . The number of resolvable multipath components is

L. The αl(t) may aggregate many more unresolvable multipath components, typically

resulting in Ricean or Rayleigh statistics for these parameters. As a result of vehicu-

lar motion, the complex amplitudes experience a wide-sense stationary (i.e., a random

process is known to be wide-sense stationary (WSS) complex process if its mean func-

tion and its correlation function do not change by shifts in time) that is narrow band

and are on different paths independent. From Equation (2.1), the time-varying Chan-

nel Frequency Response (CFR) of the channel can be expressed in time t as (Malepati,

2010)

h(t, f ) =
∫

∞

−∞

h(t,τ)e− j2π f τdτ

=
L−1

∑
l=0

αl(t)e− j2π f τ .

(2.2)
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Therefore, at different time and frequency, the frequency response correlation function

can be presented as (Malepati, 2010)

rH(∆t,∆ f ) = E{H(t +∆t, f +∆ f )H∗(t, f )}

=
L−1

∑
l=0

rαl(∆t)e− j2π∆ f τl

= rt(∆t)
(L−1

∑
l=0

δ
2
l e− j2π∆ f τl

)
.

(2.3)

Hence, from Equation (2.3), the frequency correlation function can be defined as

(Malepati, 2010)

r f (∆ f ),
L−1

∑
l=0

δ
2
l e− j2π∆ f τl , (2.4)

while the time correlation function as

τt(∆t), rt(∆t). (2.5)

Subsequently, the channel is then normalized and the average impulse power becomes

∑
L−1
l=0 δ 2

l = 1. Therefore, the correlation function can be re-expressed as

rH(∆t,∆ f ) = rt(∆t)r f (∆ f ). (2.6)

The correlation function in Equation (2.6) is thus, a product of both the time domain

correlation function rt(∆t) which is motion (vehicular) dependent and the frequency

domain correlation function r f (∆ f ) which is multipath delay spread dependent.
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2.3.1 Orthogonal Frequency Division Multiplexing Fundamentals

OFDM system is a multicarrier modulation technique. OFDM manages to trans-

form the frequency-selective fading channel into several flat fading subchannels with

independent additive noise vectors (Pathak and Sharma, 2013), resulting in a signifi-

cant reduction in complexity in the receiver design (Shakeri and Bajwa, 2015). In wire-

less communication systems, the transmitted information reaches the receiver through

a radio channel (Malepati, 2010; Shakeri and Bajwa, 2015). Hence, the effect of the

channel on the transmitted signal, for coherent receivers must be estimated to recover

the transmitted information (Ozdemir and Arslan, 2007). In other words, since the

receiver accurately estimates how the channel modifies the transmitted signal, it can

recover the transmitted information (Ozdemir and Arslan, 2007). While CE technique

can be avoided by employing differential modulation, the differential modulation tech-

nique suffers from 3 dB SNR penalty when compared to the coherent modulation tech-

nique (Ozdemir and Arslan, 2007). Hence, CE is critical in OFDM systems (Pejoski

and Kafedziski, 2015), as accurate CSI can notably improve performance. The tech-

nique, however, remains very attractive for use for the following reasons; high spec-

tral efficiency, immunity to interference caused by impulse noise, ability to combat

multipath fading channels (Pathak and Sharma, 2013; Pejoski and Kafedziski, 2015).

Hence, OFDM can effectively mitigate ISI introduced by channel variations (Ma et al.,

2014; Qing et al., 2014; Sou and Wang, 2014). OFDM technique still suffers a major

drawback from its inability to sufficiently and adequately provide accurate estimates

of CSI indispensable to coherent receiving and demodulation at the receiver which is

crucial for achieving reliable communication (Larsson et al., 2014; Prasad et al., 2014;

Zhang et al., 2013).
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The block diagram of an OFDM system transceiver is shown in Figure 2.2. We-

instein and Ebert (1971) introduced a major contribution for the implementation of

OFDM systems. They applied the Discrete Fourier Transform (DFT) to implement

baseband modulation and demodulation in OFDM while focusing on efficient process-

ing. In order to further reduce the complexity and improve reliability of OFDM sys-

tem, two essential strategies have been proposed by the researchers and are presented

as follows:

1. Modulated symbols are converted from their frequency domain components to

their time domain components with the help of an Inverse Fast Fourier Trans-

form (IFFT) and inversely using the Fast Fourier Transform (FFT). Typically,

the Fourier transform is an extremely powerful mathematical tool used to inspect

signals in another domain, among which several severe "enigmas" (problems)

become quite easy to analyze (Huang et al., 2008). Hence, if the signal that is

to be sampled is discrete-time, the Inverse Discrete Fourier Transform (IDFT) is

employed to convert modulated symbols to their discrete time components and

Figure 2.2: OFDM System Block Diagram (Kiayani et al., 2012)
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inversely using the Discrete Fourier Transform (DFT). Nonetheless, the direct

calculation of the IDFT and the DFT is usually computationally intensive and

needs N2 complex multiplications and N(N−1) complex additions to calculate

each system update (Ho et al., 2009). Hence, the FFT and IFFT are employed to

overcome the mathematical operations employed in the calculation of DFT and

IDFT, respectively.

2. The insertion of a Guard Interval (GI) to initially eliminate the Intersymbol In-

terference (ISI) and Inter-carrier Interference (ICI), whose length needs to be

larger than the maximum excess delay (i.e., the time difference between arrival

of the first and last propagation path) of the channel (Zhang et al., 2016a).

2.3.2 OFDM System Pilot Arrangements

OFDM signals can be demodulated either coherently or differentially (Chiueh and

Tsai, 2008). The most significant benefit of the differential detection is that they do not

need to acquire Channel State Information (CSI), however, a 3−4 dB loss in signal-to-

noise ratio (SNR) (Liu et al., 2014) will result, making the receiver relatively simple to

implement (Liu et al., 2014). Furthermore, the differential detection technique cannot

be implemented in practice in multi-level modulation schemes (Xiong et al., 2000).

Hence, the coherent detection technique is preferred to achieve higher data rates and

improved spectral efficiency for multi-level modulation schemes (Liu et al., 2014).

For coherent demodulation, CE techniques based on pilot insertion can be grouped

into two types of pilot arrangements (Hu and Chen, 2008; Kumar and Grover, 2012;

Niranjane and Bhoyar, 2011), such as the block-type and the comb-type pilot arrange-

ments as illustrated in Figure 2.3. The block-type pilot arrangement is employed for
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Figure 2.3: Pilot Tone arrangements in OFDM channel estimation Block-Type pilot
(Left) and Comb-Type pilot (Right) (Hsieh and Wei, 1998)

slow-fading channels or quasi-static channel that is considered stationary within a cer-

tain period of OFDM symbols (Kumar and Grover, 2012). In this technique, all the

pilot symbols are arranged in one OFDM block and are transmitted periodically in the

time-domain. As the training block contains all frequencies, channel interpolation is

not required (Bogdanović, 2014). When the channel encounters fast fading, there is an

absolute loss in the parameter of the estimated channel (Abdelkader et al., 2010). The

comb-type pilot arrangements is employed to manage channel variations that change

within one OFDM symbol and it requires interpolation of the channel (Hsieh and Wei,

1998). In comb-type pilot arrangements, the pilots are placed in the subcarriers at fixed

interval in one OFDM symbol (Hsieh and Wei, 1998; Pakrooh et al., 2012). Therefore,

Channel Frequency Response (CFR) at these subcarriers can be estimated by apply-

ing classical CE methods such as Least Square (LS) or Minimum Mean Square Error

(MMSE) (Pakrooh et al., 2012). Consequently, in estimating the CFR at non-pilot

subcarriers, interpolation-based techniques for deriving channel estimates at non-pilot

subcarriers are employed (Hsieh and Wei, 1998). If the interval between the adjacent

pilot sub-carriers in the interpolation based technique is decreased for an improved CE

performance, it leads to the increased number of pilot overhead required for CE (Hsieh

and Wei, 1998). Thus, the pilot signals are placed at equidistant subcarriers to render
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uniformity.

Fortunately, the wireless multipath channels encountered in practice exhibit a sparse

structure, where only a few channel paths are significant and other channel coefficients

are zero or close to zero (Bajwa et al., 2010). This implies that the delay spread of

the channel is very large as compared to the number of significant propagation paths

(Bajwa et al., 2010). However, the signal recovery performance is independent of the

position and value of the channel taps; i.e., unlike the conventional interpolation-based

CE techniques, the number of required pilot subcarriers is independent of the degree

of frequency selectivity and the delay spread of the wireless multipath channel. Thus,

it is possible to capture the necessary information in the frequency domain in the fewer

number of pilots, thereby reducing pilot overhead.

2.4 Compressed Sensing and Sparse Signal Reconstruction

Compressed sensing, also termed compressive sensing or compressive sampling,

is a signal processing technique that requires far fewer measurements or data sam-

ples than what the Nyquist/Shannon sampling theory states (Donoho, 2006; Eldar and

Kutyniok, 2012). Hence, this new rapidly growing research field is based on the rev-

elation that, a small group of nonadaptive linear projections of a sparse signal carries

sufficient information for successful reconstruction. In other words, the unknown sig-

nal to be recovered must be sparse in a known basis or transform domain (Eldar and

Kutyniok, 2012; Qi and Wu, 2012a; Qi et al., 2015a).
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2.4.1 Sparse signal models

Signals can often be well-approximated as a linear combination of only a few sig-

nificant elements from a known basis, frame or dictionary (Eldar and Kutyniok, 2012).

When this representation is exact, the signal is said to be sparse (Eldar and Kutyniok,

2012). Sparse signal models provide a mathematical framework for capturing the fact

that many naturally occurring high-dimensional signals contain relatively little infor-

mation compared to their ambient dimension (Eldar and Kutyniok, 2012; Ma et al.,

2014; Qi et al., 2015b). Mathematically, a signal h is said to be k-sparse if it contains

at most k nonzeros elements in its representation (Eldar and Kutyniok, 2012)

Σk = {h : ‖h‖0 ≤ k} (2.7)

In practice, however, some signals may not be sparse but may admit a sparse represen-

tation (compressible) with reference to some properly chosen basis functions (Eldar

and Kutyniok, 2012; Qi et al., 2015b).

2.4.2 Compressed Sensing Signal Model

Compressed sensing is a very efficient sub-Nyquist signal sampling scheme that

allows the accurate recovery of signals that are sparse or nearly sparse in a known

representation−under the assumption that the measurement projections are selected

independently at random (Donoho, 2006; Eldar and Kutyniok, 2012). The efficiency

of the CS scheme relies on the measurement technique employed with respect to this

representation and the reconstruction algorithm used for support identification i.e., to

identify the sparse set of representation coefficients. If ΨΨΨ = {ψψψ1,ψψψ1, . . . , ψψψN}, with
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