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LIST OF ABBREVIATIONS 

 

CAD Computer-aid design 

DAVID SLS-1 DAVID Structured Lighted System version 1 

DLG Double layer grid 

DWG Drawing format file for storing 2-D to 3-D design data 

DXF Drawing exchange format for CAD based system 

ESPI Electronic speckle pattern interferometry 

FEM Finite element modeling 

ICM Image capturing method 

LUSAS A finite element analysis application software 

MESHLAB Advanced 3-D mesh processing software system 

NURB Non-uniform rational B-spline 

OBJ Object file format for definition of 3-D geometry  
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SLG Single layer grid 

SLM Structured light method 
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LIST OF SYMBOLS 

 

AC Percentage area of coverage within the boundary lines of 

origami model 

CS Camera positioned at side from object for image capturing 

CT Camera positioned at top from object for image capturing 

fc Characteristic compressive strength 

Fd Folding distance 

fFs Final folding stage 

fiFs First intermediate folding stage 

FS Folding stage 

fs Shear strength capacity 

ft Tensile strength capacity 

Gn Numbering sequence for grid lines 

HB Maximum height measured at boundary of origami model 

HC Maximum height measured at center of origami model 

HM Maximum height measured at mountain fold line of origami 

model 

HMB Height of mountain fold at boundary 
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iFs Intermediate folding stage 

l Length between two supports of origami model 
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model 

ℓM Maximum length measured between ends of mountain fold lines 

of origami model 
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ℓMF Length from center to the end of mountain fold 

ℓV Maximum length measured between ends of valley fold lines of 

origami model 

Mall Allowable moment resultant 

MF Mountain fold 

Mx Moment resultant per unit width of thin shell element in local 

Cartesian system of x direction 

Mxy Twisting moment resultant per unit width of thin shell element 

in local Cartesian system of xy plane 

My Moment resultant per unit width of thin shell element in local 

Cartesian system of x direction 

Nall Allowable stress resultant 

Nx Stress resultant per unit width of thin shell element in local 

Cartesian system of x direction 

Nxy Stress resultant per unit width of thin shell element in local 

Cartesian system of xy plane 

Ny Stress resultant per unit width of thin shell element in local 

Cartesian system of y direction 

OS Optical projector positioned at side from object for scanning 

OT Optical projector positioned at top from object for scanning 

T Thickness of shell surface 

VF Valley fold 

θB Angle of rotation measured between ends of boundary lines with 

respect to original alignment 

θC Angle of rotation measured at center of origami model with 

respect to original alignment 

θM Angle of rotation measured between ends of mountain fold lines 

with respect to original alignment 

θV Angle of rotation measured between ends of valley fold lines 

with respect to original alignment 

σ Nominal stress 
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STRUKTUR LIPAT BERASASKAN KONSEP ORIGAMI DENGAN GARIS 

LIPAT MELENGKUNG 

 

ABSTRAK 

 

Origami dengan garis lipat melengkung mempunyai ciri-ciri permukaan melengkung 

yang dirangkumi oleh garis lipat melengkung yang boleh digunakan secara bermanfaat 

sebagai struktur lipat. Walau bagaimanapun, potensi penggunaan origami dengan garis 

lipat melengkung didapati tidak banyak dikaji kerana proses melipat yang kompleks 

dengan pelbagai susun atur dan konfigurasi garis lipat melengkung. Kajian ini 

dijalankan untuk menyiasat ciri-ciri proses lipatan origami dengan garis lipat 

melengkung. Kesan geometri permukaan origami dengan garis lipat melengkung pada 

peringkat lipatan yang berlainan ke atas tingkah-laku struktur kekerang dengan garis 

lipat melengkung (SSCFL) juga ditentukan. Satu set kriteria telah dibangunkan dalam 

mengklasifikasikan origami dengan garis lipat melengkung yang dicipta oleh ramai 

penyelidik atau ahli sains origami dan digunakan dalam klasifikasi 51 model origami 

kepada 11 kumpulan. Daripada 51 model, sejumlah 13 model origami yang berpotensi 

untuk digunakan sebagai struktur lipat telah dipilih dan dikumpulkan semula ke dalam 

empat kategori utama seperti berikut: Non-inflated n Degree-n Vertices (kategori A), 

Inflated n Degree-n Vertices (kategori B), n Curve Mountain Ridge (kategori C), dan 

Bentuk kompleks (kategori D). Perolehan data permukaan 3-D dengan teknik 

pengukuran imej tanpa sentuh seperti kaedah penangkapan imej dan kaedah cahaya 

berstruktur, digunakan untuk mendapatkan model geometri origami dengan lipatan 

melengkung yang tepat. Prosedur berasaskan CAD dalam penjanaan model geometri 

origami 3-D dengan garis lipat melengkung telah dibangunkan. Mekanisme lipatan 

berdasarkan penilaian ke atas set pengukuran atau parameter yang mewakili perubahan 
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geometri permukaan model origami semasa proses lipatan telah dikaji. Daripada hasil 

pengukuran, didapati proses lipatan origami di bawah kategori A dan B diiringi dengan 

ubahbentuk berputar terhadap pusat model. Tiada ubah bentuk berputar diperhatikan 

dalam proses lipatan origami di bawah kategori C dan D. Model di bawah kategori C 

(n Curve Mountain Ridge) khususnya C10 menunjukkan perubahan terbesar dalam 

ketinggian maksimum di pusat model, dan pengurangan terbesar dalam saiz pelan 

origami semasa proses lipatan. Sementara itu, perubahan geometri dari segi sudut 

putaran maksimum di pusat dan penjuru model origami didapati berlaku dalam Model 

B06 di bawah kategori B (Inflated n Degree-n Vertices). Perubahan maksimum 

ketinggian di sempadan didapati berlaku dalam Model B04. Satu siri model SSCFL 

dengan geometri permukaan model origami masing-masing di peringkat lipatan yang 

berbeza telah dihasilkan. SSCFL ini adalah 100 kali ganda saiz model origami masing-

masing dengan ketebalan permukaan 200 mm (permukaan keseluruhan) dan 250 mm 

(di kawasan sokongan). SSCFL dikenakan sokongan garis dan dimodelkan 

menggunakan konkrit kekuatan normal. Keputusan analisis elemen terhad di bawah 

keadaan berat sendiri menunjukkan bahawa model SSCFL di bawah kategori C 

(khususnya geometri permukaan yang berkaitan dengan C11 dan C12) dan kategori D 

(D13) memenuhi had tegasan atas sebab kemiripannya dengan struktur kubah. 

Sebaliknya, model SSCFL di bawah kategori A dan B gagal memenuhi had tegasan 

kerana sifat geometri permukaan yang tidak simetri dan kewujudan sempadan struktur 

dengan panjang terjulur yang agak besar. Model SSCFL didapati menunjukkan 

prestasi yang cemerlang dari segi kekukuhan atas sebab wujudnya lipatan melengkung 

yang meningkatkan kedalaman efektif struktur yang berkesan. 
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FOLDABLE STRUCTURE BASED ON ORIGAMI WITH 

CURVED FOLD LINES CONCEPT 

 

ABSTRACT 

 

Origami with curved fold lines possesses characteristic feature of curved surface 

bounded by curved fold lines which can be advantageously adopted for foldable 

structures.  However, potential use of origami with curved fold lines has not been much 

studied due to complexity of the folding process under many different possible layouts 

and configurations of curved fold lines. This study is carried out to investigate the 

characteristics of the folding process of origami with curved fold lines. Effect of 

surface geometry at different folding stage of origami with curved fold lines on 

structural behaviour of shell structure with curved fold lines (SSCFL) was also 

determined. A set of criteria in classifying origami with curved fold lines created by 

many researchers or origami scientist has been established and used in the 

classification of 51 origami models into 11 groups. From the 51 models, 13 number of 

origami models with potential application as foldable structures have been chosen and 

regrouped into the following four main categories: Non-inflated n Degree-n Vertices 

(category A), Inflated n Degree-n Vertices (category B), n Mountain Ridge Curve 

(category C), and the Complex Shape (category D). 3-D surface data acquisition using 

optical non-contact measuring techniques of image capturing method and structured 

light method were used to obtain an accurate geometrical model of origami with curved 

folds. CAD based procedures in generating 3-D geometrical model of origami with 

curved fold lines have been developed. The folding mechanism based on the evaluation 

of a set of measurement or parameter representing change in surface geometry of the 

origami models during the folding process has been studied. From the results of 
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measurements, it is found that folding process of origami under categories A and B is 

accompanied by twisting deformation about the center of the model.  No twisting 

deformation is observed in folding process of origami under categories C and D. 

Models under category C (n Mountain Ridge Curve) specifically C10 shows the largest 

change in maximum height at center of model, and largest reduction in plan area of 

origami during folding process.  Meanwhile, change in geometry in term of maximum 

angle of rotation of the center and boundary of origami model is found to occur in 

Model B06 under category B (Inflated n Degree-n Vertices). The maximum change in 

height at boundary is found to occur in Model B04. A series of SSCFL models with 

surface geometry of the respective origami model at different folding stage have been 

generated.  These SSCFL are 100 times scaled up models of respective origami model 

with surface thickness of 200 mm (overall surface) and 250 mm (at support regions). 

The SSCFL were assigned with line supports and modelled using normal strength 

concrete.  Results of finite element analysis under self-weight show that SSCFL 

models under category C (specifically surface geometry associated with C11 and C12) 

and category D (D13) satisfy stress limit due to their resemblance to dome structure. 

On the other hand, SSCFL models under categories A and B failed to satisfy stress 

limit due to unsymmetrical nature of the surface geometry and existence of free 

boundary of structure with relatively large overhang length. SSCFL models were found 

to exhibit superior performance in terms of stiffness due to existence of curved folds 

which increases the effective depth of the structure. 
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CHAPTER  ONE 

 

INTRODUCTION 

 

1.1 General 

 

Nowadays, most large span roof structural systems are concerned not only the 

protection from weather effect but also economy by minimizing costs within the 

constraints of functional and aesthetic requirements. Designers thus try to search new 

forms such as shell and folded plate structures that can resist loads more efficiently 

than when the structure is designed in conventional form using slab and beam. For 

covering a given area by a roof, conventionally, as column spacing becomes larger, the 

sizes of beams increase, thereby making the structure uneconomical and aesthetically 

unpleasing. Alternatively, to cover the same area, a curved surface or folded surface 

can be conceived that carries the loads mainly in direct tension or compression, rather 

than in bending and shear as in the case of slab and beam structures. Even with a 

relative small thickness, shell and folded plate structures can sustain more loads over 

large column-free areas with a minimum deflection. 

 

Over the last few decades, advancements in the structural analysis domain and 

computational tools enable engineers to satisfactorily analyze and build folded shells 

not just in various types and forms, but also as a foldable surface structure by folding 

or retracting the surface to transform size or dimension upon necessity of functions of 

venue requirement. Foldability of surface structures with wide variety of shapes and 

breathtaking elegance can be seen in origami. The available of advancement in 

technology nowadays allows design and construction of long spanning roof structural 
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system infused with surface geometry inspired by the concept of origami. Furthermore, 

the kinematic characteristic of origami allows a flat piece of paper to transform from 

initial 2-D flat surface (open-stage) into 3-D geometry (closed-stage) via the process 

of folding. Thence, the uniqueness of origami with the properties of thin folding paper 

(equivalent to folded plate structure) and geometrical transform during folding process 

(equivalent to foldable structures) could be adopted as a new design for large spanning 

roof structure. 

 

1.2 Background of Study 

 

Long span roof surface structures are generally constructed with column-free internal 

space with span between supports of more than 12 meters in length (Chang and 

Swenson, 2017, Lisantono and Arfiadi, 2013, Roof, 2017,  Beams, 2017, Munch -

Andersen and Dietsch, 2011). High tensile strength materials which are thin and light 

are typically the choice in fabricating this structural system, making it flexible in term 

of geometry changes and during process of erection and dismantle, which subsequently 

reduce sub-structural costs and construction time. Examples of large span structural 

system commonly found in wide range of application are stadia, gymnasiums, arenas, 

factories, warehouses, malls, agricultural buildings, and coverage for swimming polls. 

The structural system are typically classified into five major groups of structural forms: 

space structures, cable structures, membrane structures, hybrid structures and 

convertible roofs (Majowiecki, 2005) as illustrated in Figure 1.1.  
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Figure 1.1- Typologies for the Forms of Long Span Roof Structural System 

 

Space structures normally refer to a space frame in the form of a truss-like, lightweight 

rigid structure constructed from interlocking struts in a geometrical pattern such as 

single or multilayers of grid structures. Dome space structure is one the typical 

example of structure form under this category. Figure 1.2(a) shows one of the two 

biggest wooden dome to cover the bunkers of the "Federico II" Enel power plant in 

Brindisi by Holzbau (2015). The dome building was built with clear span of 143 meters 

in diameter and 50 meters in total height. Besides, space shell and folded plate 
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structures are constructed by assembling small units of shell in which its thickness is 

small compared to the other dimensions. This allows its surface to be built in curved 

geometry with either single curvature or multi curvature.  

 

Secondly, cable structures are those where the main elements that support the load, 

such as wires, cables, chains, and nets, are subjected only to tensile forces. Typical 

example of cable structures are bridges and roofs in which its plane or horizontal 

structures are fastened to supports by a series of wires. Figure 1.2(b) shows the Penang 

Second Bridge in Malaysia built by using cable stayed structural system with longest 

span between supports of 240 meters length which completed in year 2014 (Yadollahi 

et al., 2015). 

 

For third, membrane structures are one of the long span structural system that made 

out of tensioned membrane or fabric materials such as PTFE glass and PVC polyester 

which are extremely strong in tension. The structural use of the membrane is divided 

into prestressed anticlastic membrane and pneumatic membrane. A famous example 

of successful application of membrane structural system is Beijing National Aquatics 

Center or called as The Water Cube in Beijing, China for the use of Olympics 2008 as 

shown in Figure 1.2(c). The tension fabric used in the structure is ETFE membrane 

with 0.2 mm in total thickness (Edmondson, 2012).  

 

Next, hybrid structures are another advanced structural system that combine use of an 

isolated components in compression inside a net of continuous tensile properties of 

cables, in such a way that the compressed members (usually bars or struts) do not touch 

each other and the prestressed tensioned members (usually cables or tendons) delineate 
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the system spatially (Jáuregui, 2010). Typical example of the structural systems are 

tensegrity and beam-cable. La Plata Stadium (Figure 1.2(d)) in Buenos Aires, 

Argentina is one of the most successful hybrid roofing structure which opened in 2003 

(Wiki, 2017). 

 

Lastly, convertible roof or called foldable roof is another choice of roof structural 

system. It allows the roof surface to be retractable or foldable for transforming an 

indoor space into an outdoor environment. A folding mechanism is designed for the 

specific type of convertible structure. Figure 1.2(e) shows a multi-purpose retractable 

roof stadium of the Mercedes-Benz Stadium in Atlanta, Georgia which was just opened 

in August 2017. It is designed with 8 triangular rigid-translucent-panels retractable by 

sliding of pinwheel to create a folding mechanism for opening the roof centrifugally 

towards the outside perimeters of the roof structure (Mercedes-Benz, 2017).  

 

   
 

(a) Geodesic Dome Structures in 

Brindisi, Italy 

(b) Penang Second Bridge in Pulau 

Pinang, Malaysia 

 

Figure 1.2- Successful Application of Long Span Structural System: (a) Space 

Structure (Holzbau, 2015); (b) Cable Structure (Fauzi, 2012); (c) Membrane 

Structure (Cube, 2016); (d) Hybrid Structure (Wiki, 2017); and (e) Convertible 

Structure (Mercedes-Benz, 2017) 
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(c) Water Cube (National Aquatics 

Center) in Beijing, China 

(d) La Plata Stadium in Buenos Aires, 

Argentina 

 

 

  
 

(e) Mercedes-Benz Stadium in Atlanta, Georgia 

 

Figure 1.2- Continued 

 

1.2.1 Roof Structures with Folded Shell System 

 

With the combination of thin surface structure of shell elements and strength 

enhancement feature along with the folded system, a kind of roof structure system 

called the fold shell possess structural similarities with origami. There are many 

application of this kind of structural system which have successfully been built. 

 

In the year 1955, Royan Central Market in Nouvelle-Aquitaine, France (Figure 1.3(a)) 

is constructed in the form of multi-layer conoidal shape extruded from the center of 

the structure which create folding effect along its perimeter of the hall (Janberg, 1998b). 

The span of the thin folded shell is in 52.4 m and height up to 10.5 m with just 8.0 cm 
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of its thickness (Tourisme, 2015). 

 

The corrugated concrete dome of State Farm Center (Figure 1.3(b)) is another 

application of the concept of long span folded shell structure. The shape of surface 

takes the form of branching triangular folds with a span of around 122.7 m (Janberg, 

1998a). In the same year, TWA Flight Center at New York of USA (Figure 1.3(c)) was 

built with concrete shell (Jen, 2011). 

 

Miami Marine Stadium in Florida, United States built in 1963 (Figure 1.3(d)) is a 

dedicated example of roof structural system design in the form of folded shell. The 

geometrical shape of a single panel is in the hyperbolic paraboloid cantilevering shell 

which folded at the center along the support. It was considered as one of the longest 

span of cantilevered concrete folded shell structure in the world at the time it was built 

(Candela, 2008, Adriaenssens et al., 2014). 

 

In 1973, a double curvature thin shell structural building called the Sydney Opera 

House was constructed in Sydney, Australia (Figure 1.3(e)). Prestressed concrete 

material was used for the long span length of up to 183 m (Janberg, 2006). 

 

Another multi-conoidal thin folded thin shell structural form that was built in 2013 is 

L'Oceanogràfic Marine Complex in Valencia, Spain (Figure 1.3(f)) which is the largest 

complex of its type in Europe with total surface coverage of up to 110,000 m2. The 

length of span of shell between supports is 35.5 m with the shell thickness of just 6 cm 

(Janberg, 2007). 
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Lastly, the most recent long span roof structure that in the form system of folded shell 

is the Kauffman Center for the Performing Arts in Missouri, United States (Figure 

1.3(g)). Design of the roof consists of two symmetrical half shells in vertical alignment. 

Repetitive of scaling down the circular half shell surface creates an folded effect of the 

entire roof system (Arts, 2017, contributors, 2017c). 

 

  
 

(a) Royan Central Market in Nouvelle-Aquitaine, France (Tourisme, 2015) 

 

 

  
 

(b) State Farm Center in Illinois, USA (Dori, 2003, Benkrut, 2013) 

 

 
 

(c) Trans World Flight Center in New York, United State (Avdeev, 2015) 

 

Figure 1.3- Some Applications of Folded Shell Structures 
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(d) Miami Marine Stadium in Florida, United States (Candela, 2008) 

 

  
 

(e) Sydney Opera House in Bennelong Point, Sydney (Janberg, 2006) 

 

  
 

(f) L'Oceanogràfic Marine Complex in Valencia, Spain (Janberg, 2007) 

 

  
 

(g) Kauffman Center in Missouri, United States (Husley, 2011) 

 

Figure 1.3- Continued 
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1.2.2 Roof Structures with Foldable Design 

 

Foldable surface is one of the main characteristic of origami, with the capability to 

transforming from a flat surface (open-stage) to a 3-D geometry of retracted or stowed 

form (closed-stage). The foldable or retractable structures are also called as kinetic 

architectural structures.  

 

Dated back to the year of 1961, Civic Arena (Figure 1.4(a)) was the first retractable 

roof major-sports venue in the world with coverage area of 15,794 m2. The dome 

shaped roof was designed with eight individual panels. Six out of them are capable to 

retract by folding beneath adjacent panels along the perimeter of the dome 

(contributors, 2017a, Hockey, 1999). 

 

For facilitating the international event of 1976 Summer Olympics in Canada, a stadium 

with retractable roof structure named the Montreal Olympic Stadium was constructed 

(Figure 1.4(b)). It was designed with a cantilever tower that could retract a series of 

cables holding the roof membrane for transforming it to indoor or outdoor field. The 

roof membrane retractable structure could cover area up to 5,500 m2 (Baseball, 2001, 

contributors, 2017e, Janberg, 2003). 

 

Umbrella-type structures are another example of pivotal folding system that retracts 

surface with centric configuration, such as the 17 m × 18 m large automatically 

controlled umbrellas proposed in 1992 by SL-Rasch  GmbH (Rasch, 1980) for the 

courts of the Prophet’s Holy Mosque in Madinah (Stevenson, 2011) as shown in Figure 

1.4(c). Tension fabric material of PTFE membrane was used to form bell-shaped roof  
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system when it is in open stage (MakMax, 2016, Soto, 2017). 

 

In the year of 1999, Jaén Auditorium a retractable roof structure in Spain is constructed 

based on the principle of linkage bars and scissor system (Figure 1.4(d)). It is built 

with a series of steel arches that could folds by translating horizontally over a rail in 

which have the tensioned fabric between them to achieve a practical deployment 

process that fits together the structure and the enclosure while temporarily covers a 

specific area (Escrig, 1999, Torres, 2013). 

 

The retractable roof of Minute Maid Park in Texas, USA (Figure 1.4(e)) could cover 

the field with longest span of 132.6 m in length (Smith and Andorka, 2001). Three roof 

panels are controlled by electro-mechanical drive system to trigger parallel-slide of 

folding motion along flat crane rails (Riberich, 2000). 

 

Another pivot controlled system of fan-shaped convertible roof structured studio called 

the Miller Park is constructed was 2001 (Figure 1.4(f)). The total span of 183 m in 

length of retractable roof which consists of five movable panels that could open and 

close simultaneously in sweeping manner by rolling along the periphery of heavy 

wheel (contributors, 2017d, George, 2011, Moser, 2001, Janberg, 2001). 
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(a) Civic Arena in Pittsburgh, Pennsylvania (Cojo, 2017, Jensen, 2015) 

 

   
 

(b) Montreal Olympic Stadium in Quebec, Canada (archINFORM, 2017, Martes, 

2013) 

 

  

  
 

(c) Umbrellas for the Piazza of the Prophet´s Holy Mosque, Medina (Soto, 2017) 
 

Figure 1.4- Some Applications of Foldable Roof Structures 
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(d) Jaén Auditorium in Jaén, Spain (Escrig, 1999) 

 

 

  
 

(e) Minute Maid Park Roof in Texas, USA (Riberich, 2000, Smith and Andorka, 

2001) 

 

 

  
 

(f) Miller Park in Wisconsin, USA (George, 2011, Moser, 2001) 

 

 

Figure 1.4- Continued 
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1.3 Structures Inspired from the Geometry of Origami 

 

Origami or folding paper is a traditional cultural of ancient Chinese and Japanese art 

of folding paper to represent real objects. Specifically, the word of “origami” comes 

from Japanese, it is the combination “ori” (root verb “oru”) meaning to fold, and “kami” 

means for paper (Demaine and O’Rourke, 2007, contributors, 2017b). There are many 

attempts in classifying types of origami in the world by Center (2017), Origami (2017), 

Zhezhi and Gi (2017). In general, origami could be broadly classified into six type of 

folding patterns according to its folding technique and the geometrical requirement of 

the final output shapes (contributors, 2017f). They are the action origami, modular 

origami, wet-folding, pureland origami, origami tessellations, and kirigami, as 

illustrated in Figure 1.5. 

 

Origami reveals a rich source of geometric shape for consideration with different type 

of origami formations. The beauty of paper folding lies in the result of a totally 

attractive piece of mathematical artwork which is created from a simple, flat sheet of 

paper by using almost all folds of corners, creases and edges. Due to the aesthetical 

value possessed to the idea or concept of geometry originated from origami are widely 

applied in various industrial fields. It ranges from small products such as electronic 

devices and micro-cellular tube in medication purposes; to large scaling projects such 

as auditorium, stadium, and solar panels in satellite.   
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Figure1.5- Type of origami 

 

 

Forms of geometry created from origami patterns especially the origami tessellations, 

are nowadays extensively popular in the attempt to implement in large span roof or as 

foldable structures especially in the form of folded plate or shell. In this context, United 

States Air Force Academy Cadet Chapel (Figure 1.6(a)) and Yokohama Cruise 

Terminal in Japan (Figure 1.6(b)) are two well-known examples of shell buildings with 

folds in which the diagrams and structural relations of origami tessellations can be 

traced easily. For the Yokohama Cruise Terminal, it could be observed that the internal 

channel of the terminal is designed using the tessellation type of folding pattern from 

Yoshimuna technique to create a repetitive diamond effect (FOA, 2006, Mishima and 

Streeter, 2004). 
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Figure 1.6(c) shows the Automobile Museum in Nanjing (Figure 1.6(c)), which is 

inspired by kirigami being constructed in China. The design of the museum combines 

geometrical idea from spiral-cut of a piece of square paper together with foldings 

(Basulto, 2010). Besides, another foldable roofing structure that is also inspired by 

repetitive triangular panels of origami tessellations type called the Bengt Sjostrom 

Theatre in Rockford, Illinois was built in 2003 (Figure 1.6(d)) (Gang, 2009).  

 

In the practice of architecture it is not surprising to see the impact of origami as a 

medium to generate different shell forms. Contemporary form is one of the foldable 

structures that currently being widely employed from the geometrical idea of origami 

tessellations. In 2008, a foldable artwork called “Packaged” designed by Miwa 

Takabayashi, which was exhibited in shopping center of Maidstone in Kent, United 

State (Figure 1.6(e)). It was designed to fold by joining a series of rigid cardboard in 

the form of tessellation.  The artwork was erected in various shopping center as display 

(Takabayashi, 2009, SORGUÇ et al., 2009).  

 

Another outstanding contemporary pavilion inspired from the origami tessellation of 

combining two units of “flower” module was designed and built by Tal Friedman in 

Detmold University, Germany (Figure 1.6(f)). The pavilion is made out of folding rigid 

aluminum boards. Although, the material used is very thin, it is fully self-supported 

without any sub-structures. Hence, from the structures inspired by the geometry of 

origami mentioned above, it could be used to show the potentials of origami as idea 

for exploring the new form of architectural design in constructing not just large span 

roofing system, but also for the kinematic requirements as foldable or retractable 

structures. 
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(a) United States Air Force Academy Cadet Chapel in Colorado Springs 

(contributors, 2017g, Harrington, 2017) 

 

  

  
 

(b) Yokohama Cruise Terminal in Japan (Mishima and Streeter, 2004, FOA, 2006) 

 

  
 

(c) Automobile Museum in Nanjing, China (Basulto, 2010) 
 

Figure 1.6- Structures Inspired from Geometry of Origami 
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(d) Bengt Sjostrom Theatre in Rockford, Illinois (Gang, 2009) 

 

 

 
 

(e) “Packaged” Artwork designed by Miwa Takabayashi in Kent, USA (Takabayashi, 

2009, SORGUÇ et al., 2009) 

 

   
 

(f) Two “Flower” Modules of Origami Pavilion designed by Tal Friedman in 

Detmold University, Germany (Friedman, 2016) 

 

Figure 1.6- Continued 
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1.4 Justification of Research 

 

Origami or paper folding is not only a great source of inspiration in architectural design, 

but also an effective medium for structural form finding because of the foldability 

characteristic of origami which is useful in the design of shell structure and also 

foldable or retractable structures. As mentioned earlier in the previous section, straight 

fold lines are traditionally used. Likewise, by altering the crease and making its 

configuration into one with curvature, the ordinary planar surface could become a 

complex 3-D form of which the surface geometry cannot be described easily by simple 

parameters such as vertex coordinates. Curved folding is a hybrid of curved folds and 

bending of a paper. The resulting surface is comprised of curved creases and smooth 

developable surface patches. Comparing with origami with straight fold lines of which 

the resulting surface consists of folding of rigid planar surface, origami with curved 

fold lines involves combination of smooth curved surface as a results of bending 

bounded by set of curved fold lines. 

 

Origami with curved folds could be dated back to early of 1920’s, when the teaching 

works by Josef Albers at Bauhaus was documented in photographs and presented as 

the first account of a specific curve creased model investigated by Adler (2004). Figure 

1.7(a) shows one of the curve creased model that created by a series of concentric 

circles with alternating mountain and valley folds with a circular hole at the center. 

Similar features of the model was further explored and modified by Irene Schawinsky 

in 1944 (McPharlin, 1944) (Figure 1.7(b)), Thoki Yenn in 1989 (Yenn, 2001) (Figure 

1.7(c)), and Kunihiko Kasahara in 2002 (Kasahara, 2002) (Figure 1.7(d)). Currently, 

Erik Demain, Martin Demain and Duks Koschitz are among the most active researches 
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that studying this form of curved crease models (Demaine et al., 2011b, Demaine et 

al., 1999, Koschitz et al., 2008). 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 1.7- Curve Creased Models: (a) by Josef Albers’s students 

(Schlemmer et al., 1978); (b) by Irene Schawinsky (McPharlin, 

1944); (c) by Thoki Yenn (Yenn, 2001); and (d) Kunihiko Kasahara 

(Kasahara, 2002)  
 

In 1971, Ronald Resch was explored many irregular form of paper folding with curved 

creases (Resch, 1974). One of the sculpture that he created is called “The White Space 

Curve Fold with 3-fold Symmetry” as shown in Figure 1.8(a). During almost the same 

period of time, a mathematician and also a computer scientist, David Huffman, studied 

in creating paper folding with curve crease based on concept of degree and vertex 

(Huffman, 1976). Some examples of Huffman’s creations are shown in Figure 1.8(b) 

to Figure 1.8(d) which was documented by Davis et al. (2013) and Demaine et al. 

(2011a). 
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(a) (b) 

  
(c) (d) 

 

Figure 1.8- Curve Creased Models: (a) “The White Space Curve Fold with 3-

fold Symmetry” by Ronald Resch (Resch, 1974); (b) Two Degree-2 Vertices; 

(c) Non-Inflated Degree-4 Vertex; and (d) “Hexagonal column with cusps” 

by Huffman (Demaine et al., 2011a) 
 

Another new forms of geometry based on mountain ridged curve folds of origami 

models were developed by Professor Yoshinobu Miyamoto in 2008 (Miyamoto, 2008, 

Miyamoto, 2014) as shown in Figure 1.9. In the same year, Kilian et al. (2008) 

introduced new approach in design and reconstruction of many complex and 

unexplored origami with curved folds. Apart from the above works on origami with 

curved fold lines, there were many origami sculptures with curved folds which are 

created as a contemporary artworks. Most of them are published in webpage for kind 

of hobby and entertainment, such as those by Chapman-Bell (2010), dimensionaut 

(2010), Scudellari (2010), Symeonidou (2010a), and Hofmann (2010). Figure 1.10 

shows a full picture of historical development of research works in the context of form 

finding in origami with curved fold lines. 
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Figure 1.9- Two Examples of origami models with Mountain Ridged Curve 

Folds by Yoshinobu Miyamoto (Miyamoto, 2008) 

 

A comprehensive exploration on different types of geometrical forms of origami with 

curved fold lines with different variety of combination of creases and folding patterns 

has been represented. However, curved folding is still a relatively underexplored topic, 

when it comes to the aspect of structural application in the discipline of architectural. 

Therefore, in this research, one of the main goal of the study is to evaluate and identity 

origami with curved fold lines which possess potential as foldable surface structure. 

For example, one of Huffman’s origami model (Figure 1.11) can be folded (into closed 

stage) and unfolded (back to open stage), when a gentle force by hands is applied from 

the corners between folds and boundary of the paper.    

 

1.5 Problem Statement 

 

Origami with straight fold lines typically consists of oblique surface geometry limited 

with rigid and flat sub-surfaces accompanied with kinking joints. On the other hand, 

origami with curved fold lines provide instead a three-dimensional smooth curved 

surface globally where each sub-surfaces between folding joints are bendable. Unique 

feature of smooth surface geometry embodied in curve folding lines is found mainly 

in the form of contemporary artwork and creation for entertainment in the form of  
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Figure 1.10- The Development of Research Works in the Context of Form Finding in 

Origami with Curved Fold Lines 

Origami with Curved Fold Lines 

Current Research Status 

1920 

1940 

1960 

1980 

2000 

Albers’s Student (1927-1928) 

- Concentric Circles Folds in 

Alternating Mountain and 

Valley 

Josef Albers (Early of 1920’s) 

- Teaching Preliminary Course 

of curved-crease sculpture 

Irene Schawinsky (1944) 

- Curved Sculpture of 

“Doughnut” with Concentric 

Lines and a Circular Hole 

being Cut Out  

Thoki Yenn (1989) 

- Concentric Circlular Model 

called “Before the Big Bang” Kunihiko Kasahara (2002) 

- Developed many Concentric 

Circular Models  

Ronald Resch (1971) 

- Explored many Irregular 

Forms of Folding paper with 

Curved Creases 
David Huffman (1976) 

- Explored many Forms of 

Folding paper with Curved 

Creases 

Erik & Martin Demaine (2003) 

- Research in Concentric 

Ellipses, Parabolas and 

Circulars with Offset Centers 

Duks Koschitz (2007) 

- Further Exploration in 

Similar Field with Erik and 

Martin Demaine  

 

Martin Kilian (2008) 

- Study and Developed 

Complex and Unexplored 

Shape of Curved Fold Origami 

 
Philip Chapman-Bell (2011) 

- Generated Curve Folded 

Origami Artworks in the Forms 

of Bowl and Vase  

Yoshinobu Miyamoto (2008) 

- Created New Form of 

Origami based on Mountain 

Ridge Curves 

Tomohiro Tachi (2013) 

- Designed a Composite of 

Rigid-Foldable Curve Origami 

Structure 
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Figure 1.11- Folding Process of Origami Surface with Curved Fold  

Lines from initial opening-stage of (a) to final closed-stage of (d) 

 

artistic sculptures (Chapman-Bell, 2011, dimensionaut, 2010, Hofmann, 2010, 

Högsbro, 2010, Miyamoto, 2008, Symeonidou, 2010). Some creations of origami with 

curved fold lines by pioneers such as Albers (1985) and Huffman (1976) can be used 

as basis to regenerate the models through preliminary study on the folding patterns and 

surface configurations (Demaine et al., 2011, Kilian et al., 2008, Koschitz et al., 2008). 

Unlimited or continuous shape transformation could be achieved with origami with 

curved fold lines (Schlemmer et al., 1978, McPharlin, 1944, Yenn, 2001, Kasahara, 

2002). Although computational simulation on origami shape transformation has been 

extensively studied (Tachi, 2013, Cai et al., 2013, Schenk, 2009), it is only found 

within those under straight fold lines. However, in comparison with origami with 

straight fold lines, potential application of origami with curved fold lines as foldable 

structure has not attracted much attention. Difficulty in simulating the folding 

(a) (b) 

(c) (d) 
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