FOLDABLE STRUCTURE BASED ON ORIGAMI WITH CURVED FOLD LINES CONCEPT

FOLDABLE STRUCTURE BASED ON ORIGAMI WITH CURVED FOLD LINES CONCEPT

by

NG WAI KEUN

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

ACKNOWLEDGEMENT

Nowadays we cannot be separated from the use of paper in our daily life, but very few try to learn from folding this object for possible application related to their discipline. Assoc. Prof. Ir. Dr. Choong Kok Keong, my supervisor, is the man behind the beautiful idea of this research. Thence, I would like to take this opportunity to express my utmost gratitude to Dr. Choong for his invaluable advice, constant guidance, time spent, and patient throughout my entire period of time in completing the research project. I admire his professional style at both academic as well as the personal level.

My appreciation also go to my co-supervisor, Assoc. Prof. Dr. Neeraj Bhardwaj, from College of Computer and Information Sciences, Majmaah University, Saudi Arabia.

I would like to thanks to School of Civil Engineering, Universiti Sains Malaysia, lecturer and staff from who contribute a lot of their strength in this project. Support in the form of MyPhD financing by Ministry of High Education Malaysia is also acknowledged.

Lastly, I owe my loving thanks to my family. They have lost a lot due to my research work. Without their encouragement and understanding it would have been impossible for me to finish this study work.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENT ii
TABLE OF CONTENTS iii
LIST OF TABLES ix
LIST OF FIGURES xi
LIST OF ABBREVIATIONS xxx
LIST OF SYMBOLS xxxi
ABSTRAK xxxiii
ABSTRACT xxxv
CHAPTER ONE: INTRODUCTION
1.1 General 1
1.2 Background of Study 2
1.2.1 Roof Structures with Folded Shell System 6
1.2.2 Roof Structures with Foldable Design 10
1.3 Structures Inspired from the Geometry of Origami 14
1.4 Justification of Research 19
1.5 Problem Statement 22
1.6 Research Objectives 26
1.7 Scope of Research 27
1.8 Thesis Layout 28
CHAPTER TWO: LITERATURE REVIEW
2.1 Shell Structures 30
2.1.1 Types of shell structures 31
2.1.2 Behaviors of Shell Structures 33
2.2 Folded Surface/Plate Structure 35
2.2.1 Types of Folded Surface/Plate Structures 38
2.2.2 Behaviors of Folded Plate/Surface Structures 40
2.3 Foldable/Retractable Structure 43
2.3.1 Typology of Retractable/Foldable Structures 43
2.3.2 Folding Mechanism of Retractable/Foldable Structures 46
2.4 Past Research Works 52
2.4.1 Past Research Works on Shell and Folded Surface/Plate 52
Structure that Inspired from Origami
2.4.2 Past Research Works on Foldable/Retractable Structures that 54 Inspired from Origami
2.4.3 Past Research Works on Origami with Curved Fold Lines 57
2.5 3-D Surface Data Acquisition Methods 61
2.5.1 Image Capturing Method - Conventional Approach 63
2.5.2 Structural Lighting Method 64
2.6 Summary 66
CHAPTER THREE: METHODOLOGY
3.1 Introduction 69
3.2 Collection of Origami Models with Curved Fold Lines 70
3.3 Classification of Origami with Curved Fold Lines 83
3.4 Selection of Origami with Curved Fold Lines 84
3.5 Reconstruction of Prototype of Origami Models with Curved Fold 85 Lines
3.5.1 Generation for the Plan Configuration of Origami Models 85
3.5.2 Paper Material in Constructing Origami Models 101
3.5.3 Procedures in Generating Origami Paper Models 102
3.5.4 Supporting Points During the Folding Process 103
3.6 3-D Surface Data Acquisition for Origami Model with Curved Fold 109 Lines
3.6.1 Image Capturing Method - Conventional Approach 110
3.6.1(a) 3-D Surface Data Measurement Experimental Setup 110 for ICM
3.6.1(b) 2-D Outline Generation from the Images 114
3.6.1(c) Definition of External Coordinate System 118
3.6.1(d) Procedures in 3-D Outlines Generation by ICM 120
3.6.1(e) Summary of ICM 127
3.6.2 Structural Lighting Method 128
3.6.2(a) Concept of 3-D Surface Data Acquisition by SLM 128
3.6.2(b) Instrument Setup for DAVID SLS-1 Structured- 131 Light Scanner
3.6.2(c) Post Processing of Raw Data of 3-D Image 136
3.6.2(d) Accuracy Verification for 3-D Images Obtained by 141 SLM
3.6.2(e) 3-D Model Generation from the Raw Data of SLM 145
3.6.2(f) Sub-surface Division for 3-D Model Generation 148
3.6.2(g) Surface Mesh Generation for 3-D Origami Models 150
3.6.2(h) Summary of SLM 153
3.7 Determination of Folding Mechanism for Origami with Curved Fold 154 Lines
3.8 Generation of Finite Element Model for Structural Analysis 156
3.8.1 Surface Element Type and Surface Mesh 157
3.8.2 Geometric Properties of Thin Shell Surface 162
3.8.3 Boundary Condition of Origami Space Structure 166
3.8.4 Loading 170
3.8.5 Material Properties 171
3.9 Summary 171
CHAPTER FOUR: RESULTS AND DISCUSSION
4.1 Results for the Classification of Origami with Curved Fold Lines 175
4.2 Three Dimensional Origami Surface Data Acquisition and Model 182 Generation
4.2.1 Data Acquisition by Image Capturing Method (ICM) 182
4.2.1(a) 2-D Images of Origami Models by ICM 183
4.2.1(b) Outline Generation for Origami Models by ICM 188
4.2.2 Data Acquisition by Structural Lighting Method (SLM) 192
4.2.2(a) Raw 3-D Triangulation Mesh Data for the Origami 192 Models by SLM
4.2.2(b) Outline Generation for the Origami by SLM 197
4.2.2(c) Outlines Generation with Sub-surface Division for 202 the Origami Models by SLM
4.2.2(d) Mesh Generation of the 3-D Origami Models using 207 Data from SLM
4.2.3 Discussion of Three-Dimensional Surface Data Acquisition 212 for Origami Models with Curved Fold Lines
4.3 Determination of Folding Mechanism for Origami with Curved Fold 214 Lines
4.3.1 Folding Mechanism for Origami Models Under Category of 215 Non-inflated n Degree- n Vertices
4.3.1(a) Origami Model A01 - Single Degree-4 Vertices 215
4.3.1(a)(i) Overall Folding Process 221
4.3.1(a)(ii) Change in Configuration of Boundary 224 during Folding Process
4.3.1(a)(iii) Change in Configuration of Curved 229
Fold Lines during Folding Process
4.3.1(a)(iv) Summary of Folding Mechanism for 237
Origami Model A01
4.3.1(b) Summary for Folding Mechanism of Origami 239
Models Under Category A (Non-inflated n Degree- n Vertices)
4.3.2 Folding Mechanism for Origami Models Under Category of 243 Inflated n Degree- n Vertices
4.3.2(a) Origami Model B04 - Degree-4 Vertices Inflated 243 into Two Degree-3 Vertices
4.3.2(a)(i) Overall Folding Process 249
4.3.2(a)(ii) Change in Configuration of Boundary 254 during Folding Process
4.3.2(a)(iii) Change in Configuration of Curved 257 Fold Lines during Folding Process
4.3.2(a)(iv) Summary of Folding Mechanism for 266 Origami Model B04
4.3.2(b) Summary of Folding Mechanism for Origami 267
Models Under Category B (Inflated n Degree-n Vertices)
4.3.3 Folding Mechanism for Origami Models Under Category of 272 Mountain Ridge Curve
4.3.3(a) Origami Model C08 - Two Circular Mountain 272 Ridge Curves in Square
4.3.3(a)(i) Overall Folding Process 278
4.3.3(a)(ii) Change in Configuration of Boundary 281 during Folding Process
4.3.3(a)(iii) Change in Configuration of Curved 286 Fold Lines during Folding Process
4.3.3(a)(iv) Summary of Folding Mechanism for 290 Origami Model C08
4.3.3(b) Summary for Folding Mechanism of Origami 291 Models Under Category C (Mountain Ridge Curve)
4.3.4 Folding Mechanism for Origami Models Under Category of 296 Complex Shape
4.3.4(a) Origami Model D13 - 4-Lobed Cloverleaf Design 296
4.3.4(a)(i) Overall Folding Process 301
4.3.4(a)(ii) Change in Configuration of Boundary 304 during Folding Process
4.3.4(a)(iii) Change in Configuration of Curved 309 Fold Lines during Folding Process
4.3.4(a)(iv) Summary of Folding Mechanism for 312
Origami Model D13
4.3.4(b) Summary for Folding Mechanism of Origami 313
Model Under Category D (Complex Shape)
4.3.5 Discussion for the Determination of Folding Mechanism for 317 Origami with Curved Fold Lines
4.4 Results of Finite Element Modeling and Analysis for Shell Structure 319 with Curved Fold Lines (SSCFL)
4.4.1 Introduction 319
4.4.2 Results of Stress Resultants and Moment Resultants for Shell 320 Structure with Curved Fold Lines (SSCFL)
4.4.2(a) Stress Resultants 320
4.4.2(b) Moment Resultants 339
4.4.3 Results of Displacement on Shell Structure with Curved Fold 359 Lines (SSCFL)
4.4.3(a) SSFCL Based on Origami Model C11 - Five 360
Circular Mountain Ridge Curves in Pentagon
4.4.3(b) SSFCL Based on Origami Model C12 - Four 366
Elliptical Mountain Ridge Curves in Octagon
4.4.3(c) SSFCL Based on Origami Model D13 - 4-Lobed 371
Cloverleaf Design
4.4.3(d) Effects of Pattern of Curved Fold Lines on Shell 376
Surface Structure
4.5 Summary 378
CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS
5.1 Conclusions 379
5.2 Recommendations for Future Works 382

APPENDICES

Appendix A: 2-D Images (Top View) of Origami Models by ICM
Appendix B: 2-D Images (Side View) of Origami Models by ICM
Appendix C: Outlines Generation (Plan View) of Origami Models by ICM
Appendix D: Outlines Generation (Side View) of Origami Models by ICM
Appendix E: Outlines Generation (3-D View) of Origami Models by ICM
Appendix F: Raw Data of 3-D Triangulation Mesh for the Origami Models by SLM (3-D View)

Appendix G: Outlines Generation with Sub-surface Division for the Origami Models by SLM (3-D View)

Appendix H: Surface Mesh Generation for the Origami Models by SLM (3-D View)
Appendix I: Folding Mechanism of Origami Model A02 - Two Degree-2 Vertices

Appendix J: Folding Mechanism of Origami Model A03 - Four Degree-4 Vertices

Appendix K: Folding Mechanism of Origami Model B05 - Degree-4 Vertices Inflated into Four Degree-3 Vertices
Appendix L: Folding Mechanism of Origami Model B06 - Degree-4 Vertices Inflated into Four Degree-3 Vertices (with Inner Square Oriented 45° from X-axis)

Appendix M: Folding Mechanism of Origami Model B07 - Degree-6 Vertices Inflated into Six Degree-3 Vertices

Appendix N: Folding Mechanism of Origami Model C09 - Four Circular Mountain Ridge Curves in Square
Appendix O: Folding Mechanism of Origami Model C10 - Four Elliptical Mountain Ridge Curves in Square
Appendix P: Folding Mechanism of Origami Model C11 - Five Circular Mountain Ridge Curves in Pentagon

Appendix Q: Folding Mechanism of Origami Model C12 - Four Elliptical Mountain Ridge Curves in Octagon
Appendix R: Contour Diagrams of Stress Resultants for Origami Model C09
Appendix S: Contour Diagrams of Stress Resultants for Origami Model C12
Appendix T: Contour Diagrams of Moment Resultants for Origami Model C12

LIST OF PUBLICATIONS

LIST OF TABLES

Page
Table 3.1 List of Collections of Origami Models with Curved Fold 73 Lines
Table 3.2 Plan Geometrical Details for Origami Model A01 89
Table 3.3 Plan Geometrical Details for Origami Model A02 90
Table 3.4 Plan Geometrical Details for Origami Model A03 91
Table 3.5 Plan Geometrical Details for Origami Model B04 92
Table 3.6 Plan Geometrical Details for Origami Model B05 93
Table 3.7 Plan Geometrical Details for Origami Model B06 94
Table 3.8 Plan Geometrical Details for Origami Model B07 95
Table 3.9 Plan Geometrical Details for Origami Model C08 96
Table 3.10 Plan Geometrical Details for Origami Model C09 97
Table 3.11 Plan Geometrical Details for Origami Model C10 97
Table 3.12 Plan Geometrical Details for Origami Model C11 98
Table 3.13 Plan Geometrical Details for Origami Model C12 99
Table 3.14 Plan Geometrical Details for Origami Model D13 100
Table 3.15 Detail Information of the Fold Stages during Folding Process 106
Table 3.16 Details for the Direction of Measurement for each Individual 122 Lines
Table 3.17 Verification of 3-D Data Obtained by SLM with Actual 144 Measured Surface Length for Specified Shape
Table 3.18 Quantitative Parameters of Measurement on Change in 155 Geometry of Origami Model during Folding Process
Table 3.19 Historical Statistic of Thin Shell Structures with respect to 164 the Ratio of Span to Thickness
Table 3.20 Details of Length of Span between Two Supports with 169 respect to each Folding Stage for Origami Models
Table 4.1 Detailed Information for Selected Origami Models with 181 Curved Fold Lines
Table 4.2 Number of Folding Stage for Origami Models 185
Table 4.3 Results for the Angular Rotation and Elevation at Center of 224 Origami Model A01
Table 4.4 Results of Pixel Analysis for Change in Plan Area during 228 Folding Process of Model A01
Table 4.5 Results of Measurement on Length from Centre to the End of 234 Mountain Fold ($\ell_{M F}$) for Origami Model A01
Table 4.6 Results of Angular Measurement for the Rotation of 234 Mountain Fold $\left(\theta_{M}\right)$ for Origami Model A01
Table 4.7 Results of Height Measurement for Mountain Folds at 236
Boundary ($H_{M B}$) during Folding Process for Origami Model A01
Table 4.8 Summary for the Results of Parametric Measurements for 239 Origami Models under Category A at Final Folding Stage
Table 4.9 Summary for the Results of Parametric Measurements for 268 Origami Models under Category B at Final Folding Stage
Table 4.10 Summary for the Results of Parametric Measurements for 293 Origami Models under Category C at Final Folding Stage
Table 4.11 Summary for the Results of Parametric Measurements for 314 Origami Models under Category D at Final Folding Stage
Table 4.12 Maximum and Minimum Stress Resultant in Local Cartesian 322 for All SSFCL
Table 4.13 Stress Resultant Capacity of Compressive, Tensile and Shear 329 for Concrete C30
Table 4.14 Allowable Stress Resultant for Concrete 330
Table 4.15 Maximum and Minimum Moment Resultant in Local 341 Cartesian for SSCFL
Table 4.16 Capacity of Moment Resultants for Concrete C30 349
Table 4.17 Allowable Moment Resultant in Local x, y, and $x y$ Directions 349
Table 4.18 Maximum Resultant Displacement (RSLT) with respects to 360
the Stage of Folding for SSCFL Models, in comparison to the Allowable Displacement According to BS8110

LIST OF FIGURES

Page
Figure 1.1 Typologies for the Forms of Long Span Roof Structural System
Figure 1.2 Successful Application of Long Span Structural System: (a) 5 Space Structure; (b) Cable Structure; (c) Membrane Structure; (d) Hybrid Structure; and (e) Convertible Structure
Figure 1.3 Some Applications of Folded Shell Structures 8
Figure 1.4 Some Applications of Foldable Roof Structures 12
Figure 1.5 Type of origami 15
Figure 1.6 Structures Inspired from Geometry of Origami 17
Figure 1.7 Curve Creased Models: (a) by Josef Albers's students; (b) 20
by Irene Schawinsky; (c) by Thoki Yenn; and (d) Kunihiko Kasahara
Figure 1.8 Curve Creased Models: (a) "The White Space Curve Fold with 3-fold Symmetry" by Ronald Resch; (b) Two Degree- 2 Vertices; (c) Non-Inflated Degree-4 Vertex; and (d) "Hexagonal column with cusps" by Huffman
Figure 1.9 Two Examples of origami models with Mountain RidgedCurve Folds by Yoshinobu Miyamoto
Figure 1.10 The Development of Research Works in the Context of 23 Form Finding in Origami with Curved Fold Lines
Figure 1.11 Folding Process of Origami Surface with Curved Fold 24 Lines from initial opening-stage of (a) to final closed-stage of (d)
Figure 2.1 Definition of Curvature for Shell Surface Form: (a) Positive 32 Gaussian; (b) Zero Gaussian; and (c) Negative Gaussian
Figure 2.2 Types for the Form of Shell Structures 34
Figure 2.3 In-plane and Out of Plane Forces of Shell Surface Element 36
Figure 2.4 The Stiffness and Load Carrying Capacity of Folded Plate: 37(a) A piece of Paper without any Fold could not carry ItsOwn Weight; (b) After being Folded the Paper can NotOnly Stand between the Gap, but also carry Some Extra
Weight; (c) When the Load is being Added, the FoldedPaper need to be Stiffened; and (d) After the Edges wereStiffened, the Structure could carry More Loads
Figure 2.5 Typology of Fold Plate Structural Systems 39
Figure 2.6 Loading Distribution for Folded Plate Structure 41
Figure 2.7 Longitudinal Action of Folded Plate Structures 42
Figure 2.8 Transverse Action of Folded Plate Structures 42
Figure 2.9 Types of Deployable Structures 45
Figure 2.10 Types of Retractable Roof Structures for Stadium and Sport 46 Halls: (a) Retractable Roof Structures composed of Rigid Elements; (b) Retractable Roof Structures composed of Membranes; and (c) Retractable Roof Structures composed of Rigid Elements and Membranes
Figure 2.11 Folding Mechanism of Retractable/Foldable Structures 48
Figure 2.12 Centric Configuration of Folding Process: (a) Umbrella 47 Structures at Prophet’s Holy Mosque in Madinah; and (b) Open and Close Profile of Transformation Direction
Figure 2.13 Linear Configuration of Folding Process: (a) Curved 49 Linkage Bars with Scissor System at Jaén Auditorium in Spain; and (b) Stowed and Employed Stage of Transformation Direction
Figure 2.14 Deformable Structure of Floating Theater in Osaka, Japan 50
Figure 2.15 Folding Transformation Strategy for Membrane-cable 51 Folding Structure of National Stadium in Warsaw, Poland
Figure 2.16 Rotation Transformation Strategy for Dome Structure of Civic Arena in USA
Figure 2.17 Sliding Transformation Strategy for Bi-Parting Rigid 52 Structure of Ariake Colosseum Hall in Japan
Figure 3.1 Basis Formation of an Origami with Curved Fold Lines 72
Figure 3.2 Dimensional Limit of Square Space for Origami Modeling 86
Figure 3.3 Procedures in generating Plan Configuration of Origami 87 Model A01
Figure $3.4 \quad$ Plan shape of Origami Model A01 88
Figure 3.5 Plan shape of Origami Model A02 89
Figure 3.6 Plan shape of Origami Model A03 90
Figure 3.7 Plan shape of Origami Model B04 92
Figure 3.8 Plan shape of Origami Model B05 93
Figure 3.9 Plan shape of Origami Model B06 94
Figure 3.10 Plan shape of Origami Model B07 95
Figure 3.11 Plan shape of Origami Model C08 96
Figure 3.12 Plan shape of Origami Model C09 96
Figure 3.13 Plan shape of Origami Model C10 97
Figure 3.14 Plan shape of Origami Model C11 98
Figure 3.15 Plan shape of Origami Model C12 99
Figure 3.16 Plan shape of Origami Model D13 100
Figure 3.17 Manila Card the paper material used in Constructing 101 Origami Models
Figure 3.18 Step-by-step Procedures in Folding Origami Paper Model 104
A01: (a) Blank A4-Sized Manila Card Paper, (b) Plan Configuration Printed on the Paper, (c) Square Boundary is Cut Out, (d) Tracing the Crease Lines, (e) Pre-creasing by using Backside of Blade Knife, (f) Mountain Fold, (g) Valley Fold, (h) and (i) Views of Final Finishing Folded Paper Model
Figure 3.19 Regeneration of 13 units of Origami Paper Model 105
Figure 3.20 Location of Supporting Points with respect to Folding Stage 107 during entire Folding Process of Origami Models
Figure 3.21 Experimental Setup for the Instrument use in ICM 112
Figure 3.22 Experimental Setup for ICM 113
Figure 3.23 Top View Outline ($X Y$-plane) Generation based on the 2-D 116 images of Model A02 captured by ICM
Figure 3.24 Side View Outline (XZ-plane) Generation based on the 2-D 117
images of Model A02 captured by ICM
Figure 3.25 Details of Hidden Lines Due to Overlapping of Paper 115
Surfaces during Process of Folding ($F s=06$) for Top Image of Model A02

Figure 3.26 Definition of External Geometrical System for 3-D Model

Figure 3.27 Concept of Epipolar Plane and Epipolar Lines used in ICM
Figure 3.28 Details of Model A02 with Separation of Individual Lines
Figure 3.29 Spacing of Grids used for Measuring Geometrical Profile of
Boundary Line $B 1$ of Model A02 at $F s=01$: (a) Top View ($X Y$-plane); and (b) Side View ($X Z$-plane)

Figure $3.30 \quad$ Generation of 3-D boundary line $B 1$ for Model A02 at
$F s=01$: (a) Building-up of Elevation Profile from the Side View of Outline Plane; and (b) Transferring the Elevation Profile into $X Y$-plane

Figure 3.31 Generation of 3-D lines of $B 1, B 2, F 1$ and $F 2$ for Model
A 02 at $F s=01$
Figure 3.32 Complete 3-D Generation for Model A02 at $F s=01 \quad 125$
Figure 3.33 3-D Geometrical Lines Generation for a Combination of
folding stages of Origami Model A02: (a) 3-D View; (b)
Top View; (c) Front View; and (d) Side View
Figure 3.34 Illustration for the Concept of Optical Intersection between
Projected Light to the Receiver of Camera by SLM
Figure 3.35 Sequence of Binary-coded Pattern Projection for 3-D Imaging by SLM
$\begin{array}{lll}\text { Figure 3.36 } & \begin{array}{l}\text { Illustration of Instrumental Setup for 3-D Surface Data } \\ \text { Acquisition by DAVID SLS-1 Structured Light Scanner }\end{array} & 132\end{array}$
Figure 3.37 Instrumental Setup Arrangement for 3-D Surface Data
Acquisition by using DAVID SLS-1 Structured-Light Scanner

Figure 3.38 Calibration Panel provided by DAVID SLS-1
Figure 3.39 Process of Calibration: (a) Camera Calibration; and (b) Projector Calibration
$\begin{array}{lll}\text { Figure 3.40 } & \begin{array}{l}\text { Rotary Disc Board designed for Multiple Scanning of } \\ \text { Origami Model during Later folding Stages by Side } \\ \text { Aligned Scanning System }\end{array} & 136\end{array}$
Figure 3.41 Raw Data of 3-D Image captured by SLM with 137 Unnecessary Parts of Background and Noise of Disturbance

Figure 3.42 Merging Process of Origami Model A03 to form a

Figure 3.43 Smoothening of the Raw Data of 3-D Images for Origami Model A01: (a) Effect before Smooth Scan; and (b) Effect after Smooth Scan

Figure 3.44 Reduction of Point Cloud Density from Raw Data of 3-D Images for Origami Model A02 at $F s=01$

Figure 3.45 Three Rubik's Polygon selected for Accuracy Verification Test: (a) Cube; (b) Pyramid; and (c) Pentagon

Figure 3.46 Measurement of Actual Model and 3-D Scanned Model for the Shapes of: (a) Rubik Cube; (b) Rubik Pyramid and (c) Rubik Pentagon

Figure 3.47 Details of Generating Nodes on the Intersection Points between Raw Data and Grid of Reference for Origami Model A01 at $F s=01$

Figure 3.48 Procedures in Generating 3-D Outlines from Raw Data
Scanned by SLM for Origami Model A01 at $F s=01$
Figure 3.49 Outlines Plane for Sub-surface Division
$\begin{array}{lll}\text { Figure 3.50 } & \begin{array}{l}\text { Isometric View of Origami Model A01 at } F s=01 \text { after Sub- } \\ \text { surface Divisions are Generated }\end{array} & 149\end{array}$
$\begin{array}{lll}\text { Figure 3.51 } & \begin{array}{l}\text { Surface Meshing Functions provided by CAD Program: (a) } \\ \text { EDGESURFT; and (b) RULESURF }\end{array} & 151\end{array}$
Figure 3.52 Complete 3-D Model Generation with Surface Meshing for Origami Model A01 at $F s=01$: (a) 3-D View; (b) Plan View; (c) Front View; and (d) Side View

Figure 3.53 Measurement for the Change in Geometry during Folding Process of Origami Model A01

Figure 3.54 Finite Element Attributions of Surface Element Type and Surface Meshing for Origami Model A01 at Fs=01: (a) 3-D Surface of Origami Model; (b) Sub-surface with Meshes; and (c) Thin Shell Element

Figure 3.55 Surface Meshing Elements in FEM for 13 Origami Models
Figure 3.56 Study of Convergence regarding Resultant Displacement due to the Selection of Surface Element Shapes and Degree of Interpolation Order, with respect to the Number of Surface Element Division in Local X and Local Y
Directions: (a) Folding Stage $F s=01$ (Start of Folding); and(b) Folding Stage $F s=04$ (End of Folding), for Model A01
Figure 3.57 Dimension of Origami Paper Model Scaled to Actual Size 162 of Space Structure
Figure 3.58 Surface Thicknesses in FEM for 13 Origami Models 165
Figure 3.59 Attribution of Surface Thicknesses on Finite Element 166 Model A01 at $F s=01$
Figure 3.60 Attribution of Fixed Support on Finite Element Model A01 167
at $F s=01$
Figure 3.61 Location of Supporting Lines in FEM for 13 Origami 168 Models
Figure 3.62 Attribution of Self-weight Loading Applied in FEM for 170 Origami Model A01 at $F s=01$
Figure 3.63 Flowchart of Current Research Study 173
Figure 4.1 Classification of Origami with Curved Fold Lines based on 176 Source of References
Figure 4.2 Categories of Origami Model with Curved Fold Lines 180
Selected
Figure 4.3 Top View (X - Y plane) of Origami Model A01 (Degree-4 186 Vertices) folded from $F s=00$ (Un-fold Stage) to $F s=07$ (Final Stage) by Image Capturing Method
Figure $4.4 \quad$ Side View (Y-Z plane) of Origami Model A01 (Degree-4 Vertices) folded from $F s=00$ (Un-fold Stage) to $F s=04$ (Final Stage) by Image Capturing Method
Figure $4.5 \quad$ Outline Generation for Plan View ($X-Y$ plane) of Origami 189
Model A01 (Degree-4 Vertices) folded from $F s=00$ (Un- fold Stage) to $F s=04$ (Final Stage) by Image Capturing MethodFigure $4.6 \quad$ Outline Generation for Side View ($Y-Z$ plane) of Origami190Model A01 (Degree-4 Vertices) folded from $F s=00$ (Un-fold Stage) to $F s=04$ (Final Stage) by Image CapturingMethodFigure 4.7 Outline Generation for Isometric View (3-D View) of191Origami Model A01 (Degree-4 Vertices) folded from$F s=00$ (Un-fold Stage) to $F s=04$ (Final Stage) by ImageCapturing Method

Figure 4.8 Raw 3-D Triangulation Mesh for Origami Model A03 (Four Degree-4 Vertices) folded from $F s=01$ (First Intermediate Folding Stage) to $F s=08$ (Final Stage) by Structural Lighting Method

Figure 4.9 Raw 3-D Triangulation Mesh for Origami Model B05
(Degree-4 Vertices Inflated into Four Degree-3 Vertices) folded from $F s=01$ (First Intermediate Folding Stage) to $F s=09$ (Final Stage) by Structural Lighting Method

Figure 4.10 Raw 3-D Triangulation Mesh for Origami Model C10 (Four
Elliptical Mountain Ridge Curves in Square) folded from $F s=01$ (First Intermediate Folding Stage) to $F s=13$ (Final Stage) by Structural Lighting Method

Figure 4.11 Raw 3-D Triangulation Mesh for Origami Model D13 (4Lobed Cloverleaf Design) folded from Fs=01 (First Intermediate Folding Stage) to $F s=13$ (Final Stage) by Structural Lighting Method

Figure 4.12 Outline Generation for Origami Model A03 (Four Degree-4
Vertices) folded from $F s=01$ (First Intermediate Folding Stage) to $F s=08$ (Final Stage) by Structural Lighting Method

Figure 4.13 Outline Generation for Origami Model B05 (Degree-4
Vertices Inflated into Four Degree-3 Vertices) folded from $F s=01$ (First Intermediate Folding Stage) to $F s=09$ (Final Stage) by Structural Lighting Method

Figure 4.14 Outline Generation for Origami Model C10 (Four Elliptical Mountain Ridge Curves in Square) folded from $F s=01$ (First Intermediate Folding Stage) to $F s=13$ (Final Stage) by Structural Lighting Method

Figure 4.15 Outline Generation for Origami Model D13 (4-Lobed
Cloverleaf Design) folded from $F s=01$ (First Intermediate Folding Stage) to $F s=13$ (Final Stage) by Structural Lighting Method

Figure 4.16 Sub-surface Division for Origami Model A03 (Four Degree-4 Vertices) folded from $F s=01$ (First Intermediate Folding Stage) to $F s=08$ (Final Stage) by Structural Lighting Method

Figure 4.17 Sub-surface Division for Origami Model B05 (Degree-4
Vertices Inflated into Four Degree-3 Vertices) folded from $F s=01$ (First Intermediate Folding Stage) to $F s=09$ (Final Stage) by Structural Lighting Method

Figure 4.18 Sub-surface Division for Origami Model C10 (Four
$F s=01$ (First Intermediate Folding Stage) to $F s=13$ (FinalStage) by Structural Lighting Method
Figure 4.19 Sub-surface Division for Origami Model D13 (4-Lobed 206 Cloverleaf Design) folded from $F s=01$ (First Intermediate Folding Stage) to $F s=13$ (Final Stage) by Structural Lighting Method
Figure 4.20 Surface Mesh Generation for Origami Model A03 (Four 208
Degree-4 Vertices) folded from $F s=00$ (Un-fold Stage) to $F s=08$ (Final Stage) by Structural Lighting Method
Figure 4.21 Surface Mesh Generation for Origami Model B05 (Degree- 209 4 Vertices Inflated into Four Degree-3 Vertices) folded from $F s=01$ (First Intermediate Folding Stage) to $F s=09$ (Final Stage) by Structural Lighting Method
Figure 4.22 Surface Mesh Generation for Origami Model C10 (Four 210 Elliptical Mountain Ridge Curves in Square) folded from $F s=01$ (First Intermediate Folding Stage) to $F s=13$ (Final Stage) by Structural Lighting Method
Figure 4.23 Surface Mesh Generation for Origami Model D13 (4-Lobed 211 Cloverleaf Design) folded from $F s=01$ (First Intermediate Folding Stage) to $F s=13$ (Final Stage) by Structural Lighting Method
Figure 4.24 Comparison of Final Results of 3-D Surface Geometry 213 Output Generated by Between ICM and SLM for All Origami Models during $F_{S}=01$
Figure 4.25 Illustration for Basis of Folding Process in Origami 214
Figure 4.26 Guiding Views from respective axis in describing the 216 folding process for Origami Model A01
Figure 4.27 Top view ($X-Y$ plane) of Model A01 (Square Degree-4 217 vertices of circle) from the start of folding stage 01 to the final folding stage 04
Figure 4.28 Front view (X - Z plane) of Model A01 (Square Degree-4 218 vertices of circle) from the start of folding stage 01 to the final fold stage 04
Figure 4.29 Side view ($X+45^{\circ}-Z$ plane) of Model A01 (Square Degree-4 219 vertices of circle) from the start of folding stage 01 to the final folding stage 04
Figure 4.30 Isometric view (3-Dimension) of Model A01 (Square 220 Degree-4 vertices of circle) from the start folding stage 01 to the final folding stage 04
Figure 4.31 Outlines of Origami Model A01 (in Plan View) during the 221
Folding Process from the Un-fold Stage 00 (Maroon Colour) to the Final Folding Stage 04 (Green Colour)
Figure 4.32 Outlines of Origami Model A01 (in Front View) during the 222
Folding Process from the Un-fold Stage 00 (Maroon Colour) to the Final Folding Stage 04 (Green Colour)
Figure 4.33 Outlines of Origami Model A01 (in Plan View) during 223 Folding Process
Figure 4.34 Outlines of Origami Model A01 (in Front View) during 223 Folding Process in Changing Overall Height at the Center of Origami Model
Figure 4.35 Change in Angle of Rotation at Center $\left(\theta_{C}\right)$ during Folding 224 Process for Origami Model A01
Figure 4.36 Change in Maximum Height at Center $\left(H_{C}\right)$ for Origami 225 Model A01
Figure 4.37 Outlines of Boundary for Origami Model A01 (in Plan 225
View) during the Folding Process from the Un-Fold Stage 00 (Maroon Colour) to the Final Folding Stage 04 (Green colour)
Figure 4.38 Outlines of Boundary for Origami Model A01 (in Front 226 View) during the Folding Process from the Un-Fold Stage 00 (Maroon Colour) to the Final Folding Stage 04 (Green colour)
Figure 4.39 Measurement of Image Pixel for Plan Area $\left(A_{C}\right)$ during 227 Folding Process for Origami Model A01
Figure $4.40 \quad$ Pixel Measurement for the Change in Plan Area during 228
Folding Process of Origami Model A01
Figure 4.41 Change in Plan Area $\left(A_{C}\right)$ during Folding Process for 229 Origami Model A01
Figure 4.42 Outlines of Valley Folds for Origami Model A01 (in Plan230View) during the Folding Process from the Un-fold Stage00 (Maroon Colour) to the Final Folding Stage 04 (GreenColour)
Figure 4.43 Outlines of Valley Folds for Origami Model A01 (in Front230View) during the Folding Process from the Un-fold Stage00 (Maroon Colour) to the Final Folding Stage 04 (GreenColour)
Figure 4.44 Outlines of Mountain for Origami Model A01 (in Plan 231 View) during the Folding Process from the Un-fold Stage
00 (Maroon Colour) to the Final Folding Stage 04 (GreenColour)
Figure 4.45 Outlines of Mountain for Origami Model A01 (in Front 231 View) during the Folding Process from the Un-fold Stage 00 (Maroon Colour) to the Final Folding Stage 04 (Green Colour)
Figure 4.46 Origami Model A01 (in Top View, $X-Y$ plane) showing 233
Measurement for Length of Mountain Folds from Center and Angular Measurement for Mountain Fold during Folding Process
Figure 4.47 Change in Length from Centre to the End of Mountain Fold 234 for Origami Model A01
Figure 4.48 Change in Angle of Rotation of Mountain Fold during 235 Folding Process for Origami Model A01
Figure 4.49 Measurement for Change in Height of Mountain Fold Lines 236 at Boundaries during Folding Process for Origami ModelA01: (a) Front view ($X+45^{\circ}-Z$); and (b) Side view (Y $+45^{\circ}-$Z)
Figure 4.50 Change in Height of Mountain Fold at Boundary during 237 Folding Process for Origami Model A01
Figure 4.51 Illustrations of Geometrical Changes with respect to each 241
Major Parametric Measurement for Origami Models under Category A during Folding Process
Figure 4.52 Graphs of Results for the Major Parametric Measurements 242 for Origami Models under Category A
Figure 4.53 Guiding Views from respective axes in describing the 244 folding process for Origami Model B04
Figure 4.54 Top View ($X-Y$ plane) of Model B04 (Degree-4 Vertices 245 Inflated into Two Degree-3 Vertices) from Fold Stage 01 to the Final Fold Stage 09
Figure 4.55 Front View (X - Z plane) of Model B04 (Degree-4 Vertices 246 Inflated into Two Degree-3 Vertices) from Fold Stage 01 to the Final Fold Stage 09
Figure 4.56 Side View ($X+45^{\circ}-Z$ plane) of Model B04 (Degree-4247Vertices Inflated into Two Degree-3 Vertices) from FoldStage 01 to the Final Fold Stage 09
Figure 4.57 Isometric View (3-D View) of Model B04 (Degree-4 248
Vertices Inflated into Two Degree-3 Vertices) from Fold Stage 01 to the Final Fold Stage 09
Figure 4.58 Outlines of Model B04 (in Plan View) during the Folding 249
Process from the Un-fold Stage 00 (Maroon colour) to the Final Folding Stage 09 (Dark-blue Colour)
Figure 4.59 Outlines of Model B04 (in Front View, X - Z plane) during 250 the Folding Process from the Un-fold Stage 00 (Maroon colour) to the Final Fold Stage 09 (Dark-blue Colour)
Figure 4.60 Outlines of Model B04 (in Side View, $Y-Z$ plane) during the 251
Folding Process from the Un-fold Stage 00 (Maroon colour) to the Final Fold Stage 09 (Dark-blue Colour)
Figure 4.61 Outlines of Model B04 (in plan view) during Folding 252
Process showing change in angle of rotation at the Center
Figure 4.62 Outlines of Model B04 (in front view) during folding 252
process showing the change in overall height at the center
Figure 4.63 Change in Angle of Rotation at Center $\left(\theta_{C}\right)$ during Folding 253
Process for Origami Model B04
Figure 4.64 Change in Maximum Height at Center $\left(H_{C}\right)$ during Folding 253 Process for Origami Model B04
Figure 4.65 Outlines of Origami Boundary for Model B04 (in Plan 254
View) during the Folding Process from the Un-fold Stage 00 (Maroon colour) to the Final Fold Stage 08 (Dark-blue Colour)
Figure 4.66 Outlines of Origami Boundary for Model B04 (in Front 255
View) during the Folding Process from the Un-fold Stage 00 (Maroon colour) to the Final Fold Stage 08 (Dark-blue Colour)
Figure 4.67 Pixel Measurement for the Change of Plan Area of Origami 256 Model B04
Figure 4.68 Change in Plan Area (AC) during Folding Process for 257 Origami Model B04
Figure 4.69 Outlines of Valley-folds for Model B04 (in Plan View) 258
during Folding Process from the Un-fold Stage 00 (Maroon colour) to the Final Fold Stage 09 (Dark-blue Colour)
Figure 4.70 Outlines of Valley-folds for Model B04 (in Front View, X - 258Z plane) during Folding Process from the Un-fold Stage 00
(Maroon colour) to the Final Fold Stage 09 (Dark-blueColour)
Figure 4.71 Outlines of Valley-folds for Model B04 (in Side View, $Y-Z$ 259
plane) during Folding Process from the Un-fold Stage 00 (Maroon colour) to the Final Fold Stage 09 (Dark-blue Colour)
Figure 4.72 Outlines of Mountain-folds for Model B04 (in Plan View) 259
during Folding Process from the Un-fold Stage 00 (Maroon colour) to the Final Folding Stage 09 (Dark-blue Colour)
Figure 4.73 Outlines of Mountain-folds for Model B04 (in Front View, 260 $X-Z$ plane) during Folding Process from the Un-fold Stage 00 (Maroon colour) to the Final Folding Stage 09 (Dark- blue Colour)
Figure 4.74 Outlines of Valley-folds for Model B04 (in Side View, $Y-Z$ 261 plane) during Folding Process from the Un-fold Stage 00 (Maroon colour) to the Final Fold Stage 09 (Dark-blue Colour)
Figure 4.75 Schematic Top View ($X-Y$ Plane) of Origami Model B04 262 showing Measurement for Length between Edge of Mountain Folds and Angular Measurement for Mountain Fold during Folding Process
Figure 4.76 Changes in Angle of Rotation of Mountain Fold during 263 folding process for Origami Model B04
Figure 4.77 Changes in Length between Two Mountain Folds during 263 Folding Process for Origami Model B04
Figure 4.78 Schematic Side View ($X+45^{\circ}-Z$ Plane) of Origami Model 264
B04 showing Measurement of Height of Mountain Fold at Boundary ($H_{M B}$) and the Height of Mountain Fold at Offset Point from the Center ($H_{M C}$)
Figure 4.79 Change in Height of Mountain Fold at Boundary $\left(H_{M B}\right)$ 265 during Folding Process for Origami Model B04
Figure 4.80 Change in Height of Mountain Fold at Intersection Point 265
Offset ffrom the Center $\left(H_{M C}\right)$ for Origami Model B04
Figure 4.81 Illustrations of Geometrical Changes with respect to each 269
Major Parametric Measurement for Origami Models under Category B during Folding Process
Figure 4.82 Graphs of Results for the Major Parametric Measurements 270 for Origami Models under Category B
Figure 4.83 Guiding Views from respective axes in describing the 272 folding process for Origami Model C08
Figure 4.84 Top View ($X-Y$ plane) of Model C08 (Two Mountain Ridge 273
Curves in Square) from Fold Stage 01 to the Final Fold Stage 09
Figure 4.85 Front View (X - Z plane) of Model C08 (Two Mountain 274
Ridge Curves in Square) from Fold Stage 01 to the Final Fold Stage 09
Figure 4.86 Side View ($X+45^{\circ}-Z$ plane) of Model C08 (Two Mountain 275
Ridge Curves in Square) from Fold Stage 01 to the Final Fold Stage 09
Figure 4.87 Side View (Y - Z plane) of Model C08 (Two Mountain Ridge 276
Curves in Square) from Fold Stage 01 to the Final Fold Stage 09
Figure 4.88 Isometric View (3-D View) of Model C08 (Two Mountain 277
Ridge Curves in Square) from Fold Stage 01 to the Final Fold Stage 09
Figure 4.89 Outlines of Origami Model C08 (in Plan View) during the 278
Folding Process from the Un-fold Stage 00 (Maroon colour) to the Final Folding Stage 09 (Dark-blue Colour)
Figure 4.90 Outlines of Origami Model C08 (in Front View, X - Z plane) 279
during the Folding Process from the Un-fold Stage 00 (Maroon colour) to the Final Folding Stage 09 (Dark-blue Colour)
Figure 4.91 Outlines of Origami Model C08 (in Side View, Y - Z plane) 279 during the Folding Process from the Un-fold Stage 00 (Maroon colour) to the Final Folding Stage 09 (Dark-blue Colour)
Figure 4.92 Outlines of Origami Model C08 (in Plan View) during 280 Folding Process
Figure 4.93 Outlines of Origami Model C08 (in Front View) during 280
Folding Process Folding Process in Changing Overall Height at the Center of Origami Model
Figure 4.94 Change in Maximum Height at Center $\left(H_{C}\right)$ during Folding 281 Process for Origami Model C08
Figure 4.95 Outlines of Origami Boundary for Origami Model C08 (in 282
Plan View) during the Folding Process from the Un-fold Stage 00 (Maroon colour) to the Final Folding Stage 09 (Dark-blue Colour)
Figure 4.96 Outlines of Origami Boundary for Origami Model C08 (in 283Side View, X - Z plane) during the Folding Process from theUn-fold Stage 00 (Maroon colour) to the Final FoldingStage 09 (Dark-blue Colour)
Figure 4.97 Outlines of Origami Boundary for Origami Model C08 (in 283
Side View, X - Z plane) during the Folding Process from the Un-fold Stage 00 (Maroon colour) to the Final Folding Stage 09 (Dark-blue Colour)
Figure 4.98 Outlines of Boundary (in Side View) showing 284
Measurement of Maximum Height at boundary $\left(H_{B}\right)$ during Folding Process of Origami Model C08
Figure 4.99 Change in Maximum Height at Boundary $\left(H_{B}\right)$ during 284
Folding Process for Model C08
Figure 4.100 Pixel Measurement for the Change of Plan Area $\left(A_{C}\right)$ during 285 Folding Process for Origami Model C08
Figure 4.101 Change in Plan Area $\left(A_{C}\right)$ during Folding Process for Model 286 C08
Figure 4.102 Outlines of Mountain Folds for Origami Model C08 (in 287
Plan View) during the Folding Process from the Un-fold Stage 00 (Maroon colour) to the Final Folding Stage 09 (Dark-blue Colour)
Figure 4.103 Outlines of Mountain Folds for Origami Model C08 (in 287
Front View, $X-Z$ plane) during the Folding Process from the Un-fold Stage 00 (Maroon colour) to the Final Fold Stage 09 (Dark-blue Colour)
Figure 4.104 Outlines of Mountain Folds for Origami Model C08 (in 288
Side View, Y-Z plane) during the Folding Process from the Un-fold Stage 00 (Maroon colour) to the Final Fold Stage 09 (Dark-blue Colour)
Figure 4.105 Origami Model C08 (in Top View, $X-Y$ plane) showing 288 Measurement for Length between Edge of Mountain Folds during Folding Process
Figure 4.106 Change in Length between two Mountain Folds ($\ell_{M F}$) 289 during Folding Process for Model C08
Figure 4.107 Origami Model C08 (in Side View, $X-Y$ plane) showing the 289 Measurement of Maximum Height of Mountain Folds ($H_{M C}$)
Figure 4.108 Change in Height of Mountain Fold at Center $\left(H_{M C}\right)$ during 290 Folding Process for Origami Model C08
Figure 4.109 Illustrations of Geometrical Changes with respect to each 294
Major Parametric Measurement for Origami Models under Category C during Folding Process
Figure 4.110 Graphs of Results for the Major Parametric Measurements 295
for Origami Models under Category C
Figure 4.111 Guiding Views from respective axes in describing the 296
folding process for Origami Model D13
Figure 4.112 Top View ($X-Y$ plan) of Solid Rendered Model M13 (4- 297
Lobed Cloverleaf Design) from Fold Stage 01 to the Final Fold Stage 06
Figure 4.113 Front View (X-Z plan) of Solid Rendered Model M13 (4- 298
Lobed Cloverleaf Design) from Fold Stage 01 to the Final Fold Stage 06
Figure 4.114 Side View ($X+45^{\circ}-Z$ plan) of Solid Rendered Model D13 299
(4-Lobed Cloverleaf Design) from Fold Stage 01 to the Final Fold Stage 06
Figure 4.115 Isometric View (3-D View) of Solid Rendered Model D13 300
(4-Lobed Cloverleaf Design) from Fold Stage 01 to the Final Fold Stage 06
Figure 4.116 Outlines of Origami Model D13 (in Plan View) during the 301
Folding Process from the Un-fold Stage 00 (Maroon colour) to the Final Fold Stage 03 (Spring-green Colour)
Figure 4.117 Outlines of Origami Model D13 (in Front View) during the 302
Folding Process from the Un-fold Stage 00 (Maroon colour) to the Final Fold Stage 03 (Spring-green Colour)
Figure 4.118 Outlines of Origami Model D13 (in Plan View) during Folding Process
Figure 4.119 Outlines of Origami Model D13 (in Front View) during 303 Folding Process in Changing Overall Height at the Center of Origami Model
Figure 4.120 Changes in Height at Center $\left(H_{C}\right)$ during Folding Process 304 for Origami Model D13
Figure 4.121 Outlines of Boundary for Origami Model D13 (in Plan 305View) during the Folding Process from the Un-fold Stage00 (Maroon colour) to the Final Folding Stage 06 (Spring-green Colour)
Figure 4.122 Outlines of Boundary for Origami Model D13 (in Front 305 View) during showing the Folding Process from the Un-
fold Stage 00 (Maroon colour) to the Final Folding Stage 06 (Spring-green Colour)
Figure 4.123 Outlines of Origami Model D13 (in Top View) showing 306
Measurement of Changes in Diagonal Length of Boundary $\left(\ell_{d}\right)$ during Folding Process
Figure 4.124 Change in Length of Diagonal $\left(\ell_{d}\right)$ during Folding Process 306 for Origami Model D13
Figure 4.125 Outlines of Boundary (in Side View) showing 307
Measurement of Maximum Height at boundary $\left(H_{B}\right)$ during Folding Process of Origami Model D13
Figure 4.126 Change in Maximum Height at Boundary $\left(H_{B}\right)$ during 307 Folding Process for Model D13
Figure 4.127 Pixel Measurement for the Change of Plan Area $\left(A_{C}\right)$ during 308 Folding Process for Origami Model C13
Figure 4.128 Change in Plan Area $\left(A_{C}\right)$ during Folding Process for 309 Origami Model D13
Figure 4.129 Outlines of All Folding Lines for Origami Model D13 (in 310 Plan View) during the Folding Process from the Un-fold Stage 00 (Maroon colour) to the Final Fold Stage 06 (Spring-green Colour)
Figure 4.130 Outlines of All Folding Lines for Origami Model D13 (in 310
Front View) during the Folding Process from the Un-fold Stage 00 (Maroon colour) to the Final Fold Stage 06 (Spring-green Colour)
Figure 4.131 Outlines of Origami Model D13 (in front view) showing the 311
Measurement of Maximum Height of Valley Folds ($H_{V C}$) during Folding Process
Figure 4.132 Change in Height of Valley Folds at Center $\left(H_{V C}\right)$ during 311 Folding Process for Origami Model D13
Figure 4.133 Illustrations of Geometrical Changes with respect to each 315
Major Parametric Measurement for Origami Models under Category D during Folding Process
Figure 4.134 Graphs of Results for the Major Parametric Measurements 316
for Origami Models under Category D
Figure 4.135 Stress Resultant and Sign Convention acting on 321 Quadrilateral Thin Shell Surface Element
Figure 4.136 Contour Diagram of Stress Resultant in Local x Direction 332 (N_{x}) for Model C11 with Different Surface Geometry: (a)

$F s=01$ (Start of Folding Stage); (b) $F s=02$ and; (c) $F s=03$ (End of Folding Stage)

Figure 4.137 Contour Diagram of Stress Resultant in Local y Direction
$\left(N_{y}\right)$ for Model C11 with Different Surface Geometry: (a) $F s=01$ (Start of Folding Stage); (b) $F s=02$ and; (c) $F s=03$ (End of Folding Stage)

Figure 4.138 Contour Diagram of Stress Resultant in Local xy Plane (Nxy)
for Model C11 with Different Surface Geometry: (a) $F s=01$ (Start of Folding Stage); (b) $F s=02$ and; (c) $F s=03$ (End of Folding Stage)

Figure 4.139 Contour Diagram of Stress Resultant in Local x Direction
(N_{x}) for Model D13 with Different Surface Geometry: (a)
$F s=01$ (Start of Folding Stage); (b) $F s=02$; (c) $F s=03$; (d)
$F s=04$; (e) $F s=05$ and; (f) $F s=06$ (End of Folding Stage)
Figure 4.140 Contour Diagram of Stress Resultant in Local y Direction
(N_{y}) for Model D13 with Different Surface Geometry: (a)
Fs=01 (Start of Folding Stage); (b) Fs=02; (c) Fs=03; (d) $F s=04$; (e) $F s=05$ and; (f) $F s=06$ (End Folding Stage)

Figure 4.141 Contour Diagram of Stress Resultant in Local xy Plane
($N_{x y}$) for Model D13 with Different Surface Geometry: (a) $F s=01$ (Start of Folding Stage); (b) $F s=02$; (c) $F s=03$; (d) $F s=04$; (e) $F s=05$ and; (f) $F s=06$ (End of Folding Stage)

Figure 4.142 Moment Resultant and Sign Convention acting onQuadrilateral Thin Shell Surface Element

Figure 4.143 Moment Resultant over Shell Middle-Surface 348
Figure 4.144 Contour Diagram of Moment Resultant in Local x Direction
(M_{x}) for Model C11 with Different Surface Geometry: (a) $F s=01$ (Start of Folding Stage); (b) $F s=02$ and; (c) $F s=03$ (End of Folding Stage)

Figure 4.145 Contour Diagram of Moment Resultant in Local y Direction
(M_{y}) for Model C11 with Different Surface Geometry: (a)
$F s=01$ (Start of Folding Stage); (b) $F s=02$ and; (c) $F s=03$ (End of Folding Stage)

Figure 4.146 Contour Diagram of Moment Resultant in Local xy Plane ($M_{x y}$) for Model C11 with Different Surface Geometry: (a) $F s=01$ (Start of Folding Stage); (b) $F s=02$ and; (c) $F s=03$ (End of Folding Stage)

Figure 4.147 Contour Diagram of Moment Resultant in Local x Direction (M_{x}) for Model D13 with Different Surface Geometry: (a)
$F s=01$ (Start of Folding Stage); (b) $F s=02$; (c) $F s=03$; (d) $F s=04$; (e) $F s=05$ and; (f) $F s=06$ (End of Folding Stage)
Figure 4.148 Contour Diagram of Moment Resultant in Local y Direction 355(M_{y}) for Model D13 with Different Surface Geometry: (a)$F s=01$ (Start of Folding Stage); (b) $F s=02$; (c) $F s=03$; (d)$F s=04$; (e) $F s=05$ and; (f) $F s=06$ (End of Folding Stage)
Figure 4.149 Contour Diagram of Moment Resultant in Local xy Plane 356
($M_{x y}$) for Model D13 with Different Surface Geometry: (a)
$F s=01$ (Start of Folding Stage); (b) $F s=02$; (c) $F s=03$; (d)
$F s=04$; (e) $F s=05$ and; (f) $F s=06$ (End of Folding Stage)
Figure 4.150 Appearance of Geometrical shapes for Origami Models 358
under Category C and D with Similarity as Dome Surface Structure
Figure 4.151 Maximum Resultant Displacement (RSLT) of SSCFL with 361 geometry corresponding to different folding stage of Model C11
Figure 4.152 Displacement Contour Diagrams for SSCFL (Model C11) 363
with Different Surface Geometry: (a) $F s=01$ (Start of Folding Stage); (b) $F s=02$ and; (c) $F s=03$ (End of Folding Stage)
Figure 4.153 Sectional Cut between Two-supports ($A-A^{\prime}$) of SSCFL 364 (Model C11)
Figure 4.154 Resultant Displacement for the Cutting Section between 364 Two-supports for SSCFL (Model C11)
Figure 4.155 Sectional Cut between Two Non-supporting Points ($B-B^{\prime}$) 365 of SSCFL (Model C11)
Figure 4.156 Resultant Displacement for the Cutting Section between 365
Two Non-supporting Points for SSCFL (Model C11)
Figure 4.157 Maximum Resultant Displacement (RSLT) with respects to 366 the Stage of Folding for SSCFL (Model C12)
Figure 4.158 Displacement Contour Diagrams for SSCFL Model C12 368with Different Surface Geometry: (a) $F s=01$ (Start ofFolding Stage); (b) $F s=02$ and; (c) $F s=03$; (d) $F s=04$; (e)$F s=05$ and; (f) $F s=06$ (End of Folding Stage)
Figure 4.159 Sectional Cut between Two-supports ($A-A^{\prime}$) of SSCFL 369
(Model C12)
Figure 4.160 Resultant Displacement for the Cutting Section between 369 Two-supports for SSCFL (Model C12)
Figure 4.161 Sectional Cut between Two Non-supporting Points ($B-B^{\prime}$) 370 of SSCFL (Model C12)
Figure 4.162 Resultant Displacement for the Cutting Section between 370
Two Non-supporting Points for SSCFL (Model C12)
Figure 4.163 Maximum Resultant Displacement (RSLT) in SSCFL 371
(Model D13) models
Figure 4.164 Displacement Contour Diagrams for SSCFL (Model D13) 373 with Different Surface Geometry: (a) $F s=01$ (Start of Folding Stage); (b) $F s=02$ and; (c) $F s=03$; (d) $F s=04$; (e) $F s=05$ and; (f) $F s=06$ (End of Folding Stage)
Figure 4.165 Sectional Cut between Two-supports ($A-A^{\prime}$) of SSCFL 374 (Model D13)
Figure 4.166 Resultant Displacement for the Cutting Section between 374 Two-supports for SSCFL (Model D13)
Figure 4.167 Sectional Cut between Two Non-supporting Points ($B-B^{\prime}$) 375 of SSCFL (Model D13)
Figure 4.168 Resultant Displacement for the Cutting Section between 375 Two Non-supporting Points for SSCFL (Model D13)

LIST OF ABBREVIATIONS

CAD	Computer-aid design
DAVID SLS-1	DAVID Structured Lighted System version 1
DLG	Double layer grid
DWG	Drawing format file for storing 2-D to 3-D design data
DXF	Drawing exchange format for CAD based system
ESPI	Electronic speckle pattern interferometry
FEM	Finite element modeling
ICM	Image capturing method
LUSAS	Advanced 3-D mesh processing software system
MESHLAB	Non-uniform rational B-spline
NURB	Object file format for definition of 3-D geometry
OBJ	Quadrilateral semiloof curved thin shell element
QSL8	Reverse engineering
RE	Resultant
RSLT	Single layer grid
SLG	Structured light method
SLM	Special function of line defined piecewise by polynomials
SPLINE	Shell structure with curved fold lines
SSCFL	

LIST OF SYMBOLS

A_{C}	Percentage area of coverage within the boundary lines of origami model
C_{s}	Camera positioned at side from object for image capturing
C_{T}	Camera positioned at top from object for image capturing
f_{c}	Characteristic compressive strength
F_{d}	Folding distance
${ }^{f}$ Fs	Final folding stage
${ }^{\text {fi }}$ Fs	First intermediate folding stage
F_{S}	Folding stage
f_{s}	Shear strength capacity
f_{t}	Tensile strength capacity
Gn	Numbering sequence for grid lines
H_{B}	Maximum height measured at boundary of origami model
H_{C}	Maximum height measured at center of origami model
H_{M}	Maximum height measured at mountain fold line of origami model
$H_{M B}$	Height of mountain fold at boundary
$H_{M C}$	Height of mountain fold at the center
H_{V}	Maximum height measured at valley fold line of origami model
$H_{V C}$	Height of valley fold at center
${ }^{i} F s$	Intermediate folding stage
l	Length between two supports of origami model
ℓ_{B}	Maximum length measured between boundary lines of origami model
ℓ_{M}	Maximum length measured between ends of mountain fold lines of origami model

$\ell_{M F}$	Length from center to the end of mountain fold
ℓ_{V}	Maximum length measured between ends of valley fold lines of origami model
Mall	Allowable moment resultant
MF	Mountain fold
M_{x}	Moment resultant per unit width of thin shell element in local Cartesian system of x direction
$M_{x y}$	Twisting moment resultant per unit width of thin shell element in local Cartesian system of $x y$ plane
M_{y}	Moment resultant per unit width of thin shell element in local Cartesian system of x direction
$N_{\text {all }}$	Allowable stress resultant
N_{x}	Stress resultant per unit width of thin shell element in local Cartesian system of x direction
$N_{x y}$	Stress resultant per unit width of thin shell element in local Cartesian system of $x y$ plane
N_{y}	Stress resultant per unit width of thin shell element in local Cartesian system of y direction
O_{S}	Optical projector positioned at side from object for scanning
O_{T}	Optical projector positioned at top from object for scanning
T	Thickness of shell surface
VF	Valley fold
θ_{B}	Angle of rotation measured between ends of boundary lines with respect to original alignment
θ_{C}	Angle of rotation measured at center of origami model with respect to original alignment
θ_{M}	Angle of rotation measured between ends of mountain fold lines with respect to original alignment
θ_{V}	Angle of rotation measured between ends of valley fold lines with respect to original alignment
σ	Nominal stress
$\sigma_{\text {all }}$	Allowable stress

STRUKTUR LIPAT BERASASKAN KONSEP ORIGAMI DENGAN GARIS LIPAT MELENGKUNG

Abstract

ABSTRAK

Origami dengan garis lipat melengkung mempunyai ciri-ciri permukaan melengkung yang dirangkumi oleh garis lipat melengkung yang boleh digunakan secara bermanfaat sebagai struktur lipat. Walau bagaimanapun, potensi penggunaan origami dengan garis lipat melengkung didapati tidak banyak dikaji kerana proses melipat yang kompleks dengan pelbagai susun atur dan konfigurasi garis lipat melengkung. Kajian ini dijalankan untuk menyiasat ciri-ciri proses lipatan origami dengan garis lipat melengkung. Kesan geometri permukaan origami dengan garis lipat melengkung pada peringkat lipatan yang berlainan ke atas tingkah-laku struktur kekerang dengan garis lipat melengkung (SSCFL) juga ditentukan. Satu set kriteria telah dibangunkan dalam mengklasifikasikan origami dengan garis lipat melengkung yang dicipta oleh ramai penyelidik atau ahli sains origami dan digunakan dalam klasifikasi 51 model origami kepada 11 kumpulan. Daripada 51 model, sejumlah 13 model origami yang berpotensi untuk digunakan sebagai struktur lipat telah dipilih dan dikumpulkan semula ke dalam empat kategori utama seperti berikut: Non-inflated n Degree-n Vertices (kategori A), Inflated n Degree-n Vertices (kategori B), n Curve Mountain Ridge (kategori C), dan Bentuk kompleks (kategori D). Perolehan data permukaan 3-D dengan teknik pengukuran imej tanpa sentuh seperti kaedah penangkapan imej dan kaedah cahaya berstruktur, digunakan untuk mendapatkan model geometri origami dengan lipatan melengkung yang tepat. Prosedur berasaskan CAD dalam penjanaan model geometri origami 3-D dengan garis lipat melengkung telah dibangunkan. Mekanisme lipatan berdasarkan penilaian ke atas set pengukuran atau parameter yang mewakili perubahan

geometri permukaan model origami semasa proses lipatan telah dikaji. Daripada hasil pengukuran, didapati proses lipatan origami di bawah kategori A dan B diiringi dengan ubahbentuk berputar terhadap pusat model. Tiada ubah bentuk berputar diperhatikan dalam proses lipatan origami di bawah kategori C dan D . Model di bawah kategori C (n Curve Mountain Ridge) khususnya C10 menunjukkan perubahan terbesar dalam ketinggian maksimum di pusat model, dan pengurangan terbesar dalam saiz pelan origami semasa proses lipatan. Sementara itu, perubahan geometri dari segi sudut putaran maksimum di pusat dan penjuru model origami didapati berlaku dalam Model B06 di bawah kategori B (Inflated n Degree-n Vertices). Perubahan maksimum ketinggian di sempadan didapati berlaku dalam Model B04. Satu siri model SSCFL dengan geometri permukaan model origami masing-masing di peringkat lipatan yang berbeza telah dihasilkan. SSCFL ini adalah 100 kali ganda saiz model origami masingmasing dengan ketebalan permukaan 200 mm (permukaan keseluruhan) dan 250 mm (di kawasan sokongan). SSCFL dikenakan sokongan garis dan dimodelkan menggunakan konkrit kekuatan normal. Keputusan analisis elemen terhad di bawah keadaan berat sendiri menunjukkan bahawa model SSCFL di bawah kategori C (khususnya geometri permukaan yang berkaitan dengan C 11 dan C 12) dan kategori D (D13) memenuhi had tegasan atas sebab kemiripannya dengan struktur kubah. Sebaliknya, model SSCFL di bawah kategori A dan B gagal memenuhi had tegasan kerana sifat geometri permukaan yang tidak simetri dan kewujudan sempadan struktur dengan panjang terjulur yang agak besar. Model SSCFL didapati menunjukkan prestasi yang cemerlang dari segi kekukuhan atas sebab wujudnya lipatan melengkung yang meningkatkan kedalaman efektif struktur yang berkesan.

FOLDABLE STRUCTURE BASED ON ORIGAMI WITH CURVED FOLD LINES CONCEPT

Abstract

Origami with curved fold lines possesses characteristic feature of curved surface bounded by curved fold lines which can be advantageously adopted for foldable structures. However, potential use of origami with curved fold lines has not been much studied due to complexity of the folding process under many different possible layouts and configurations of curved fold lines. This study is carried out to investigate the characteristics of the folding process of origami with curved fold lines. Effect of surface geometry at different folding stage of origami with curved fold lines on structural behaviour of shell structure with curved fold lines (SSCFL) was also determined. A set of criteria in classifying origami with curved fold lines created by many researchers or origami scientist has been established and used in the classification of 51 origami models into 11 groups. From the 51 models, 13 number of origami models with potential application as foldable structures have been chosen and regrouped into the following four main categories: Non-inflated n Degree- n Vertices (category A), Inflated n Degree- n Vertices (category B), n Mountain Ridge Curve (category C), and the Complex Shape (category D). 3-D surface data acquisition using optical non-contact measuring techniques of image capturing method and structured light method were used to obtain an accurate geometrical model of origami with curved folds. CAD based procedures in generating 3-D geometrical model of origami with curved fold lines have been developed. The folding mechanism based on the evaluation of a set of measurement or parameter representing change in surface geometry of the origami models during the folding process has been studied. From the results of

measurements, it is found that folding process of origami under categories A and B is accompanied by twisting deformation about the center of the model. No twisting deformation is observed in folding process of origami under categories C and D . Models under category C (n Mountain Ridge Curve) specifically C10 shows the largest change in maximum height at center of model, and largest reduction in plan area of origami during folding process. Meanwhile, change in geometry in term of maximum angle of rotation of the center and boundary of origami model is found to occur in Model B06 under category B (Inflated n Degree- n Vertices). The maximum change in height at boundary is found to occur in Model B04. A series of SSCFL models with surface geometry of the respective origami model at different folding stage have been generated. These SSCFL are 100 times scaled up models of respective origami model with surface thickness of 200 mm (overall surface) and 250 mm (at support regions). The SSCFL were assigned with line supports and modelled using normal strength concrete. Results of finite element analysis under self-weight show that SSCFL models under category C (specifically surface geometry associated with C11 and C12) and category D (D13) satisfy stress limit due to their resemblance to dome structure. On the other hand, SSCFL models under categories A and B failed to satisfy stress limit due to unsymmetrical nature of the surface geometry and existence of free boundary of structure with relatively large overhang length. SSCFL models were found to exhibit superior performance in terms of stiffness due to existence of curved folds which increases the effective depth of the structure.

CHAPTER ONE

INTRODUCTION

1.1 General

Nowadays, most large span roof structural systems are concerned not only the protection from weather effect but also economy by minimizing costs within the constraints of functional and aesthetic requirements. Designers thus try to search new forms such as shell and folded plate structures that can resist loads more efficiently than when the structure is designed in conventional form using slab and beam. For covering a given area by a roof, conventionally, as column spacing becomes larger, the sizes of beams increase, thereby making the structure uneconomical and aesthetically unpleasing. Alternatively, to cover the same area, a curved surface or folded surface can be conceived that carries the loads mainly in direct tension or compression, rather than in bending and shear as in the case of slab and beam structures. Even with a relative small thickness, shell and folded plate structures can sustain more loads over large column-free areas with a minimum deflection.

Over the last few decades, advancements in the structural analysis domain and computational tools enable engineers to satisfactorily analyze and build folded shells not just in various types and forms, but also as a foldable surface structure by folding or retracting the surface to transform size or dimension upon necessity of functions of venue requirement. Foldability of surface structures with wide variety of shapes and breathtaking elegance can be seen in origami. The available of advancement in technology nowadays allows design and construction of long spanning roof structural
system infused with surface geometry inspired by the concept of origami. Furthermore, the kinematic characteristic of origami allows a flat piece of paper to transform from initial 2-D flat surface (open-stage) into 3-D geometry (closed-stage) via the process of folding. Thence, the uniqueness of origami with the properties of thin folding paper (equivalent to folded plate structure) and geometrical transform during folding process (equivalent to foldable structures) could be adopted as a new design for large spanning roof structure.

1.2 Background of Study

Long span roof surface structures are generally constructed with column-free internal space with span between supports of more than 12 meters in length (Chang and Swenson, 2017, Lisantono and Arfiadi, 2013, Roof, 2017, Beams, 2017, Munch Andersen and Dietsch, 2011). High tensile strength materials which are thin and light are typically the choice in fabricating this structural system, making it flexible in term of geometry changes and during process of erection and dismantle, which subsequently reduce sub-structural costs and construction time. Examples of large span structural system commonly found in wide range of application are stadia, gymnasiums, arenas, factories, warehouses, malls, agricultural buildings, and coverage for swimming polls. The structural system are typically classified into five major groups of structural forms: space structures, cable structures, membrane structures, hybrid structures and convertible roofs (Majowiecki, 2005) as illustrated in Figure 1.1.

Forms of Long Span Structural System

Figure 1.1- Typologies for the Forms of Long Span Roof Structural System

Space structures normally refer to a space frame in the form of a truss-like, lightweight rigid structure constructed from interlocking struts in a geometrical pattern such as single or multilayers of grid structures. Dome space structure is one the typical example of structure form under this category. Figure 1.2(a) shows one of the two biggest wooden dome to cover the bunkers of the "Federico II" Enel power plant in Brindisi by Holzbau (2015). The dome building was built with clear span of 143 meters in diameter and 50 meters in total height. Besides, space shell and folded plate
structures are constructed by assembling small units of shell in which its thickness is small compared to the other dimensions. This allows its surface to be built in curved geometry with either single curvature or multi curvature.

Secondly, cable structures are those where the main elements that support the load, such as wires, cables, chains, and nets, are subjected only to tensile forces. Typical example of cable structures are bridges and roofs in which its plane or horizontal structures are fastened to supports by a series of wires. Figure 1.2(b) shows the Penang Second Bridge in Malaysia built by using cable stayed structural system with longest span between supports of 240 meters length which completed in year 2014 (Yadollahi et al., 2015).

For third, membrane structures are one of the long span structural system that made out of tensioned membrane or fabric materials such as PTFE glass and PVC polyester which are extremely strong in tension. The structural use of the membrane is divided into prestressed anticlastic membrane and pneumatic membrane. A famous example of successful application of membrane structural system is Beijing National Aquatics Center or called as The Water Cube in Beijing, China for the use of Olympics 2008 as shown in Figure 1.2(c). The tension fabric used in the structure is ETFE membrane with 0.2 mm in total thickness (Edmondson, 2012).

Next, hybrid structures are another advanced structural system that combine use of an isolated components in compression inside a net of continuous tensile properties of cables, in such a way that the compressed members (usually bars or struts) do not touch each other and the prestressed tensioned members (usually cables or tendons) delineate
the system spatially (Jáuregui, 2010). Typical example of the structural systems are tensegrity and beam-cable. La Plata Stadium (Figure 1.2(d)) in Buenos Aires, Argentina is one of the most successful hybrid roofing structure which opened in 2003 (Wiki, 2017).

Lastly, convertible roof or called foldable roof is another choice of roof structural system. It allows the roof surface to be retractable or foldable for transforming an indoor space into an outdoor environment. A folding mechanism is designed for the specific type of convertible structure. Figure 1.2(e) shows a multi-purpose retractable roof stadium of the Mercedes-Benz Stadium in Atlanta, Georgia which was just opened in August 2017. It is designed with 8 triangular rigid-translucent-panels retractable by sliding of pinwheel to create a folding mechanism for opening the roof centrifugally towards the outside perimeters of the roof structure (Mercedes-Benz, 2017).

(a) Geodesic Dome Structures in Brindisi, Italy

(b) Penang Second Bridge in Pulau Pinang, Malaysia

Figure 1.2- Successful Application of Long Span Structural System: (a) Space Structure (Holzbau, 2015); (b) Cable Structure (Fauzi, 2012); (c) Membrane Structure (Cube, 2016); (d) Hybrid Structure (Wiki, 2017); and (e) Convertible Structure (Mercedes-Benz, 2017)

Figure 1.2- Continued

1.2.1 Roof Structures with Folded Shell System

With the combination of thin surface structure of shell elements and strength enhancement feature along with the folded system, a kind of roof structure system called the fold shell possess structural similarities with origami. There are many application of this kind of structural system which have successfully been built.

In the year 1955, Royan Central Market in Nouvelle-Aquitaine, France (Figure 1.3(a)) is constructed in the form of multi-layer conoidal shape extruded from the center of the structure which create folding effect along its perimeter of the hall (Janberg, 1998b).

The span of the thin folded shell is in 52.4 m and height up to 10.5 m with just 8.0 cm
of its thickness (Tourisme, 2015).

The corrugated concrete dome of State Farm Center (Figure 1.3(b)) is another application of the concept of long span folded shell structure. The shape of surface takes the form of branching triangular folds with a span of around 122.7 m (Janberg, 1998a). In the same year, TWA Flight Center at New York of USA (Figure 1.3(c)) was built with concrete shell (Jen, 2011).

Miami Marine Stadium in Florida, United States built in 1963 (Figure 1.3(d)) is a dedicated example of roof structural system design in the form of folded shell. The geometrical shape of a single panel is in the hyperbolic paraboloid cantilevering shell which folded at the center along the support. It was considered as one of the longest span of cantilevered concrete folded shell structure in the world at the time it was built (Candela, 2008, Adriaenssens et al., 2014).

In 1973, a double curvature thin shell structural building called the Sydney Opera House was constructed in Sydney, Australia (Figure 1.3(e)). Prestressed concrete material was used for the long span length of up to 183 m (Janberg, 2006).

Another multi-conoidal thin folded thin shell structural form that was built in 2013 is L'Oceanogràfic Marine Complex in Valencia, Spain (Figure 1.3(f)) which is the largest complex of its type in Europe with total surface coverage of up to $110,000 \mathrm{~m}^{2}$. The length of span of shell between supports is 35.5 m with the shell thickness of just 6 cm (Janberg, 2007).

Lastly, the most recent long span roof structure that in the form system of folded shell is the Kauffman Center for the Performing Arts in Missouri, United States (Figure $1.3(\mathrm{~g})$). Design of the roof consists of two symmetrical half shells in vertical alignment. Repetitive of scaling down the circular half shell surface creates an folded effect of the entire roof system (Arts, 2017, contributors, 2017c).

(a) Royan Central Market in Nouvelle-Aquitaine, France (Tourisme, 2015)

(b) State Farm Center in Illinois, USA (Dori, 2003, Benkrut, 2013)

(c) Trans World Flight Center in New York, United State (Avdeev, 2015)

Figure 1.3- Some Applications of Folded Shell Structures

(d) Miami Marine Stadium in Florida, United States (Candela, 2008)

(e) Sydney Opera House in Bennelong Point, Sydney (Janberg, 2006)

(f) L'Oceanogràfic Marine Complex in Valencia, Spain (Janberg, 2007)

(g) Kauffman Center in Missouri, United States (Husley, 2011)

Figure 1.3- Continued

1.2.2 Roof Structures with Foldable Design

Foldable surface is one of the main characteristic of origami, with the capability to transforming from a flat surface (open-stage) to a 3-D geometry of retracted or stowed form (closed-stage). The foldable or retractable structures are also called as kinetic architectural structures.

Dated back to the year of 1961, Civic Arena (Figure 1.4(a)) was the first retractable roof major-sports venue in the world with coverage area of $15,794 \mathrm{~m}^{2}$. The dome shaped roof was designed with eight individual panels. Six out of them are capable to retract by folding beneath adjacent panels along the perimeter of the dome (contributors, 2017a, Hockey, 1999).

For facilitating the international event of 1976 Summer Olympics in Canada, a stadium with retractable roof structure named the Montreal Olympic Stadium was constructed (Figure 1.4(b)). It was designed with a cantilever tower that could retract a series of cables holding the roof membrane for transforming it to indoor or outdoor field. The roof membrane retractable structure could cover area up to $5,500 \mathrm{~m}^{2}$ (Baseball, 2001, contributors, 2017e, Janberg, 2003).

Umbrella-type structures are another example of pivotal folding system that retracts surface with centric configuration, such as the $17 \mathrm{~m} \times 18 \mathrm{~m}$ large automatically controlled umbrellas proposed in 1992 by SL-Rasch GmbH (Rasch, 1980) for the courts of the Prophet's Holy Mosque in Madinah (Stevenson, 2011) as shown in Figure 1.4(c). Tension fabric material of PTFE membrane was used to form bell-shaped roof
system when it is in open stage (MakMax, 2016, Soto, 2017).

In the year of 1999, Jaén Auditorium a retractable roof structure in Spain is constructed based on the principle of linkage bars and scissor system (Figure 1.4(d)). It is built with a series of steel arches that could folds by translating horizontally over a rail in which have the tensioned fabric between them to achieve a practical deployment process that fits together the structure and the enclosure while temporarily covers a specific area (Escrig, 1999, Torres, 2013).

The retractable roof of Minute Maid Park in Texas, USA (Figure 1.4(e)) could cover the field with longest span of 132.6 m in length (Smith and Andorka, 2001). Three roof panels are controlled by electro-mechanical drive system to trigger parallel-slide of folding motion along flat crane rails (Riberich, 2000).

Another pivot controlled system of fan-shaped convertible roof structured studio called the Miller Park is constructed was 2001 (Figure 1.4(f)). The total span of 183 m in length of retractable roof which consists of five movable panels that could open and close simultaneously in sweeping manner by rolling along the periphery of heavy wheel (contributors, 2017d, George, 2011, Moser, 2001, Janberg, 2001).

(a) Civic Arena in Pittsburgh, Pennsylvania (Cojo, 2017, Jensen, 2015)

(b) Montreal Olympic Stadium in Quebec, Canada (archINFORM, 2017, Martes, 2013)

(c) Umbrellas for the Piazza of the Prophet's Holy Mosque, Medina (Soto, 2017)

Figure 1.4- Some Applications of Foldable Roof Structures

(d) Jaén Auditorium in Jaén, Spain (Escrig, 1999)

(e) Minute Maid Park Roof in Texas, USA (Riberich, 2000, Smith and Andorka, 2001)

(f) Miller Park in Wisconsin, USA (George, 2011, Moser, 2001)

Figure 1.4- Continued

1.3 Structures Inspired from the Geometry of Origami

Origami or folding paper is a traditional cultural of ancient Chinese and Japanese art of folding paper to represent real objects. Specifically, the word of "origami" comes from Japanese, it is the combination "ori" (root verb "oru") meaning to fold, and "kami" means for paper (Demaine and O'Rourke, 2007, contributors, 2017b). There are many attempts in classifying types of origami in the world by Center (2017), Origami (2017), Zhezhi and Gi (2017). In general, origami could be broadly classified into six type of folding patterns according to its folding technique and the geometrical requirement of the final output shapes (contributors, 2017f). They are the action origami, modular origami, wet-folding, pureland origami, origami tessellations, and kirigami, as illustrated in Figure 1.5.

Origami reveals a rich source of geometric shape for consideration with different type of origami formations. The beauty of paper folding lies in the result of a totally attractive piece of mathematical artwork which is created from a simple, flat sheet of paper by using almost all folds of corners, creases and edges. Due to the aesthetical value possessed to the idea or concept of geometry originated from origami are widely applied in various industrial fields. It ranges from small products such as electronic devices and micro-cellular tube in medication purposes; to large scaling projects such as auditorium, stadium, and solar panels in satellite.

Figure1.5- Type of origami

Forms of geometry created from origami patterns especially the origami tessellations, are nowadays extensively popular in the attempt to implement in large span roof or as foldable structures especially in the form of folded plate or shell. In this context, United States Air Force Academy Cadet Chapel (Figure 1.6(a)) and Yokohama Cruise Terminal in Japan (Figure 1.6(b)) are two well-known examples of shell buildings with folds in which the diagrams and structural relations of origami tessellations can be traced easily. For the Yokohama Cruise Terminal, it could be observed that the internal channel of the terminal is designed using the tessellation type of folding pattern from Yoshimuna technique to create a repetitive diamond effect (FOA, 2006, Mishima and Streeter, 2004).

Figure 1.6(c) shows the Automobile Museum in Nanjing (Figure 1.6(c)), which is inspired by kirigami being constructed in China. The design of the museum combines geometrical idea from spiral-cut of a piece of square paper together with foldings (Basulto, 2010). Besides, another foldable roofing structure that is also inspired by repetitive triangular panels of origami tessellations type called the Bengt Sjostrom Theatre in Rockford, Illinois was built in 2003 (Figure 1.6(d)) (Gang, 2009).

In the practice of architecture it is not surprising to see the impact of origami as a medium to generate different shell forms. Contemporary form is one of the foldable structures that currently being widely employed from the geometrical idea of origami tessellations. In 2008, a foldable artwork called "Packaged" designed by Miwa Takabayashi, which was exhibited in shopping center of Maidstone in Kent, United State (Figure 1.6(e)). It was designed to fold by joining a series of rigid cardboard in the form of tessellation. The artwork was erected in various shopping center as display (Takabayashi, 2009, SORGUÇ et al., 2009).

Another outstanding contemporary pavilion inspired from the origami tessellation of combining two units of "flower" module was designed and built by Tal Friedman in Detmold University, Germany (Figure 1.6(f)). The pavilion is made out of folding rigid aluminum boards. Although, the material used is very thin, it is fully self-supported without any sub-structures. Hence, from the structures inspired by the geometry of origami mentioned above, it could be used to show the potentials of origami as idea for exploring the new form of architectural design in constructing not just large span roofing system, but also for the kinematic requirements as foldable or retractable structures.

(a) United States Air Force Academy Cadet Chapel in Colorado Springs (contributors, 2017g, Harrington, 2017)

(b) Yokohama Cruise Terminal in Japan (Mishima and Streeter, 2004, FOA, 2006)

(c) Automobile Museum in Nanjing, China (Basulto, 2010)

Figure 1.6- Structures Inspired from Geometry of Origami

(d) Bengt Sjostrom Theatre in Rockford, Illinois (Gang, 2009)

(e) "Packaged" Artwork designed by Miwa Takabayashi in Kent, USA (Takabayashi, 2009, SORGUÇ et al., 2009)

(f) Two "Flower" Modules of Origami Pavilion designed by Tal Friedman in Detmold University, Germany (Friedman, 2016)

Figure 1.6- Continued

1.4 Justification of Research

Origami or paper folding is not only a great source of inspiration in architectural design, but also an effective medium for structural form finding because of the foldability characteristic of origami which is useful in the design of shell structure and also foldable or retractable structures. As mentioned earlier in the previous section, straight fold lines are traditionally used. Likewise, by altering the crease and making its configuration into one with curvature, the ordinary planar surface could become a complex 3-D form of which the surface geometry cannot be described easily by simple parameters such as vertex coordinates. Curved folding is a hybrid of curved folds and bending of a paper. The resulting surface is comprised of curved creases and smooth developable surface patches. Comparing with origami with straight fold lines of which the resulting surface consists of folding of rigid planar surface, origami with curved fold lines involves combination of smooth curved surface as a results of bending bounded by set of curved fold lines.

Origami with curved folds could be dated back to early of 1920's, when the teaching works by Josef Albers at Bauhaus was documented in photographs and presented as the first account of a specific curve creased model investigated by Adler (2004). Figure 1.7(a) shows one of the curve creased model that created by a series of concentric circles with alternating mountain and valley folds with a circular hole at the center. Similar features of the model was further explored and modified by Irene Schawinsky in 1944 (McPharlin, 1944) (Figure 1.7(b)), Thoki Yenn in 1989 (Yenn, 2001) (Figure 1.7(c)), and Kunihiko Kasahara in 2002 (Kasahara, 2002) (Figure 1.7(d)). Currently, Erik Demain, Martin Demain and Duks Koschitz are among the most active researches
that studying this form of curved crease models (Demaine et al., 2011b, Demaine et al., 1999, Koschitz et al., 2008).

Figure 1.7- Curve Creased Models: (a) by Josef Albers's students (Schlemmer et al., 1978); (b) by Irene Schawinsky (McPharlin, 1944); (c) by Thoki Yenn (Yenn, 2001); and (d) Kunihiko Kasahara (Kasahara, 2002)

In 1971, Ronald Resch was explored many irregular form of paper folding with curved creases (Resch, 1974). One of the sculpture that he created is called "The White Space Curve Fold with 3-fold Symmetry" as shown in Figure 1.8(a). During almost the same period of time, a mathematician and also a computer scientist, David Huffman, studied in creating paper folding with curve crease based on concept of degree and vertex (Huffman, 1976). Some examples of Huffman's creations are shown in Figure 1.8(b) to Figure 1.8(d) which was documented by Davis et al. (2013) and Demaine et al. (2011a).

Figure 1.8- Curve Creased Models: (a) "The White Space Curve Fold with 3fold Symmetry" by Ronald Resch (Resch, 1974); (b) Two Degree-2 Vertices;
(c) Non-Inflated Degree-4 Vertex; and (d) "Hexagonal column with cusps" by Huffman (Demaine et al., 2011a)

Another new forms of geometry based on mountain ridged curve folds of origami models were developed by Professor Yoshinobu Miyamoto in 2008 (Miyamoto, 2008, Miyamoto, 2014) as shown in Figure 1.9. In the same year, Kilian et al. (2008) introduced new approach in design and reconstruction of many complex and unexplored origami with curved folds. Apart from the above works on origami with curved fold lines, there were many origami sculptures with curved folds which are created as a contemporary artworks. Most of them are published in webpage for kind of hobby and entertainment, such as those by Chapman-Bell (2010), dimensionaut (2010), Scudellari (2010), Symeonidou (2010a), and Hofmann (2010). Figure 1.10 shows a full picture of historical development of research works in the context of form finding in origami with curved fold lines.

Figure 1.9- Two Examples of origami models with Mountain Ridged Curve Folds by Yoshinobu Miyamoto (Miyamoto, 2008)

A comprehensive exploration on different types of geometrical forms of origami with curved fold lines with different variety of combination of creases and folding patterns has been represented. However, curved folding is still a relatively underexplored topic, when it comes to the aspect of structural application in the discipline of architectural. Therefore, in this research, one of the main goal of the study is to evaluate and identity origami with curved fold lines which possess potential as foldable surface structure. For example, one of Huffman's origami model (Figure 1.11) can be folded (into closed stage) and unfolded (back to open stage), when a gentle force by hands is applied from the corners between folds and boundary of the paper.

1.5 Problem Statement

Origami with straight fold lines typically consists of oblique surface geometry limited with rigid and flat sub-surfaces accompanied with kinking joints. On the other hand, origami with curved fold lines provide instead a three-dimensional smooth curved surface globally where each sub-surfaces between folding joints are bendable. Unique feature of smooth surface geometry embodied in curve folding lines is found mainly in the form of contemporary artwork and creation for entertainment in the form of

Origami with Curved Fold Lines

Concentric Circles Folds in
Alternating Mountain and
Valley

Figure 1.10- The Development of Research Works in the Context of Form Finding in Origami with Curved Fold Lines

Figure 1.11- Folding Process of Origami Surface with Curved Fold Lines from initial opening-stage of (a) to final closed-stage of (d)
artistic sculptures (Chapman-Bell, 2011, dimensionaut, 2010, Hofmann, 2010, Högsbro, 2010, Miyamoto, 2008, Symeonidou, 2010). Some creations of origami with curved fold lines by pioneers such as Albers (1985) and Huffman (1976) can be used as basis to regenerate the models through preliminary study on the folding patterns and surface configurations (Demaine et al., 2011, Kilian et al., 2008, Koschitz et al., 2008). Unlimited or continuous shape transformation could be achieved with origami with curved fold lines (Schlemmer et al., 1978, McPharlin, 1944, Yenn, 2001, Kasahara, 2002). Although computational simulation on origami shape transformation has been extensively studied (Tachi, 2013, Cai et al., 2013, Schenk, 2009), it is only found within those under straight fold lines. However, in comparison with origami with straight fold lines, potential application of origami with curved fold lines as foldable structure has not attracted much attention. Difficulty in simulating the folding

