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PEMBANGUNAN PENDERIA MEMRISTOR BERASASKAN BENDALIR 

UNTUK APLIKASI BIO-PENDERIA 

ABSTRAK 

Diagnosis perubatan adalah bahagian penting dalam bidang perubatan. Pesakit 

biasanya perlu menunggu untuk suatu tempoh masa bagi mengesahkan sebarang 

jangkitan virus dengan melalui beberapa prosedur makmal piawai yang mengambil 

masa beberapa jam atau beberapa hari. Penghasilan penderia berasaskan bendalir 

dipercayai dapat menawarkan kaedah analisa jangkitan secara lebih cepat bagi tujuan 

pengesahan jangkitan virus dalam tempoh yang lebih singkat. Melihat daripada 

perspektif reka bentuk penderia, kawasan penderiaan tidak boleh dibiarkan terdedah 

kepada persekitaran kerana ia akan menyebabkan berlakunya penyejatan. Penghasilan 

penderia berasaskan bendalir mampu melindungi kawasan penderiaan dari 

persekitarannya dan dengan itu dapat mengelakkan penyejatan dan memberikan 

keputusan yang tepat. Kebanyakan penderia datang dalam struktur rumit, yang 

memerlukan proses fabrikasi yang kompleks. Penderia memristor yang dihasilkan 

dalam kajian ini mempunyai struktur yang ringkas dan dihasilkan menggunakan 

kaedah fabrikasi umum. Strukturnya yang mudah menjadikan penderia ini tidak 

mudah rosak dan mudah dikendalikan. Penderia memristor berasaskan bendalir yang 

dicadangkan dalam kajian ini menggunakan titanium dioksida sebagai bahan 

penderiaan, yang diapit di antara aluminium dan indium-tin-oksida sebagai elektrod 

atas dan bawah. Tiga struktur penderia telah direka bentuk dengan struktur ketiga 

menjadi struktur terakhir untuk penderiaan berasaskan bendalir. Struktur kedua dan 

ketiga mengandungi telaga untuk membolehkan cecair bertakung atau sebagai 

perangkap virus. Struktur pertama direka tanpa sebarang telaga dan digunakan bagi 
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mengesan beberapa cecair dari kumpulan pH yang berlainan. Hasil struktur pertama 

membantu pembangunan struktur kedua, dengan pembentukan telaga dan diuji dengan 

cecair yang mengandungi hidroksil ion. Hasil struktur kedua kemudian membantu 

pembangunan struktur ketiga yang direka untuk pelaksanaan penderiaan berasaskan 

bendalir yang digunakan untuk mengesan protein virus denggi NS1. Diameter telaga 

yang berbeza dari 0.5, 1.0, 1.5 dan 2.0 mm telah dihasilkan dan keupayaan pengesanan 

dikaji. Semua tiga struktur penderia memristor dicirikan dengan menggunakan kaedah 

pencirian arus-voltan dan pencirian imej. Daripada hasil pencirian arus-voltan, nisbah 

rintangan tutup-buka dikeluarkan, dan keupayaan penderiaan dikenalpasti. Struktur 

kedua diuji dengan empat kepekatan cecair D-glukosa, dan keputusan menunjukkan 

penderia yang dihasilkan menggunakan kaedah berputar sol-gel merekodkan kepekaan 

120.65 (mM)-1 berbanding dengan kaedah percikan yang hanya mencatatkan kepekaan 

0.035 (mM)-1. Bacaan kepekatan yang dicatatkan oleh kaedah berputar sol-gel 

menentukan kaedah pemendapan yang digunakan untuk menghasilkan penderia 

memristor struktur ketiga. Struktur ketiga kemudiannya diuji dengan empat kepekatan 

protein virus denggi NS1 dan penderia dengan diameter telaga 2.0 mm mencatatkan 

tingkah laku penderia memristor terbaik dengan kepekaan 0.0082 (nM)-1, berbanding 

dengan diameter yang lebih kecil. Penderia memristor berasaskan bendalir dapat 

mengesan protein virus denggi NS1 dan sesuai untuk aplikasi bio-penderia. 

 

 

 

 

 



xx 
 

DEVELOPMENT OF FLUIDIC-BASED MEMRISTOR SENSOR FOR BIO-

SENSING APPLICATION 

ABSTRACT 

Medical diagnosis is a crucial part of the medical field. The patient is usually 

required to wait for a period of time to confirm any virus infection by going through 

some standard laboratory procedures that require several hours or days. It is believed 

that fluidic-based implementation can provide fast analytical judgement on the virus 

infection, with short confirmation period. Looking from a sensor design perspective, 

the sensing area of liquid sensor cannot be exposed to its surroundings because it will 

cause evaporation. The fluidic-based implementation covers the sensing area from its 

surroundings and thus can avoid evaporation and provides an accurate result. Most of 

the sensor comes in a complicated structure, which requires a complex fabrication 

process. The developed memristor sensor is simple in structure and is fabricated using 

general fabrication method.  Its simple structure makes this sensor more robust and 

easy to handle.  The fluidic-based memristor sensor proposed in this study used 

titanium dioxide as the sensing material which sandwiched between Aluminium and 

Indium-Tin-Oxide as top and bottom electrodes. Three sensor structures have been 

designed with the third structure become the final fluidic-based structure. The second 

and third structures contain wells to allow more liquid to stay or as virus entrapment. 

The first structure was designed without any wells and applied with different pH group 

liquids. The result of the first structure assisted the development of the second 

structure, with the formation of wells and applied with liquid containing hydroxyl ion. 

The result of the second structure then assisted the development of the third structure 

and applied for dengue virus NS1 glycoprotein detection. Different wells diameters of 
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0.5, 1.0, 1.5 and 2.0 mm were fabricated for the third structure and the detection 

capabilities were investigated. All the three structure memristor sensors were 

characterized using current-voltage and image characterization methods. From the 

current-voltage characterization result, the off-on resistance ratio is extracted, and the 

sensing capability is determined. The second structure applied with four D-glucose 

concentrations, and the results show that sol-gel spin coating method recorded the 

highest sensitivity of 120.65 (mM)-1 compared to sputtering method with the recorded 

sensitivity is only 0.035 (mM)-1. The sensitivity measurement recorded by the sol-gel 

spin coating method assists the decision for the deposition method for the third 

structure memristor sensor. The third structure was then applied with four dengue virus 

NS1 glycoprotein concentrations and the sensor with a well diameter of 2.0 mm 

recorded the strongest memristive behaviour with a sensitivity of 0.0082 (nM)-1, 

compared with another smaller diameter. The fluidic-based memristor sensor is able 

to detect dengue virus NS1 protein and suitable for bio-sensing application.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Research Background 

In electronics history there are three basic passive elements commonly used 

which are resistors, inductors, and capacitors.  In 1971, an engineer from the 

University of Berkeley, Leon O. Chua, predicted the existence of a new passive 

element, which is called a memristor. The word memristor comes from the words 

“memory resistor”. The memristor is classified as another passive element with two 

terminals (the same as the resistor) which maintains a functional relationship between 

the time integrals of current and voltage. It is a memory resistor which functions as an 

information storage device. Chua predicted that the memristor would become the 

fourth passive element (Chua, 1971). 

A physical model of the memristor was revealed by Hewlett-Packard (HP) in 

2008 (Strukov et al., 2008). The model consists of a thin film semiconductor 

sandwiched between two plate metal electrodes (Strukov et al., 2008). The 

semiconductor material used by HP is titanium dioxide (TiO2), and the metal electrode 

material used is platinum (Pt) (Williams, 2008). The TiO2 is fabricated in two layers, 

one layer of perfect TiO2 and one layer of TiO2 with oxygen vacancies (Williams, 

2008). Other semiconductor materials that show memristive behaviour are Si (Carrara 

et al., 2012, Puppo et al., 2014b) and ZnO (Chew and Li, 2013). Aluminium (Tedesco 

et al., 2012, Gale et al., 2012) and gold (Prodromakis et al., 2010) are also used as 

metal electrode materials due to their high conductivity.  

Nowadays, many researchers are working on memristor designs for various 

applications. The fields that have been investigated include: memory (Ho et al., 2009, 

Zidan et al., 2013, Duan et al., 2014, Hu et al., 2012); photocatalytic (Sun et al., 2008); 
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neuromorphic systems (Jo et al., 2010); FPGAs (Chong and Xiao, 2011); computing 

(Joshua et al., 2012); and bio-sensing (Chen et al., 2010, Wang et al., 2010, Carrara et 

al., 2012, Sacchetto et al., 2011). Among those listed, memory application seems to 

have the largest potential compared with the others due to the device’s ability to 

remember the past. This has been proven by just examining the large amount of 

research that has been produced in this field. Other than this, the bio-sensing 

application also offers a great future due to its stable sensing mechanism in memory 

application.  

In 2012, memristor was invented as silicon nano-wire memristor bio-sensor by 

Carrara et al. applied in dry condition bio-detection (Carrara et al., 2012).  Two years 

later, Puppo et al. developed a the same structure of silicon nano-wire memristor 

sensor for the dry condition bio-molecules detection (Carrara et al., 2012, Puppo et al., 

2014b). For the two sensors, the sensing process takes more than one hour to do this 

process, which includes incubating, washing, and drying processes (Puppo et al., 

2014b, Carrara et al., 2012). For the silicon nano-wire, the fabrication process involved 

to produce it is quite complicated which involved a lot of processes which will be 

discussed in Chapter Two.  

In this thesis, a simple fluidic-based structure memristor sensor was developed 

to be applied for dengue virus Non-Structural 1 (NS1) protein detection. The dengue 

virus NS1 was chosen due to the early symptom detection inside human blood. NS1 

can be detected as early on as day one of the infection, compared to Immunoglobulin 

M (IgM) and Immunoglobulin G (IgG) (WHO, 2009).  IgM and IgG symptoms only 

can be detected in human blood as early on day four of the infection. This memristor 

sensor was applied in a fluidic-based platform which is suitable for human blood.  



3 
 

1.2 Problem Statements 

Three main problems of dengue virus detection and current memristor sensor 

design have been figured out. The studies are based on current dengue virus sensors 

and current memristor biosensors. 

No direct method can detect dengue virus NS1 in dengue virus infection 

confirmation 

Medical diagnosis is a crucial part of the medical field. Medical practitioners must do 

some investigations in order to confirm whether patients are infected by a certain virus 

or not. Some parts of the process require a long waiting time for the patient to get the 

confirmed result. The dengue virus, when infected into humans, cannot be detected 

directly; the patient must go through a standard laboratory procedure that involves a 

few processes which requires one to two days to confirm the infection (WHO, 2009). 

The fastest dengue detection so far is 30 minutes IgM detection,  inside human blood, 

using the rapid test IgM technique (WHO, 2009).  Although the detection time is 30 

minutes, IgM is a type of dengue symptom that can only be detected as early as the 

fourth day of infection. According to the World Health Organization (WHO), only 

dengue NS1 symptoms can be detected as early as the first day of infection (WHO, 

2009). Due to this problem, the development of a memristor sensor to detect the 

dengue virus NS1 protein within 30 minutes is proposed in this thesis. This proposed 

memristor sensor can help medical practitioners to detect the dengue virus inside 

human blood as early as 30 minutes on the first day of infection through human blood.  
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Silicon nanowire memristor sensors are difficult to fabricate and have low 

robustness 

The silicon nanowire memristor sensor, produced by previous researchers, has a 

complicated structure which is difficult to develop, and the nanometer size of the 

silicon nanowire makes it difficult to handle (Carrara et al., 2012, Puppo et al., 2014b). 

To obtain the silicon nanowire, the fabrication processes involve optical lithography 

with inductively coupled plasma (ICP) and isotropic ICP silicon etching, which are 

used to pattern the photoresist and to pattern the silicon nanowire, respectively. These 

two processes require a constant supply of carrier gas, which consequently increases 

the power consumption of the instrument. The rigid fabrication is due to the structure 

itself, which can easily break if applied with any force due to the small diameter of the 

nanowire, which is 600 nm. The sensor robustness is measured based on the handling 

capability whether easy to handle (high robustness) or difficult to handle (low 

robustness). Because of the small wire diameter, the sensor is difficult to handle, 

making it having a low robustness. Thus, the development of a new proposed 

memristor sensor structure, which is fabricated through a lift-off fabrication technique, 

provides a less complex fabrication process using common instruments such as 

ultraviolet exposure and deposition instruments. The proposed device also provides 

easy handling with a high robustness. 

Current silicon nanowire memristor sensors are not integrated with a micro 

chamber which can cause sample evaporation 

Bio-sensors usually sense liquid such as blood, urine, saliva, and others. When a liquid 

sample is placed or dispensed to the sensing surface there is a possibility that the liquid 

sample may evaporate (the process which the liquid turn to vapor when expose to air 
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for some period) (Oxford, 2012).  The issue of media (liquid) evaporation was raised 

by Ettinger and Wittmann in their live-cell imaging studies (Ettinger and Wittmann, 

2014). Ettinger and Wittman suggested the use of a sealed chamber to avoid media 

evaporation. Other researchers in the same field, Dailey et al., proposed the use of a 

sandwich of cover slips with the liquid sample in the middle, therefore making it 

difficult for the liquid to evaporate (Dailey et al., 2011). The evaporation will change 

the behaviour of the liquid and thus produce an inaccurate output. The implementation 

of a sensing principle in a fluidic-based platform is believed to be able to avoid the 

sample evaporation. This is because the sensing surface is fully covered by the micro 

chamber made by Polydimethylsiloxane (PDMS). The sample is not directly exposed 

to its surroundings and thus sample evaporation can be avoided. 

1.3 Research Objectives 

The objectives of this research are summarized as follows: 

i. To design a simple structure fluidic-based bio sensor by implementing the 

memristor principle. 

ii. To fabricate the memristor structure integrated with a micro chamber PDMS 

iii. To investigate the memristive behaviour’s effect on the fluidic-based 

memristor sensor in hydroxyl ion liquid detection. 

iv. To characterize the memristive behaviour’s effect on the fluidic-based 

memristor sensor in dengue virus NS1 protein detection. 

1.4 Scope of Research 

In this research, the focus has been to study the suitablility of memristors to be 

used as bio-sensors implemented in fluidic based platform. The work includes 
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memristor sensor design, memristor sensor fabrication, and memristor sensor 

characterization. 

Three memristor structures have been fabricated, with the third structure 

becoming the final implemented fluidic-based memristor sensor structure for dengue 

NS1 detection. The material used as a sensing material is TiO2 and the electrode 

material used is Aluminium (Al). The first structure is the basic structure which was 

designed for the purpose of studying the ability of the TiO2 material in liquid sensing. 

The second structure was designed for the pupose of studying the effect of a wells 

toward the liquid detection, focussing on hydroxyl ion liquid detection. The third 

structure was designed for the purpose of implementing the sensor device  as a real 

fluidic-based memristor sensor, and the behavior of the sensor towards the dengue 

virus NS1 protein was studied.  

For the fabrication process, the TiO2 thin film layer is deposited using two 

methods of radio frequency (RF) sputtering and sol-gel spin coating. For the RF 

sputtering method, the effect on different thicknesses was studied for the first structure. 

The best thickness was selected for the second structure fabrication. For the spin 

coating method, the effect on different post-bake temperatures was studied, and the 

best temperature was selected for the second structure fabrication. The lift-off 

technique was applied to get the patterned TiO2. Patterning is very important in order 

to form a wells at the TiO2 thin film layer.  For the third structure, only the sol-gel spin 

coating method was used due to the high sensitivity recorded by the second structure 

of the spin coating method memristor. The third structure was then chemically 

modified with an anti-dengue virus NS1 glycoprotein monoclonal antibody before 

being presented with its ligand (NS1 glycoprotein).  
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The sensing capability of the memristor sensor was determined using two 

characterization methods of field emission scanning electron microscope (FESEM) 

and current-voltage (I-V) (using Keithly 4200 – semiconductor characterization 

system (SCS)). The FESEM was used to observe the surface morphology of the sensor 

and the SCS was used to obtained the graph of current versus voltage (I-V graph). Data 

from the I-V graph was then analyzed to get the off-on resistance ratio. The capability 

of the sensor is determined by the off-on resistance ratio. Different concentrations of 

the dengue virus NS1 protein were applied to the modified sensor in order to determine 

the sensitivity of the sensor. The sensitivity of the sensor is determined by the change 

of off-on resistance towards change in dengue virus concentrations.  

1.5 Thesis Organization 

This thesis is organized into five chapters. The content of each chapter is summarized 

as follows: 

Chapter One explains, in a brief introduction, the study, which includes 

research background, problem statements, research objectives, scope of research, and 

significance of research. 

Chapter Two provides an extensive review of memristor history, the 

memristive concept, and the use of memristors in bio-sensing applications. The 

common fabrication and characterization technique suitable for the memristor 

fabrication and characterization will also be reviewed in this chapter. 

In Chapter Three, all the methods used in this research, including memristor 

sensor structure, memristor sensor fabrication, sensing principles, and memristor 

sensor characterization are described in detail.  
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The results obtained from the research works are analysed and discussed in 

Chapter Four. Three memristor sensor structures are analysed and discussed in various 

conditions, including a sensor without a liquid sample, a sensor with different pH 

samples, a sensor with different hydroxyl ion liquid concentrations, and a sensor with 

different dengue virus NS1 protein concentrations.   

Finally, Chapter Five summarises the findings of this research. 

Recommendations for future work are also included in the chapter. 
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CHAPTER TWO 

CHAPTER 2                        LITERATURE REVIEW 
 

2.1 Introduction 

This chapter discusses an overview of the memristor and includes its history and 

theory, followed by a review on memristor application in bio-sensing areas. An 

overview of the TiO2 thin film fabrication method and patterning technique were also 

studied. A review of memristor characterization is also discussed. Finally, an overview 

of dengue virus and detection presented. All subtopics were addressed equally in order 

to come out with a new fluidic-based memristor sensor design for bio-sensing 

applications.  

2.2 Memristor History 

In electronics history, there are three basic passive elements commonly used, 

which are resistors, inductors, and capacitors. Inductors and capacitors have the ability 

to store energy for a certain period of time, which is determined by the time constant 

of the circuit, while resistors do not store energy. An overview of memristor history is 

summarized in Figure 2.1. The term “memristor” was introduced by an engineer from 

the University of Berkeley, Leon O. Chua, in 1971. Chua predicted the existence of a 

new element that he named a “memristor”, which is a contraction of the words 

“memory resistor” (Chua, 1971). Memristors are classified as another passive element 

with two terminals, the same as resistors, that maintain a functional relationship 

between the time integrals of current and voltage. It is a memory resistor which 

functions as an information storage device. Chua introduced the memristor as the 

fourth basic circuit element after resistors, inductors, and capacitors (Chua, 1971). 
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Chua was the first person to realize the existence of memristors, although there are 

some papers published before with the same behaviour as described by Chua, but from 

a different perception.   

In 1962, Hickmott discovered that hysteretic current-voltage was observable in 

many nano-scale metal-oxide-metal devices with an oxide thickness of between 15nm 

to 1000nm (Hickmott, 1962). About a decade after that, Dearnaley published a paper 

presenting the electrical phenomenon in amorphous oxide film (Dearnaley et al., 

1970). Dearnaley discovered that a thin layer of oxide films (10 nm – 2 µm) presented 

interesting electrical properties related to switching and memory phenomena. There 

are some other papers that have presented similar behaviours from different points of 

view (Waser and Aono, 2007, Scott and Bozano, 2007, Smits et al., 2005, Lai et al., 

2006, Jeong et al., 2007, Jameson et al., 2007). Most of the papers address the memory 

application. 

Leon O. Chua present mathematical 

relations for new device called as 

memristor

HP researcher invented the first physical 

memristor device

1
9
7
1

2
0
0
8

Unknown device with behavior similar 

to “memristor”

Increasing trend in number of papers related 

memristor study for various applications

 
Figure 2.1: History of the memristor device 
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The first physical model of the memristor that relates to Chua’s paper was 

revealed by Hewlett-Packard (HP) in 2008 (Strukov et al., 2008). Strukov et al. 

realized the relationship between nano-scale oxide thickness with Chua’s prediction 

about memristors, and successfully fabricated a memristor device using the nano-scale 

oxide thickness concept. The model consists of a thin film semiconductor sandwiched 

between two plate metal electrodes (Strukov et al., 2008). Strukov et al. claim that 

memristive behaviour is naturally present in the nanoscale system due to solid-state 

electronic and ionic transport formation under external bias.  

The semiconductor material used by  HP  is TiO2 and the metal electrode 

material is platinum (Williams, 2008). The TiO2 is fabricated in two layers; one layer 

of perfect TiO2 and another layer of TiO2 with oxygen vacancies, presented in Figure 

2.2 (Strukov et al., 2008). The layer of perfect TiO2 is labelled as “doped” and the 

layer of TiO2 with oxygen vacancies is labelled as “undoped”. The thickness of both 

layers is approximately 10 nm. 

The undoped layer is represented by a resistor with a resistance value of “off” 

resistance (ROFF), and the doped layer is represented by a resistor with a value of “on” 

resistance (RON). The simplified equivalent circuit for the memristor device is in a 

series connection between RON and ROFF, where the RON and ROFF depends on the TiO2 

thin film thickness, D, and the thickness of doped layer, w. 
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doped undoped

doped
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Figure 2.2: Structure of the memristor device by HP with a 

simplified equivalent circuit (Strukov et al., 2008) 

Shortly after Strukov’s paper was published, the researcher began to study and 

produce a suitable model for the memristor device produced in Strukov’s paper. 

Published papers that present a memristor model design were written by Benderli et 

al., Biolek et al., Kavehei et al., and Miller et al. (Benderli and Wey, 2009, Biolek et 

al., 2009, Kavehei et al., 2010, Miller, 2010).  The model which was produced by 

Biolek et al. is shown in Figure 2.3. The model was developed using spice, presented 

by a block-oriented diagram, with the memory effect performed by a feedback-

controlled integrator. 



13 
 

f (x)

 

Figure 2.3: Spice model of the memristor device by Biolek et al. 

(Biolek et al., 2009) 

In 2012, Kamarozaman et al. published a top-bottom layout of memristor device 

which fabricated layer by layer (Kamarozaman et al., 2012). Bottom layer is indium 

tin oxide (ITO) and the top layer is platinum (Pt), both layers were used as negative 

and positive electrode respectively. Figure 2.4 shows the schematic diagram of the 

memristor device published by Kamarozaman et al. For the past few years, other 

researcher also implemented the same concept of top-bottom layout but the schematic 

layout of the device was not published to others (Gale et al., 2012, Strukov et al., 2008, 

Williams, 2008, Yakopcic et al., 2011). 

 

Figure 2.4: Schematic diagram of memristor device produce by 

Kamarozaman et al. in 2012 
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Nowadays, many researchers are working on memristor design for various 

applications. The fields that have been investigated are: non-volatile memory (Ho et 

al., 2009, Ascoli et al., 2016, Duan et al., 2014, Ebong and Mazumder, 2011, Hu et al., 

2012, Zidan et al., 2013), neuromorphic systems (Jo et al., 2010, Doolittle et al., 2009, 

Wang et al., 2017), FPGAs (Chong and Xiao, 2011), computing (Joshua et al., 2012, 

Wang et al., 2017), and sensing (Chen et al., 2010, Wang et al., 2010, Carrara et al., 

2012, Sacchetto et al., 2011, Puppo et al., 2014b). All applications have a very high 

potential to be commercialized, with memory applications recorded in the highest 

number of published papers. 

2.3 Memristor Theory 

Memristors are unique and different compared to the other three basic circuit 

elements because of the memristor’s ability to store memory of the past (Chua, 1971). 

In other words, if the memristor is turned off for a certain period of time and then 

turned on again, the memristor will still remember the amount of input applied before 

(Strukov et al., 2008). The capability is represented by the value of the present 

resistance of the memristor, which depends on the amount of electric charge which 

flowed through it in the past (Chua, 2011). This unique behaviour cannot be duplicated 

by any individual, or combination of, the three basic elements of resistors, inductors, 

and capacitors. 

In the concept of circuit theory, resistors, inductors, and capacitors are defined 

by relationships between two circuit variables which are different from each other. 

There are four circuit variables in total to represent these relationships. The variables 

are current, voltage, charge, and flux-linkage. There are six possible combinations of 

two variables from the four variables. Five well-known relationships are described by 
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equations 2.1 – 2.5. Only one relationship remains undefined, the relationship between 

flux,  and charge, q. 

𝑅 =
𝑉

𝐼
                                       (2.1) 

𝐶 =
𝑄

𝑉
           (2.2) 

𝐿 =


𝐼
                       (2.3) 

𝑞(𝑡) = ∫ 𝑖(𝑡)𝑑𝑡 @ 𝑑𝑞 = 𝑖𝑑𝑡
𝑡

−∞
           (2.4) 

    𝜑(𝑡) = ∫ 𝑣(𝑡)𝑑𝑡 
𝑡

−∞
@ 𝑑𝜑 = 𝑣𝑑𝑡                       (2.5) 

Equations 2.1 – 2.3 present the basic axiomatic relationship for the three basic 

circuit elements of Resistor, 𝑅, Capacitor, 𝐶 and Inductor, 𝐿. Equation 2.4 presents the 

relationship between charge and current and equation 2.5 presents the relationship 

between flux-linkage and voltage. The relationship between charge and flux-linkage 

is necessary in order to prove the relevance of the memristor proposed as the fourth 

basic element after resistor, inductor, and capacitor.  

Chua’s work has proposed the memristor’s symbol and memristor’s hypothetical 

-q curve, as shown in Figure 2.5. (Chua, 1971). The mathematical relationship is 

written by using equations 2.6 and 2.7. Equation 2.6 presents the electrical 

relationship, while equation 2.7 presents the magnetic relationship that relates between 

 and q which was previously undefined.  

𝑣(𝑡) = 𝑀(𝑞(𝑡))𝑖(𝑡)                                               (2.6) 

𝑀(𝑞) =
𝑑𝜑(𝑞)

𝑑𝑞
                                                     (2.7) 
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Figure 2.5: Proposed symbol of a memristor with -q curve 

(Chua, 1971) 

The relationship between the four circuit elements, resistor, inductor, capacitor, 

and memristor are shown in Figure 2.6, where equation 2.7 completes the relationship 

among the four variables (Strukov et al., 2008, Kavehei et al., 2010) . The memristance 

value, M depends on the change of flux in a function of charge over the change of 

charge. 

 

Figure 2.6: Relationship of the four basic elements  

(Strukov et al., 2008) 

The first material discovered to have memristive behaviour by Strukov et al. is 

TiO2. TiO2 has similar behaviour to silicon (Si) and titanium (Ti), coming from 

material group IV, and has 4 valence electrons. For Si, the valence electron is shared 
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among other Si to complete the valence shell to 8 electrons, as shown in Figure 2.7. 

While for Ti, the valence electron is shared with valence shell of oxygen atom (O) to 

complete the valence electrons as shown in Figure 2.8.  

Si Si

Si

Si

Si

 

Figure 2.7: Covalent bonding in Si semiconductor 

Ti OO

O

O

 

Figure 2.8: Covalent bonding in TiO2 semiconductor 



18 
 

Semiconductor is generally pure state in highly resistive and it can de doped with 

another element to make it conductive. In TiO2, the dopant that make it conductive is 

oxygen vacancies which tends to move at a high electric field (Anderson and 

Anderson, 2004). The dopant or oxygen vacancies moves in the same direction as the 

current direction, which makes the memristor work. However, the dopant mobility is 

not good for the transistor. 

Putting a bias voltage across the thin film TiO2 semiconductor, that has dopants 

only on one side, causes them to move into the pure TiO2 on the other side, and thus 

lowers the resistance. Running the current in the other direction will then push the 

dopants back into place, increasing the TiO2's resistance (Williams, 2008). A physical 

memristor that has been developed by Strukov et al. consists of a two-terminal device 

whose resistance depends on the magnitude, polarity, and length of time of the voltage 

applied to it. When the voltage is turned off, the resistance remains as it did just before 

it was turned off. This makes the memristor a non-linear, non-volatile memory device 

(Strukov et al., 2008).  

The two-terminal memristor, introduced by Strukov et al. shown in Figure 2.2 

uses TiO2 as the resistive material and platinum as the electrode material. When a 

voltage is applied across the platinum electrodes, oxygen atoms in the material diffuse 

left or right, depending on the polarity of the voltage, which makes the material thinner 

or thicker, thus causing a change in resistance. It can be noted that transistors also use 

fixed-doped junctions, but unlike transistors, a memristor can change the doped region 

on the fly. The important thing about this is that, when the voltage is turned off, the 

oxygen atoms stay put, thus the resistance is "remembered." A memristor is not simply 

a digital on-or-off device. Since the doped region acts like a variable resistor, its state 

can be anywhere from 0 to 1, and this makes it a true analogue device. The diffusion 
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rate is 1 meter per second. That might sound slow, but it means that at nanometer 

scales, switching speeds can occur within nanoseconds (Williams, 2008).  

Strukov et al. also developed the memristor model for the memristor device, and 

the relationship between voltage and current is represented in equation 2.8. This 

equation was developed for the simplest case of ohmic electronic conduction and linear 

ionic drift in a uniform field with average ion mobility, v.  (Strukov et al., 2008).  

Equation 2.11 was obtained by substituting 2.10 into 2.8 with the memristance value, 

M is in a function of charge, q. 

𝑣(𝑡) = (𝑅𝑂𝑁
𝑤(𝑡)

𝐷
+ 𝑅𝑂𝐹𝐹 (1 −

𝑤(𝑡)

𝐷
)) 𝑖(𝑡)                                     (2.8) 

𝑑𝑤(𝑡)

𝑑𝑡
= 𝜇𝑉

𝑅𝑂𝑁

𝐷
𝑖(𝑡)                                                        (2.9) 

𝑤(𝑡) = 𝜇𝑉
𝑅𝑂𝑁

𝐷
𝑞(𝑡)                                                     (2.10) 

𝑀(𝑞) = 𝑅𝑂𝐹𝐹 (1 −
𝜇𝑉𝑅𝑂𝑁

𝐷2 𝑞(𝑡))                                              (2.11) 

In 2010, Miller presented three states of memristor in a structured view, as shown 

in Figure 2.9. The structure for an ideal memristor is shown in Figure 2.9(a), while 

Figure 2.9(b) and Figure 2.9(c) show the structure in “off” state and “on” state, 

respectively.  

 
                          (a)                                       (b)                                          (c) 

 

Figure 2.9: (a) Ideal state memristor behavior (b) “off” state 

memristor (c) “on” state memristor (Miller, 2010) 
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The thickness of the switching medium TiO2 is constant, as described by depth, 

D. The thickness of the switching medium that is saturated by oxygen vacancies, which 

assist conduction, is described by the function w. If a positive voltage is applied to the 

doped side, the vacancies being positively charged will be repelled and drift into the 

undoped region, restricted by the mobility of the oxygen vacancies given by v. 

Eventually, w will become equal to D, resulting in the “on” state, as shown in Figure 

2.9(c). If the bias voltage is swapped, the oxygen vacancies will recede. Eventually w 

will be equal to 0, resulting in the “off” state, as the vacancies are completely pushed 

to one side, as shown in Figure 2.9(b). This behavior shows that the restriction on w is 

that it can never be greater than D or less than 0 (Miller, 2010). 

In simulation, on resistance (RON) and off resistance (ROFF) were set to any 

values. RON is low and ROFF is very high. In practical application, the value of RON and 

ROFF can be obtained from I-V characterization.  Figure 2.10 shows the details of the 

memristive condition when various voltages are applied at a low frequency. The low 

frequency value is very low, almost zero, and therefore the direct current (DC) voltage 

is used to supply the memristor electrode instead of the alternating current (AC).  The 

I-V characteristics of the memristor behave like hysteresis, but this is not a normal 

hysteresis. Memristor hysteresis is pinched at zero. This indicates the conductivity of 

memristor change when the applied voltage changes. It also indicates that the 

memristor stores the previous voltage, which is represented by its conductivity. This 

behaviour is only applicable if the frequency is low (where the time is long enough). 

If the frequency is high (where the sweep voltage is fast), the I-V curve will look like 

a normal resistor characteristic, which is linear.  



21 
 

doped

0V

1V

2V

3V

2V

1V

0V

w

w

w

w

w

w

w

1V

2V

3V

2V

1V

0V

w

w

w

w

w

D

1
2

undoped

D  

Figure 2.10: Memristive conditions at different voltage 

potentials 

Figure 2.11 shows the graphical representation of the hysteresis loop analysis. 

At first, the voltage sweeps from 0 to +V (1-increase), then the voltage supply is 

decreased from +V to -V (2-decrease), and at last the voltage is increased from -V to 

0 (3-increase) to complete the loop. The maximum and minimum voltage level depend 

on the thickness of the memristor, known as D.  
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Figure 2.11: Presentation of hysteresis loop analysis (I-V curve) 

2.4 Memristors in Bio-Sensing Applications 

Research into bio-sensing applications started being investigated by Carrara et 

al.  in 2012. Carrara et al. produced a silicon nanowire memristor sensor for bio-

detection (Carrara et al., 2012, Sacchetto et al., 2011). The memristive material used 

for sensing is Silicon, while the electrode material used is Nickel Silicide. The silicon 

on insulator (SOI) used as substrate and the Si on the SOI were etched in order to 

produce a silicon nanowire. The image of the silicon nanowire is shown in Figure 2.12. 

Carrara et al. compare the energy gap of the silicon nanowire in two conditions: before 

antibody functionalization and after antibody functionalization. The sensor with the 

functionalized antibody records the increase in the energy gap compared with the 

sensor without antibody.   
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Figure 2.12: Silicon nanowire biosensor (Carrara et al., 2012) 

The second  publication related to bio-sensing was produced by Puppo et al. in 

2014, and they also developed a silicon nanowire to sense bio-molecules (Puppo et al., 

2014b). Puppo et al. used the same fabrication method as Carrara et al., and the 

biosensor behaviour was also observed through the energy gap. In 2015 and 2016, 

Tzouvadaki et al. published their work on silicon nanowire memristor sensors for a 

prostate-specific antigen (PSA) IgM detection (Tzouvadaki et al., 2015, Tzouvadaki 

et al., 2016). The latest publication was produced by Vallero et al. in 2016, which 

presents a microfluidic platform of devices for cancer  prognosis (Vallero et al., 2016). 

The behaviour of the developed memristor biosensors listed above was analysed 

by the difference in the voltage gap (Carrara et al., 2012, Puppo et al., 2014b, 

Tzouvadaki et al., 2016, Tzouvadaki et al., 2015, Vallero et al., 2016). Carrara, Puppo, 

Tzouvadaki, and Vallero used Nickel Silicide (NiSi) as the electrode material. In a 

recent paper published by Vallero et al., a comparison between two types of metal 

electrode, Aluminium (Al) and NiSi, were carried out (Vallero et al., 2016). The 

comparison shows that NiSi creates a change voltage gap for the memristor biosensor, 

from a zero-voltage gap to a nonzero voltage gap after surface functionalization. The 
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Al material did not provide a change in the voltage gap value for the condition before 

or after the surface functionalization process (Vallero et al., 2016). 

The memristor sensors introduced by Carrara et al., Puppo et al., and Tzouvadaki 

et al. (2015) were tested in dry conditions. The sensing process takes more than one 

hour, which includes incubating, washing, and drying processes (Puppo et al., 2014b, 

Carrara et al., 2012). The latest research on memristor biosensor that was published in 

2016 by Tzouvadaki et al. and Vallero et al. implemented a new sensing condition for 

the memristor device, which involves liquid detection with Tzouvadaki et al. 

implemented in microfluidic platform. 

2.5 Memristive Materials and Electrode Materials for Memristor Devices 

Two important things that need to be determined in order to produce a memristor 

device are determining the best memristive material (oxide material) and finding the 

best electrode material. A review of potential materials has been studied.  

2.5.1 Memristive Materials  

The first material presented by Strukov in 2008 for the first physical memristor 

is TiO2. Besides TiO2, many materials have been discovered to produce good 

memristive  behaviour, including Zinc Oxide (ZnO) (Ayana et al., 2016, Chew and Li, 

2013, Paul et al., 2014), Tantalum(V) Oxide (Ta2O5) (Torrezan et al., 2011) and 

Silicon (Si) (Carrara et al., 2012, Puppo et al., 2014a, Puppo et al., 2014b, Sacchetto 

et al., 2011, Tzouvadaki et al., 2015, Li et al., 2016). A study of the combination of 

various oxide thin-films in one memristor device was also performed by a few 

researchers. However, most of the papers used TiO2 as their main material (Choi et al., 
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