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STRUKTUR LIPAT TERSUAI DARIPADA TESSELLATION ORIGAMI 

DENGAN DARJAH KEBEBASAN YANG TINGGI 

ABSTRAK 

Bentuk geometri struktur lipat berkait rapat dengan origami terutama tessellation 

origami. Tessellation origami yang mempunyai mekanisme lipatan yang fleksibel 

menyediakan konfigurasi terlipat dengan permukaan pelbagai muka daripada corak 

lipatan berulang.  Mekanisme lipatan fleksibel adalah sistem terkurang kekangan 

akibat darjah kebebasan yang tinggi. Fleksibiliti mekanisma lipatan dikawal oleh 

sudut lipatan yang dikenakan ke atas penggerak mekanisma. Kaedah simulasi lipatan 

yang sedia-ada didapati tidak dapat digunakan untuk simulasi tessellation origami 

dengan darjah kebebasan yang tinggi. Justeru, kajian ini bertujuan untuk 

membangunkan prosedur untuk simulasi tessellation origami dengan darjah 

kebebasan tinggi yang dikawal oleh penggerak mekanisma.  Objektif pertama kajian 

ini adalah mengenalpasti pertimbangan geometri untuk lipatan yang mempunyai 

mekanisma fleksibel. 40 nombor tessellation origami sebenar dihasilkan semula  dan 

digunakan untuk menkaji hubungan antara ciri-ciri geometri lembah gunung dan 

fleksibiliti origami tessellation replika tersebut. Ciri-ciri geometri corak lembah 

gunung yang boleh membantu komponen mekanisma tessellation origami telah 

dikenal pasti dengan menyiasat darjah kebebasan tempatan tessellation origami 

tersebut. Objektif kedua adalah pendekatan simulasi alternatif menggunakan 

algoritma generatif. Alat pemodelan generatif yang dibangunkan dengan 

menggunakan editor pengaturcaraan visual Grasshopper® menyediakan alat simulasi 

yang lebih realistik dengan menggabungkan ciri kinematik origami tersebut. Objektif 

terakhir adalah penentuan perhubungan antara permukaan lipat dengan sistem 

kawalan dengan menggunakan penggerak dengan memeriksa kelengkungan 



xxiii 

permukaan lipat yang dihasilkan. Enam corak tessellation origami yang termasuk 

tiga variasi Miura-ori, Illusion Optical Russo, Yoshimura dan Ron Resch telah 

dipilih untuk menyiasat transformasi tessellation origami di bawah laluan yang 

berbeza dengan menggunakan alat pemodelan generatif. Transformasi enam model 

tessellation origami tersebut yang dikawal oleh kombinasi yang berlainan antara 

jarak penggerak dan kelengkungan garisan maya yang menghubungkan semua 

penggerak telah menghasilkan pelbagai konfigurasi permukaan lipat dengan corak 

lipatan tempatan yang tidak segerak. 
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FOLDABLE STRUCTURES ADAPTED FROM TESSELLATION ORIGAMI 

WITH HIGH DEGREE OF FREEDOM 

ABSTRACT 

Geometrical shape of folded structure is closely related to origami especially 

the tessellation origami. Tessellation origami which has flexible folding mechanism 

provides a folded configuration with facetted surface as a result from repeated 

folding pattern.  Flexible folding mechanism is an under constraint system due to its 

high degree-of-freedom. The flexibility of folding mechanism is controlled by the 

fold angle imposed on the actuators.   Currently available method of folding 

simulation was found to be not able to simulate tessellation origami with high 

degree-of-freedom.  Hence, this research is conducted with the aim to develop the 

procedure for simulation of tessellation origami with high-degree of freedom through 

the control of actuators.   The first objective of this research is the identification of 

geometric considerations for folding pattern with flexible mechanism.  40 numbers 

of actual tessellation origami were first re-produced to study the relation between the 

geometric characteristics of the corresponding mountain valley pattern on the 

flexibility of the physical behaviour of the replica model.   Geometric considerations 

affecting the folding mechanism were identified by investigating the local degree-of-

freedom of the crease line pattern through the use of a procedure for the computation 

of local degree-of-freedom of the mechanism proposed in this research. The second 

objective is the development of an alternative simulation approach using generative 

algorithm.  A generative modeling tool using visual programming editor 

Grasshopper® which provides a more realistic simulation tool by incorporating the 

kinematic property of the origami was developed. The last objective of this research 

is the determination of the folded configuration in relation to the control system for 
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actuators.   Six tessellation origami models consisting of three variations of Miura-ori, 

Russo’s Optical Illusion, Yoshimura and Ron Resch pattern were selected to 

investigate the transformation under different paths using the generative modeling 

tool.   Transformations under different combination of the distance between actuator 

and curvature of an imaginary curve connecting all actuators have yielded a wide 

variety of folded configurations with non-synchonised local folding pattern for the 

six tessellation origami models. 
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CHAPTER 1    INTRODUCTION 

 

1.1 General 

Folded structure gains its stiffness through a series of folds introduced on the 

surface. Fold changes the mechanical properties of the surface by increasing the 

second moment of inertia of the sectionto improve the ability to withstand higher 

load under the given span. Folded structure is well known for its ability to cover 

large open spaces and often used in the construction of folded roof structure and 

façade due to the added aesthetic value of the folded appearance.  

Folded structure dated back to the 1920s where the principle of folded 

structure isused to design concrete bunker for Mӓrkische Power Station boiler house 

by George Ehlers (Kurrer, 2012). Over almost 100 years, folded structure design has 

reached its peak with the varieties of construction material available and 

advancement in computational analysis techniques. The design for folded structure 

has evolved from simple corrugated line fold to facetted fold. Some examples of the 

folded structure with facetted fold constructed over the last decades are; Sulfur 

Extraction Facility in Italy (Sarah, 2012), St. Paulus Church in Germany (Polonyi, 

2012), Oriente Station Platform in Portugal (Calatrava, 2015), Yokohama 

International Port Terminalin Japan(Osanbashi, 2014), Glass Pavilion in Spain 

(Rinaldi, 2013) and Pulkovo Airport in Russia (Deane, 2015)(Figure 1.1).Many 

architects and civil engineers look for more possible folded plate design that can 

serve structural purpose and at the same time aesthetics. In the past decades, the 

study of folded structure isoftenrelated to the paper-folding art or origami whichhas 

becomethesource of inspiration for many folded structure application in architectural 

CHAPTER ONE  

INTRODUCTION 
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and civil engineering such as the deployable structure, retractable structure and 

folded roof structure(Moussavi, 2009;Trautz and Cierniak, 2011;Šekularac et al., 

2012;Woerd, 2012;Fei and Sujan, 2013;Lebee, 2015;Reis et al., 2015). Many of the 

studies focused on the facetted surface structure which is related to a type of origami 

known as the tessellation origami.  

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

 

Figure 1.1 : Folded structure (a) Sulfur Extraction Facility, Italy (1966)(Sarah, 

2012)(b) St. Paulus Church, Germany (1967) (Polonyi, 2012) (c) Oriente Station 

Platform, Portugal (1998) (Calatrava, 2015)(d) Yokohama International Port 

Terminal, Japan (2002)(Osanbashi, 2014) (e) Glass Pavilion at Spain (2010)(Rinaldi, 

2013)and the latest (f) Pulkovo Airport, Russia(2014) (Deane, 2015) 
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1.2 Introduction for Tessellation Origami 

The distinct feature of origami is the process of folding from a piece of paper 

without tearing, cutting or gluing the paper. Origami is used to produce a lot of 

creation from animal to geometric pattern. The extensive reviews on the type of 

origami used in structure are found in literature by Schenk (2012) and Dureisseix 

(2012). Among the type of origami described in the literature, tessellation origami is 

the most studied origami in folded structure for architectural and building. The 

extensive review on the current study of tessellation origami in folded structure are 

found in Sorguc et al. (2009) and Lebee (2015).  

Generally, tessellation, also known as tiling, is a type of pattern covered by 

geometric shape in the same plane (Gjerde, 2008). In the past, origami study related 

to tessellation is focused on flat foldable periodic tessellation. Origami that can fold 

into a flat tessellation pattern is referred to as origami tessellation. Origami folding 

method related to tessellation is designed according to the characteristic of the initial 

state and final folded state of the origami (Demaine and O'Rourke, 2007). In origami 

folding, the configuration before the fold is referred as initial state while the 

configuration at the end of the fold is referred as final state. Any configuration in 

between is referred as intermediate state. For origami tessellation, the final folded 

state is a flat origami with tessellation pattern that is created from the fold. The final 

folded state can be either flat or non-flat origami. Kawasaki and Yoshida (1988) 

referred to origami tessellation as crystallographic flat origamis (Figure 1.2) and 

mathematically proved that a flat foldable origami tessellation can be generated by 

repeating the folding pattern according to any of the 17 crystallographic groups. 

Figure 1.3 illustrates the difference between the 17 plane crystallographic groups. 

Flat origami tessellation can be created by using a few simple folding steps such as 
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twist and turn. A computer programme called TESS is created to fold an origami 

tessellation from a given mountain-valley pattern using the twist and turn folding 

steps (Bateman, 2002;TESS, n.d.).  

 
(a)  

(b) 

 
Figure 1.2 : Examples of crystallographic flat origami (a) Tessellated mountain-

valley pattern (b) Final flat folded state (Kawasaki and Yoshida, 1988) 
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Figure 1.3 : The seventeen crystallographic group (Hammond, 2015) 

On the contrary, if the folding takes a tessellation as the initial state and the 

final folded state is dependent on that initial state, it is refer to as tessellation origami. 

Tessellation origami is actively designed and folded by David A. Huffman (1925-

1999) and all of Huffman’s work was presented in a work by Davis et al. (2013). 

Davis et al. (2013) has converted all Huffman’s tessellation origami into crease line 

pattern by reverse-engineering the folded model. Various tessellation origami that 

can be used as folded structure is also found in the book published by Jackson (2011).  

Tessellation origami is the paper-folding art that creates afolded configuration 

that mimic a tessellation as shown in Figure 1.4(a). Tessellationis a geometric pattern 

with distinctly repeated local pattern (Figure 1.4(b)). Local pattern can be a cluster of 

one or more facets held together by connecting the edge of one facet to another facet 

without gap or overlapping of the shapes.However, in origami, local pattern is 
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represent using vertices and refersto as local mountain-valley pattern as shown in 

Figure 1.5. A vertex is the point at the intersected corner of the facets. A tessellation 

pattern without any indication on the type of crease line refers as the crease line 

pattern. There are two fold characteristics of crease line. It consists of the mountain 

and valley fold line and is represented using a full and dashed linetype, respectively. 

When a characteristic of the crease line is assigned,the crease line patternrefers to as 

the mountain-valley pattern (Figure 1.5).The procedure to assign the pattern refers to 

as the mountain-valley assignment (Demaine and O'Rourke, 2007). In many 

literatures, tessellation origami pattern with more than one local vertex refers as 

multi-vertex origami. 

The study on tessellation origami mainly divides according to the desired 

folded configuration. The act of folding the mountain-valley pattern from one 

configuration to another configuration is referred as transformation (Figure 1.6). In 

Figure 1.6, the transformation from initial state to one of the intermediate stage and 

then the final state is shown in left, middle and right configuration, respectively. 

Final state of an origami is a condition where further folding will break the fold line 

or facets will overlaps. There are only two types of final state, flat (Figure 1.6(a)) and 

non-flat origami (Figure 1.6(b)). Flat origami refers to the state where all facets are 

aligned in a series of parallel planes. In folded structure, tessellation origami that 

covers a 3-dimensional surface is desirable regardless of the final state.  
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(a) 

 

(b) 

Figure 1.4 : An example of Tessellation Origami – Ron Resch’s Waterbomb Pattern 

(a) Folded configuration (b) Crease linepattern(Resch, n.d.) 
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Figure 1.5 : Mountain-valley pattern and local crease line pattern for Ron Resch’s 

Waterbomb Pattern (Resch, n.d.) 

 

 

(a) 

 

(b) 

Figure 1.6 : Transformation of the tessellation origami using (a) Miura-Ori Pattern (b) 

Ron Resch’s Waterbomb Pattern(Tachi, 2010b) 
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1.3 Importance of Origami Folding in Folded Structure 

Origami folding is a powerful form finding tool for architectural and building 

design where feature of fold is desired. Origami such as the tessellation origami has a 

flexible folding mechanism which can be observed in the paper model. One example 

is the Ron Resch’sWaterbomb Pattern shown inFigure 1.7. Tessellation origami with 

high flexibility is capable to achievemany folded configurationsthat resemble a shell 

surface.Many of the conceptual architectural design are inspired by the origami 

folding and the detailed introduction to the application of origami folding in form-

finding are presented byMoussavi (2009),Sorguc et al. (2009) and Šekularac et al. 

(2012). 

 

Figure 1.7 : Flexible configuration of the Ron Resch’s Waterbomb Pattern (Resch 

and Christiansen, 1973) 
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Origami folding not only providesidea for geometric design on the folded 

surface but also provides the kinematic mechanism that can contract and expand 

when needed. One example is the Cardborigami that makes use of the flat-foldable 

origami that acts as temporary structures designed to provide temporary shelter for 

homeless and victims of natural disaster(Hovsepian, 2007). Another example is in 

the making of an intelligent kinetic wall, WALLABOTS that can be controlled 

electronically(Otto-Ng, 2011) and the cardboard pavilion (Alini and Aion, 2009). All 

examples are shown inFigure 1.8. 

One of the earliest form-finding studies using origami folding is by Chien 

(1999). A real life application of origami wasbuilt by Buri (2006)to serve as the 

temporary folded plate chapel made of wood panel. A foldable shelter was also 

developed using the origami that can fold flatby Temmerman et al. (2007). In a 

recent study, Samuelsson and Vestlund (2015) presented a parametric method to find 

form for folded structure using origami.Form-finding using origami folding is also 

used in the design for timber structure using the Cross Laminated Timber (CLT). 

One example is the simulation tool named as “THE FOLD” which is created to find 

form using origami by Meyer et al. (2014).  
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(a) 

 

(b) 

 

(c) 

Figure 1.8 : Applications of tessellation origami in building structure(a) 

CARDBORIGAMI – Corrugated cardboard shelter for outdoor use (Hovsepian, 2007) 

(b) WALLBOTS - Electronic and kinetic wall system (Otto-Ng, 2011) (c) Cardboard 

Pavilion (Alini and Aion, 2009) 
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1.4 Problem Statement 

Flexible tessellation origami has higher than one degree-of-freedom (one-dof) 

folding mechanism and thus has many possible transformation paths. The current 

studies focused more on one-dof tessellation origami and synchronization of the 

folding using a local pattern. Hence, current available computer simulation 

approaches are not sufficient to simulate tessellation origami with high degree-of-

freedom (high-dof). Despite the repetitive local pattern, synchronising the origami 

folding with local pattern folding has limited its transformation path. High-dof 

origami is allowed to transform freely if there is no restraint imposed onto its 

actuators and the transformation is maximised by providing a systematic control to 

the actuators. However, by placing restraint onto the actuators can make the flexible 

mechanism becomes rigid at the desired folded state. The position of the actuators 

can be investigated by studying the distribution of the local degree-of-freedom.  The 

lack of studies on high-dof folding mechanism has led many architects and civil 

engineers to find solution to model tessellation origami using geometric modeling 

technique. The use of this technique is normally combined with generative modeling 

which requires an algorithm to perform the folding. However, at current state, this 

technique is used to model developable tessellation origami which has repetitive 

local pattern with single vertex and is not suitable to model the transformation from 

one folded state to another. Therefore, kinematic behavior of the origami must be 

incorporated into the generative modeling tool. The kinematic theory of the origami 

can be written into an algorithm to conduct geometric folding using CAD drawing 

tool. Additional algorithm used to control the transformation of the high-dof folding 

mechanism must also be incorporated into the tool. The control for the 

transformation is different depending on the crease line pattern (CLP) for the 
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tessellation origami. Therefore, studies are needed to investigate the transformation 

control system and its effect on its global folding behaviour. 

1.5 Objectives 

Based on the problem statement in previous section, this research is focused 

on the following objectives:  

1. To investigate the geometric considerations for rigid tessellation origami with 

high degree-of-freedom using the computation of local degree-of-freedom and 

provide a solution to control the folding motion without restriction to 

synchonised folding motion using single-vertex.  

2. To develop a procedure for generative algorithms to model folded configuration 

and introduce the independent parameter to simulate the kinematic motion for 

rigid tessellation origami with high degree-of-freedom and non-flat foldability. 

3. To investigate the global folding behaviour of tessellation origami with high 

degree-of-freedom in relation to the parameters that control the transformation. 

1.6 Research Scope 

This study touches the discipline of origami, geometric modeling and folded 

structure. The subject of the study is the tessellation origami with high degree-of-

freedom folding mechanism.This research did not include curve and polygon 

tessellated origami. This study focused onthe kinematic motion of the tessellation 

origami that is controlled by synchronised folding of similar actuators. The location 

of the actuator is investigated using the local degree-of-freedom computation. 

However, the investigation on how the arrangement of different types of vertex 

changes the global degree-of-freedom is not the interest of this research. The 
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modeling steps to find folded configuration is proposed using the generative 

modeling technique. The transformation of tessellation origami is investigated under 

different paths. The transformation path is dependent on the location and numbers of 

actuator. The global form of the tessellation under different transformation path is 

also studied and compared with the corresponding paper model. 

1.7 Thesis Layout 

This thesis consists of fivechapters: 

Chapter 1 gives the general overview, background and problem highlights on folded 

structure adapted from tessellation origami with high degree-of-freedom. The 

objectives and research scope are also presented. 

Chapter 2 presents a review onorigami theory, tessellation pattern, the method to 

model and simulate the folding and construction of the tessellation origami. 

Chapter 3 presents the methodology to conduct the feasibility study, kinematic of 

origami applied as part of algorithm for the simulation tool and finally the method 

used to carry out the transformations of the tessellation origami.  

Chapter 4 presents the results and discussion on the feasibility study, the generative 

algorithm for the simulation tool, proposed method to compute the local degree-of-

freedom and the case study for six selected tessellation origami.  

Chapter 5 concludes the research study with conclusion andrecommendations for 

future study. 
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CHAPTER 2    CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

The research focuses on formulating simulation method for tessellation 

origami with high degree-of-freedom. Therefore, the literatures start with the review 

on theory related to tessellation origami and also tessellation pattern available. The 

review is then followed by reviewing the current available method to model and 

simulate tessellation origami computationally. A review on the construction method 

for tessellation origami is also presented. Lastly, the issues related to the modeling 

and simulation approaches are presented.   

2.2 Rigid Origami Theory 

Rigid folding deals with rigid facets with fold lines separating the facets 

which act like a free hinge and allow the folding pattern to fold continuously without 

deformation of the hinge. The ability to fold from a given mountain-valley pattern 

while preserving the characteristic of a rigid origami is referred to as rigid foldability. 

Local foldability study evolves around flat-foldability because the final state is 

simply folded flat but it is difficult to predict the folded result from a non-flat 

foldable mountain-valley pattern.  

Origami is often studied using a computer model. The branch of computer 

science used to study on origami related problem is called computational origami. 

Research study on computational origami has contributed to the growth of 

algorithmic origami and origami theory. Recent development on computational 

origami is presented by (Demaine and Demaine, 2002) and matters related to origami 

is extensively presented by Demaine and O'Rourke (2007). 

CHAPTER TWO 

LITERATURE REVIEW 
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2.2.1 Local Foldability 

The study on local foldability for non-flat origami is scarce. Many studies 

focused on characterisation of the flat origami instead. One of the famous 

characterisations is the Maekawa’s theorem by Kasahara and Takahama (1987). It is 

proven that for a single-vertex with total section angles equal to 360°, the numbers of 

mountain and valley crease line is differ by two. Another famous characterization is 

Kawasaki’s Theorem. Kawasaki (1989) and Justin (1989a)has proved that a single-

vertex with alternate section angles around a vertex sum to 180° is definitely flat-

foldable. Both theorem is also revisited by Justin (1994), Hull (1994), Hull (2003), 

Demaine and O'Rourke (2007) and Hull (2002).  

Belcastro and Hull (2002) presented the necessary conditions to 

mathematically model a single vertex that can fold flat. Vertices in the pattern are 

represented using the rotation matrix and controlled by the fold angle applied on the 

creases. The conditions however are not sufficient to address self-intersection 

problem as shown in Figure 2.1. Streinu and Whiteley (2005) presented the 

conditions for a single-vertex to fold with non-crossing motion provided the total 

angle between crease line is equal or less than 2π. In the study by Streinu and 

Whiteley (2005), single vertex folding is studied using the expansive motion of the 

spherical polygonal linkages to create a 3-dimensional folded state.  

 
 

  

Figure 2.1 : Flat fold single-vertex with self-intersected facets (Belcastro and Hull, 

2002) 
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The simplest case of foldable single-vertex is presented by Miura (1994). The 

study on single-vertex folding is based on the intrinsic Gauss’s spherical 

representation. In the study by Miura (1994), it is proved that the simplest case of 

folding consisted of four crease lines emanating from a vertex with three-to-one 

crease lines fold properties. In other words, it can be either three consecutive 

mountain lines paired with one valley line or vice versa as shown in Figure 2.2.  

 

Figure 2.2 : Miura-Ori Pattern 

Other studies related to single foldability is the generalisation of the single-

vertex pattern. Tachi (2009a) presented the geometry conditions to generalize Miura-

Ori Pattern using the quadrilateral mesh surface. New configurations for flat foldable 

Miura-Ori using the generalised pattern are also presented. Generalised Ron 

ReschWaterbomb Pattern is presented by Tachi (2010a).  

2.2.2 Global Foldability 

In global foldability, the folding path is intractable and finding the overlap 

order for the facets is proved to be an NP(nondeterministic polynomial time)-hard 

problem even for flat foldable pattern (Bern and Hayes, 1996). In other words, there 

are many numbers of possible folding paths and finding the solution for the problem 

requires exhaustive search in the worst case. There is no other literature that can 

prove otherwise. Hence, foldability issue related to global folding of multi-vertex 

origami is still an open question. Many of the folding simulation and geometric 
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modeling for multi-vertex origami make use of the generalization of single-vertex by 

Tachi (2009a) to perform a synchronized folding mechanism. Synchronised folding 

is a folding that is controlled by local pattern. Change in local folding is 

simultaneously reflected in the other repeated local pattern. This is the main 

approach used in the design of simulation and modeling tools (Balkcom and Mason, 

2008;Hawkes et al., 2010;Landen, 2013;Wei et al., 2013;Xi and Lien, 2015;Schenk 

and Guest, 2016).  

Global foldability of a multi-vertex origami is related to the numbers of 

degree-of-freedom in the mechanism. In the folding motion study, degree-of-freedom 

also represents the number of actuator required to control the folding of the origami. 

Actuator represents the crease line in the tessellation pattern that is used to initiate 

the folding mechanism. The pattern is folded up when fold angle is imposed on the 

actuator. Fold angle is measured using the dihedral angle between two facets. The 

location of the actuators for tessellation origami with high degree-of-freedom can be 

found by computation of the local degree-of-freedom. Degree-of-freedom is studied 

by computing the local degree-of-freedom from one vertex to another connected 

vertex. The same method was presented using the same graph theory by Graver 

(2001) to compute the degree-of-freedom for rigid framework.  

Tachi (2010b) presented the necessary considerations to find the degree-of-

freedom for tessellation origami that resembles a quadrilateral and triangular mesh. 

The study also shows that all actuators of a triangulated pattern are located at the 

boundary of the tessellation pattern. Origami pattern with triangular pattern has the 

highest degree-of-freedom and hence very flexible; while the simplest origami 

pattern is the quadrilateral pattern that has only one degree-of-freedom.  
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Belcastro and Hull (2002) presented the conditions for the non-flat folding of 

single-vertex by considering the global foldability condition using rotational matrices. 

Tachi (2009b) utilised the conditions by Belcastro and Hull (2002) and solved the 

problem of multi-vertex intersection by using the global constraint of the rotational 

matrices representing the multi-vertex. The resulting linear equation was solved 

using the pseudo-inverse matrix. However, it can only be used to find solution for a 

limited tessellation pattern which included the Miura-Ori Pattern, Waterbomb Pattern 

and pleated hypars.  

2.2.3 Global Form 

As mentioned earlier, global form of the tessellation origami resembles a shell 

surface. Therefore, the global surface is measured using the Gaussian Curvature. 

Schenk and Guest (2009) used the same method to study the behaviour of the folded 

tessellation origami and its relations to the Poisson’s ratio of local single vertex that 

is used to control the synchonised folding. Gaussian curvature (Κ) is a function of 

the principal curvatures k1 = 1/r1 and k2 = 1/r2 where r1 and r2 is the radius of the 

principal curvature of the surface.  

2.3 Tessellation Pattern 

Tessellation origami is represented using a mountain-valley pattern. Study 

related to mountain-valley pattern design is focused on finding pattern that can fold 

flat. However, the folding pattern design for non-flat origami is obtained through 

paper folding. In paper-folding art, tessellation origami is produced as the result of 

intuitive folding using a pre-creased one unit grid. There are two types of grid 

observed: a square grid and equilateral triangle grid as shown in Figure 2.3(Gjerde, 

2008). The simplest tessellation pattern is pleat fold which involves the arrangement 
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of mountain and valley line in only one direction (Figure 2.4). The direction of the 

pleat can be either along a straight or curved line. Jackson (2011) shows a variety of 

simple tessellation that can be produced using four geometry transformation as 

shown in Figure 2.5. 

 
(a) 

 
(b) 

  

Figure 2.3 : Pre-creased paper folding grid (a) A unit square grid (b) Equilateral 

triangle grid (Gjerde, 2008) 

 
(a) 

 
(b) 

  

Figure 2.4 : Simple folding patterns – Pleat direction (a) Straight line (b) Curved line 

(Jackson, 2011) 

There are five tessellation origami patterns other than Miura-ori Pattern and 

Waterbomb Pattern that were normally found in the related literatures. These patterns 

include the Yoshimura Pattern, diagonal pattern, variation of Waterbomb Pattern, 

Quadratic Waterbomb Pattern and Eggbox Pattern (Figure 2.6). Besides the 

tessellation patterns mentioned above, there are actually plenty of patterns that have 

not been studied computationally. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

  

Figure 2.5 : Tranformations of origami tessellation (a) Symmetrical (b) Reflection (c) 

Rotation (d) Skew (Jackson, 2011) 

Paper artist or sculptor around the world displayed their work mostly in 

origami conference such as Origami in Science, Mathematics and Education (OSME) 

and in the photo sharing network such as Instagram and Flickr®. Among all the 

paper sculpture related to tessellation that has been shared in social network Flickr®, 

the works of one particular paper artist have been chosen as the source of patterns for 

investigation. The paper artist is Andrea Russo, an Italian paper artist that has 

produced vast amount of tessellated paper folding with curve as well as straight lines. 

Figure 2.7shows some examples of his work. However, the corresponding mountain-

valley pattern for Russo’s work is not given.  

Russo’s works covers a wide variety of tessellation origami. The works 

presented include the common pattern such as Miura-ori Pattern and Yoshimura 

Pattern but with different variation in local crease line pattern. More tessellation 

origami is also created from a hybrid of a few common patterns. Besides that, most 

of the works have the global form which resembles a shell structure which can serve 

as possible idea of folded structure in architectural and civil engineering.  
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(a) 

 
(b) 

  

 
(c) 

 
(d) 

  

 
(e) 

 

Figure 2.6 : Folding pattern (a) Yoshimura Pattern (b) Diagonal Pattern (Buri and 

Weinand, 2010) (c) variation of Waterbomb Pattern (Luna, 2008) (d) Quadratic 

Waterbomb Pattern(Jorgesainzdeaja, 2014) (e) Eggbox Pattern (Schenk and Guest, 

2016) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 2.7 : Examples of tessellation origami paper folding art by Andrea Russo (a) 

Corrugation XII (b) Corrugation XI (c) Optical Illusion XXI VII MMVII (d) Simple 

Pattern Circular (e) Tessela XXV (f) Helix (g) Parabolae (h) Metope VII MMIX 

(Russo, n.d.) 
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2.4 Tessellation Origami - Geometric Modeling 

Computer is an integral tool when it comes to form finding and design of 

tessellation origami. In architectural and civil engineering, many folded 

configuration is modeled using the geometric modeling technique. Tessellation 

origami model can be easily reproduced using computer aided drawing (CAD) tool 

such as AutoCAD. However, CAD tool only records the final configuration at the 

end of the drawing. The process to achieve the folding is not recorded and hence 

cannot be applied to model other tessellation origami with similar folding behaviour. 

Modification of the folded configuration also requires great effort for model such as 

the tessellation origami. This is especially true for periodic tessellation origami 

which has high numbers of repeated local pattern. 

Hence, many tessellation origami models are represented using geometric 

model by combining the discipline of applied mathematics with computational 

geometry. Shape is represented by sequence of steps or algorithm in computational 

geometry. Shapes include curves, surfaces, and solids in 3D space, as well as higher-

dimensional entities such as surfaces deforming in time, and solids with a spatially 

varying mass density(Gallier, 1999). An example is given by Gallier (1999) using a 

curve fitting problem (Figure 2.8). The problem is solved by using the control point d 

to find the curve that passing through a set of point x.  

Computational geometry is widely used in the robotics folding origami where 

motion planner is developed to represent folding motion representing a local pattern 

(Hawkes et al., 2010;An et al., 2011;Xi and Lien, 2015). Besides that, computational 

geometry combined with programming algorithm is also widely used in the form-

finding for architectural design. This type of geometric modeling technique can be 
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