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KONJUGASI KUMPULAN BOAKTIF KEPADA MIKROSFERA POLI(ASID 

LAKTIK) UNTUK SISTEM PENGHANTARAN UBAT 

ABSTRAK 

Penghasilan mikrosfera poli(asid laktik) (PLA) melalui kaedah emulsi dan 

pemeruapan pelarut (ESE) mempunyai potensi dalam aplikasi-aplikasi sistem 

penghantaran ubat (DDS) disebabkan oleh biokeserasian, biodegradasi, tidak toksik dan 

sifat-sifat mekanikal PLA yang sangat baik. Walau bagaimanapun, sifat PLA yang 

hidrofobik menyebabkan afiniti sel rendah yang boleh menimbulkan tindak balas 

keradangan apabila diberikan secara in vivo. Oleh itu, dalam kajian ini, fungsian 

permukaan melalui hidrolisis natrium hidroksida (NaOH) telah dijalankan untuk 

memperkenalkan kumpulan berfungsi hidrofilik pada mikrosfera PLA. Seterusnya, 

kejuruteraan permukaan melalui konjugasi dengan faktor pertumbuhan (GFs) iaitu 

fibroblast asas (bFGF) dan epidermal (EGF) telah dilakukan bagi meningkatkan 

interaksi isyarat dengan sel khususnya osteoblast. Selain itu, keupayaan PLA sebagai 

pembawa ubatan telah dibandingkan antara gentamicin dan dexamethasone dari segi 

kecekapan enkapsulasi, memuat dan profil pembebasan ubatan diikuti dengan penilaian 

antimikrobial melalui penyebaran agar dalam lubang Kirby-Bauer dan kepekatan 

minimum perencatan (MIC) pada strain Staphylococcus aureus (S. aureus) dan 

Escherichia coli (E. coli). Gentamicin pada 0.375% mempunyai kecekapan enkapsulasi 

(42.3%), memuat (26.5×10-3%) dan profil pembebasan ubatan (R2 = 0.9944) yang baik 

melalui model Higuchi telah diperhatikan. Perencatan zon tertinggi bagi strain bakteria 

juga diperhatikan pada 0.375% gentamicin mikrosfera PLA sejajar dengan penilaian 

nilai MIC (0.002 mg/mL). Pengubahsuaian pada mikrosfera PLA juga meningkatkan 
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perumahan, migrasi dan pembezaan sel yang menyumbang kepada proses penghantaran 

ubatan yang berjaya. Semua modifikasi yang dilakukan menghasilkan peningkatan 

percambahan osteoblast dengan peratusan tertinggi sel hidup didapati pada gentamicin 

EGF konjugasi mikrosfera PLA pada hari ke 5. Sementara itu, semua modifikasi pada 

mikrosfera PLA meningkatkan migrasi osteoblast berdasarkan penutupan luka adalah 

100% selepas tiga hari daripada pembenihan sel menunjukkan peningkatan dalam proses 

penyembuhan luka. Peningkatan permukaan mikrosfera PLA yang hidrofilik juga 

menawarkan permukaan yang menggalakkan pelekatan osteoblast seperti yang 

ditunjukkan oleh pewarnaan positif 4’,6-diamidino-2-phenylindole (DAPI) daripada 

nukleus sel. Selain itu, pengubahsuaian pada mikrosfera PLA dapat meningkatkan 

keupayaan PLA dalam meningkatkan proses pembezaan sel stem mesenchymal (MSCs) 

kepada jajaran sel osteogenik kerana warna positif hanya diperhatikan pada mikrosfera 

PLA yang terubahsuai di mana warna positif tertinggi berlaku dengan kehadiran GFs. 

Keputusan ini menunjukkan bahawa fungsian dan konjugasi mikrosfera PLA dengan GF 

meningkatkan hidrofilisiti PLA dan juga sifat tidak toksiknya. Mikrosfera PLA yang 

dikonjugasi berpotensi sebagai pembawa penghantaran ubat seperti yang dibuktikan 

dapat meningkatkan pelekatan, lampiran, percambahan dan pembezaan sel dengan profil 

pembebasan ubatan yang berpanjangan dan berterusan. 
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CONJUGATION OF BIOACTIVE GROUPS TO POLY(LACTIC ACID) 

MICROSPHERES FOR DRUG DELIVERY SYSTEMS 

ABSTRACT 

 The development of poly(lactic) acid (PLA) microspheres through the emulsion 

and solvent evaporation (ESE) method is promising for drug delivery systems (DDS) 

applications owing to the biocompatibility, biodegradability, non-toxic and excellent 

mechanical PLA properties. However, hydrophobicity of PLA may result in low cells 

affinity which can elicit an inflammatory response when administered in vivo. Therefore, 

in this research, surface functionalization via sodium hydroxide (NaOH) hydrolysis has 

been conducted to introduce hydrophilic functional groups on the PLA microspheres. 

Further surface engineered by conjugation with the basic fibroblast (bFGF) and 

epidermal (EGF) growth factors (GFs) were performed in order to improve its signaling 

interaction with cells specifically osteoblasts. Whereas, the capability of PLA as a drug 

carrier was compared between gentamicin and dexamethasone in terms of drug 

encapsulation efficiency, loading and release profile prior to antimicrobial assessments 

via Kirby-Bauer agar well diffusion and minimum inhibitory concentration (MIC) on 

Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) strains. It was observed 

that gentamicin encapsulated at 0.375% were having good encapsulation efficiency 

(42.3%), loading (26.5×10-3%) and release profile (R2 = 0.9944) of Higuchi model. The 

highest zone of inhibition for bacterial strains was also observed at 0.375% gentamicin 

encapsulated PLA microspheres in parallel with the MIC values assessment (0.002 

mg/mL). The PLA microspheres modifications done enhanced the cellular homing, 

migration and differentiation which contribute to a successful drug delivery process. All 



xxvii 
 

the modifications performed resulted in increasing osteoblasts proliferation with the 

highest percentage of cells viability was observed at gentamicin EGF conjugated PLA 

microspheres on day 5. While, all modifications on PLA microspheres enhanced the 

migration of the osteoblasts as wound closure was 100% after three days of the cells 

seeding indicated enhanced in wound healing process. Increase in hydrophilicity of the 

surface of PLA microspheres offers favorable surface for osteoblasts attachment which 

was reflected by positive 4’,6-diamidino-2-phenylindole (DAPI) staining of the cells’ 

nuclei. Other than that, the modifications on the PLA microspheres were able to enhance 

the capability of the PLA in facilitating the differentiation process of mesenchymal stem 

cells (MSCs) into osteogenic lineage since only positive stain was observed on the 

modified PLA microspheres in which the highest intensity occurred by the presence of 

GFs. These results indicated that the functionalization and conjugation of PLA 

microspheres with GFs improved the hydrophilicity of the PLA with non-toxic 

properties. The conjugated PLA microspheres has potential to be used as drug delivery 

vehicle as evidenced it can enhance the cells adherence, attachment, proliferation and 

differentiation with prolonged and sustained drug release profile. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Drug delivery systems (DDS) are engineered technologies for the controlled 

release or targeted delivery of therapeutic agents such as drugs to improve health and 

extend lives (Kalaydina et al., 2018). The controlled release DDS implies therapeutic 

release kinetic over a prolonged duration advanced rapidly as a better delivery devices to 

overcome the limitations associated with conventional administration (Liu et al., 2016). 

Conventional drug intake basically leads to a rapid increase of drug content in plasma 

which then will decrease below therapeutic window in a short period of time. This will 

require re-administration of the drugs in order to achieve intended pharmaceutical 

function (Tamargo et al., 2015). Therefore, DDS has been introduced which enables the 

drug plasma concentration to be maintained within desired therapeutic range and allows 

specific pharmaceutical drug delivery to the target site of action more efficiently and at 

safer condition (Tiwari et al., 2012). This is particularly crucial for the delivery of the 

therapeutic agents that are rapidly metabolized and removed from the body after 

administration (Kang and Lee, 2009). 

While various devices such as micelles, liposomes, dendrimers, nanoparticles 

and microspheres (Vasir et al., 2003) have been developed for depot-based delivery 

system, biodegradable polymeric microspheres is one of the approaches to fulfill the 

objectives of DDS. From this biodegradable property, they are implanted into the body 

without the essential for following elimination via the surgical process (Sheikh et al., 
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2015). Single administration of drug encapsulated biodegradable polymer microspheres 

allows the release in a continuous and controlled manner over a sustained period of time, 

therefore retaining the drug concentration within a target ranges (Ma et al., 2008). This 

approach can significantly minimize systemic side effect encountered from the repeated 

administration using conventional methods, thus increase the patient’s compliance 

during drug intake (Freiberg and Zhu, 2004, Versypt et al., 2013, Andhariya et al., 

2017). Other than that, this carrier also has the potential to act as a transient mask in 

order to protect labile and unstable active pharmaceutical ingredients (API) such as 

peptides, proteins and enzymes from physiological degradation in the local tissue 

surrounding which resulting in prolong their half-live in vivo (Hines and Kaplan, 2013, 

Szlek et al., 2016). 

In the advancement of DDS, biodegradable polymeric biomaterials have been 

used as healing devices because their suitability and effectiveness in biomedical 

applications such as biocompatibility, biodegradability and easily tailors into desired 

properties (Shah et al., 2011). Furthermore, polymeric materials particularly 

microparticle system are widely studied for its various healing applications such as 

constant and targeted drug release, inoculation/vaccination and growth factor delivery 

(Patra et al., 2018). The deficiency in regular dosages can be minimized after the first 

administration due to the sustainability of drug release and the degradation of residual 

polymer is cleared through the body (Kamaly et al., 2016). 

Among the numerous types of synthetic biodegradable polymers, polyesters are 

considered as the most feasible biodegradable polymers for drug delivery applications. 

One of the commercialize polyesters used is poly(lactic) acid (PLA) because it can be 
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synthesized from the renewable resources which can reduce the energy crisis (Singhvi et 

al., 2019). Furthermore, PLA can be commercially produced with an extensive range of 

characteristics. In the past two decades, PLA has been intensively studied and developed 

in various pharmaceutical and biomedical applications because of its bioresorbable, 

biocompatible, biodegradable and excellent mechanical properties (Song et al., 2018). 

PLA is one of the aliphatic and thermoplastic biodegradable polyesters 

manufactured synthetically by polymerization of lactic acid monomers or cyclical lactic 

dimmers (Lopes et al., 2014). Numerous studies in biomedical sectors such as the 

production, modification and application of PLA microspheres have been prepared and 

used (Alsaheb et al., 2015). The capability of PLA to be used as a drug carrier has been 

reported significantly increase in the encapsulation efficiency of restenosis (Fishbein et 

al., 2000), oridonin (Xing et al., 2007), progesterone (Matsumoto et al., 1999) and 

bovine serum albumin (BSA) (Gao et al., 2005). According to Roney et al. (2005), small 

size of PLA microspheres allows its penetration into organic barrier such as blood-brain 

barrier resulting in effective targeted and constant release of drugs and peptide/protein 

delivery. 

In fact, PLA benefits from biocompatibility, renewability, energy-saving and 

processability relative to other polymers (Rasal et al., 2010). First, PLA is an excellent 

material for medicinal needs that involves clips, sutures and DDS as PLA's degradable 

materials such as carbon dioxide (CO2) and water (H2O) are neither toxic nor cancer-

causing to the body (Shah et al., 2011). Second, PLA is made from both degradable and 

renewable resources such as corn and rice which can help minimize fossil fuel reliance 

and mitigate society's energy crisis (He et al., 2014). Third, the energy-saving property 
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gives the new concept of a "low-carbon economy" ultimately invests in PLA (Vink et 

al., 2003). Lastly, PLA has good thermal processability, so that blow molding, extrusion, 

film casting and fiber spinning can be used (Rhim et al., 2006, Mokhena et al., 2018).  

Moreover, due to the numerous required features of PLA such as biodegradability, 

renewability, thermoplasticity and distinct catalysts with increase biocompatibility, high 

catalytic activity, low toxicity and exceptional stereoselectivity, PLA is potential 

applicant used in the biomedical field (Jamshidian et al., 2010). 

In drug delivery, undesired effects such as high burst release of drugs and low 

encapsulation efficiency are encountered due to poor connections between polymers and 

surface of hydrophilic molecules desorption (Thote et al., 2005). In order to overcome 

these issues, certain modifications must be made to create active functional groups either 

by using additives during their manufacture or by direct immobilization (Datta et al., 

2013). The blending of PLA with functional nanoparticles can yield a new class of 

hybrid materials (Ray, 2012). There are various uses of PLA-based hybrid materials that 

have been well documented and clinically tested on other tissues including cartilage 

(John et al., 2007), adipose (Mauney et al., 2007), liver (Lv et al., 2006) and bone tissue 

(Mathieu et al., 2006). PLA also has been applied for implant and therapeutic devices 

such as screw, fixation rods, plates, sutures and membrane applications such as wound 

covers as well as dermatological therapy such as facial lipoatrophy and scar rejuvenation 

(Xiao et al., 2012). 

Apart from that, PLA has some limitations in biomedical applications include the 

degree of degradation via ester group hydrolysis is too low (Bergsma et al., 1995), PLA 

is low cell affinity since PLA is hydrophobic which can induce an inflammatory reaction 



5 
 

from body host tissues and PLA is not suitable for hard mechanical applications due to 

its brittle property unless it is modified appropriately (Rasal and Hirt, 2009, Xiao et al., 

2012). Hence, surface and bulk PLA modification approaches have been done to be 

suited in biomedical applications (Xiao et al., 2012). The detailed surface properties 

including topography, roughness, energy and hydrophilicity are important for 

interactions with biomacromolecules and biomedical applications of PLA. According to 

Xiao et al. (2012), pure PLA results in an inflammatory reaction when inserted in body 

tissues. Thus, surface modification is needed to design the biomaterials with specific 

characteristics. Commonly, there are two types of methods of modification which are 

chemical and physical (coating and entrapment) methods. Chemical methods are widely 

used to produce hydrophilic functional groups on the surface of biomaterials such as 

amine, carboxyl and hydroxyl. In addition, this approach is the easiest and most 

effective way to increase the hydrophilicity property of PLA by using alkali hydrolysis 

treatment (Yang et al., 2003). 

Since PLA does not contain reactive functional groups such as amine, carboxyl 

and hydroxyl, several researchers have concentrated on incorporating bioactive 

molecules into the material, for instance peptides, proteins and growth factors which 

resulting in biomimetic microspheres with bioactive functions (Wang et al., 2017). The 

ester bonds are hydrolyzed in the surface hydrolysis of aliphatic polyester which 

produced the hydrophilic functional groups. Such active functional groups can be used 

to conjugate bioactive molecules to regulate protein adsorption or cell adhesion (Stupack 

et al., 2001). This technique is ideal for numerous applications in implant technology 



6 
 

and tissue engineering as it offers recognition sites and potential to induce faster 

biodegradation and cell adhesion. 

On the other hand, in order to encapsulate drug within PLA microspheres, 

microencapsulation technique is used. Microencapsulation is the technique of coating or 

surrounding chemical substances either solid, liquid or gas form within material which 

capable of releasing its content under certain conditions such as physical force, moisture 

or pH (Chanana et al., 2013). According to Hwisa et al. (2013), emulsion and solvent 

evaporation (ESE) technique has been reported to be the most effective in encapsulating 

either insoluble or poorly soluble drugs in biodegradable microspheres. The 

effectiveness of DDS preparation technique for microspheres relies on the drug being 

successfully entrapped in the particles. The understanding of ESE technique from the 

intrinsic (interaction between materials) and extrinsic (modifiable parameters such as 

polymer and stabilizer concentration, water-in-oil phase ratio, stirring speed and drug 

loading) perspectives is important for the development of microspheres with desired 

drug encapsulation (Iqbal et al., 2015). 

Therefore, this study is aimed to assess the ability of surface engineered PLA 

microspheres without interrupting its bulk properties to improve the cell affinity through 

sodium hydroxide (NaOH) hydrolysis to produce hydrophilic functional groups. Such 

active functional groups will be used to conjugate growth factors namely basic fibroblast 

growth factor (bFGF) and epidermal growth factor (EGF) to enhance bioactivity with 

the surrounding cells in DDS. Other than that, double ESE is performed to encapsulate 

drugs (gentamicin and dexamethasone) within PLA microspheres to compare their 

effectiveness in DDS in terms of encapsulation efficiency, drug loading and release 
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profiles prior to antimicrobial activity assessments. All the modifications done towards 

PLA microspheres will be assessed via in vitro studies in terms of cells cytotoxicity, 

proliferation, migration, attachment and differentiation assays. 

1.2 Problem Statements 

Instead of the promising features of PLA for biomedical applications, various 

challenges and barriers in the development of an efficient DDS have still emerged. PLA 

microspheres' hydrophobicity characteristic compared to the surrounding extracellular 

matrix (ECM) has unfavorably elicits poor cell affinity and can induce immune response 

during in vitro and in vivo administration (Sadeghi et al., 2016). Other than that, 

accumulation of acidic lactic acid by-products resulting from the disruption of the chain 

in wet condition appears to cause an inflammatory reaction that could hinder further use 

of the microspheres for DDS. This condition is much worse for the delivery of highly 

susceptible macromolecular therapeutic agents such as proteins that could adversely 

weaken their activities under harsh acidic environments (Makadia and Siegel, 2011). 

It is also noteworthy that the PLA surface does not has active functional groups 

for bioactive molecules attachment to enhance integrin binding with cell membranes and 

control protein adsorption (Ma et al., 2002, Croll et al., 2004, Duan et al., 2008). 

Moreover, several undesired effects such as high initial burst during the initial phase of 

drug release appear to transpire for conventional PLA before a stable release profile can 

be achieved (Wang et al., 2007). This bursting effect potentially reduces the drug 

delivery carrier's effective lifetime, thereby impacting both therapeutically and 

economically on its efficacy. 
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Besides that, the encapsulation of drugs can also be challenging due to the 

partitioning of weakly associated drugs from organic phases to external water phases 

during the process of conventional emulsion for the synthesis of PLA microspheres 

(Ramazani et al., 2016). It is therefore very important to design an efficient delivery 

mechanism which has to overcome all the aforementioned shortcomings in order to turn 

the PLA microspheres’ biological potential into medical reality. 

In this study, NaOH hydrolysis is chosen for surface functionalization of the 

PLA microspheres because it introduces reactive functional groups which enhancing 

PLA hydrophilicity. It is predicted that the improvement of hydrophilicity property will 

also increase the biocompatibility of the PLA microspheres. Furthermore, polymer 

surface engineering is potentially used to develop materials that are able to control the 

cellular adhesion and maintain differentiated phenotypic expression as such 

modifications involve enriching surfaces with functional domains such as growth factors 

(GFs). 

Figure 1.1 illustrates the action of GFs in signal transduction pathway to increase 

cellular responses. The GFs such as basic fibroblast growth factor (bFGF) and epidermal 

growth factor (EGF) can promote cellular adhesion through binding to integrin receptors 

and this interaction also plays a significant role in cell growth, differentiation and overall 

regulation of cell function (Belair et al., 2014). GFs basically involve in regulating tissue 

homeostasis and wound healing process (Mina, 2015), while GFs signaling contributes 

to regulate signals by ECM to determine tissue formation and regeneration process (Lu 

et al., 2012). 
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Figure 1.1: Signal transduction pathway involving signaling molecules (GF) leading to 
cellular responses (expression of a target gene) (Alberts et al., 2002). 

Whereas, emulsion and solvent evaporation (ESE) technique has the ability to 

overcome undesired effects encountered by conventional methods such as high initial 

burst before a stable release profile can be achieved (Ramazani et al., 2016). In fact, this 

bursting effect can reduce the drug delivery carrier's effective lifetime which decreasing 

its efficiency. Therefore, microencapsulation using ESE is chosen to produce PLA 
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microspheres as it offers to yield a drug carrier that can release in a controlled manner 

within the therapeutic range for prolong period. This method also eliminates the need for 

multiple drug administration as exhibited from conventional procedures, therefore 

enhance the patient’s compliance. The drugs to be encapsulated within PLA 

microspheres such as gentamicin (Abdelghany et al. 2012) and dexamethasone 

(Rodrigues et al. 2017) basically have the ability to inhibit bacterial infections which 

crucial for serious infection treatments. All the modifications performed will be 

evaluated via in vitro assays to observe the improvement in biocompatibility property of 

the PLA microspheres. 

1.3 Objectives 

Previously, several bulk modifications of PLA were reported by other 

researchers (Castillejos et al., 2018, Standau et al., 2019). However, very limited 

research on surface modification of PLA especially in the form of microspheres was 

conducted. Therefore, this research work is aimed to develop an ideal surface modified 

PLA microspheres for drug delivery applications in terms of improving PLA surface 

with hydrophilic functional groups via alkaline hydrolysis, further enriching it with GFs 

via conjugation to increase cellular bioactivity and encapsulating potential drugs prior to 

in vitro studies. The following are the specific objectives for the surface modified PLA 

microspheres development: 

1. To study the effect of surface modification via NaOH hydrolysis towards optimized 

PLA microspheres properties. 

2. To assess the bFGF and EGF growth factors conjugated PLA microspheres 

properties including conjugation efficiencies and biocompatibility improvements. 
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3. To evaluate the encapsulation efficiency, drug loading and release profile of 

gentamicin and dexamethasone encapsulated PLA microspheres. 

4. To assess the effectiveness of gentamicin and dexamethasone encapsulated PLA 

microspheres to inhibit the bacterial infections. 

5. To study the biocompatibility property of the PLA microspheres via in vitro 

(toxicity, proliferation, migration, attachment and differentiation) assays. 

1.4 Scope of Study 

In the first stage of study, the optimized fabrication of PLA microspheres via 

single emulsion and evaporation technique was conducted followed by surface 

modification of PLA microspheres through catalytic induced hydrolysis method, where 

the alkaline used was NaOH. The effect of different concentration of NaOH hydrolysis 

was characterized in terms of chemical bonding, surface and cross sectional 

morphologies, particle size and size distributions, hydrophobicity/hydrophilicity, surface 

energy and charges, porosity and molecular weight distribution. 

The second stage, bFGF and EGF growth factors were immobilized by linking 

with carboxyl groups after surface modification under N-(3-Dimethylaminopropyl)-N’-

ethylcarbodiimide hydrochloride (EDAC) catalyzation. The surface and bulk properties 

of surface treated and the ability of immobilization with growth factors were studied in 

the aspect of chemical bonding especially the presence of hydroxyl, carboxyl and amine 

groups, surface morphology, particle size distributions, hydrophilicity property, surface 

energy, surface charges and porosity.  
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The third stage, the fabrication of PLA encapsulated with gentamicin and 

dexamethasone by using double emulsion solvent evaporation technique was explored. 

Microspheres properties were studied in the aspect of chemical bonding, surface 

morphology, particle size distributions, hydrophobicity/hydrophilicity, surface energy, 

porosity, encapsulation and loading efficiency as well as release profiles. The release of 

drugs was conducted in the catalyzed accelerated medium at the condition of 37ºC. 

The fourth stage, the effectiveness of PLA microspheres to deliver gentamicin 

and dexamethasone in inhibiting Staphylococcus aureus and Escherichia coli infections 

was studied via Kirby-Bauer agar well diffusion and micro-broth dilution methods. 

Lastly, in vitro bioactivity evaluations in terms of PLA biodegradation, cells 

cytotoxicity, proliferation, migration, attachment and differentiation assays for neat 

PLA, surface engineered, drugs encapsulated and GFs conjugated PLA microspheres 

were discussed. 

1.5 Thesis Outline 

This thesis consists of five chapters which are introduction, literature review, 

methodology, results and discussion and conclusions. 

In Chapter 1, a general introduction to the subject is presented, in addition to the 

problem statements, research objectives, scope of the study and the outline of the thesis. 

Chapter 2 presents relevant literature review in support of the remainder of the 

thesis. This chapter provides a general understanding of drug delivery system, 

biodegradable polymer, poly(lactic acid) (PLA), its structure, properties and an overview 
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of its advantages and disadvantages. The later part of this chapter is focused on 

fabrication of PLA microspheres, surface modification, drugs encapsulation and growth 

factors conjugation of PLA and the applications. While the last part of this chapter 

discusses on antimicrobial and in vitro studies. 

Chapter 3 covers the details of the materials, methodology for preparation of 

PLA microspheres, surface modification, growth factors conjugation and drugs 

encapsulation techniques for characterizations prior to drug release profiles, 

antimicrobial activity evaluations and in vitro studies. 

Chapter 4 covers the experimental results and discussion of the testing that was 

done towards the PLA as mentioned in the previous chapter. 

Chapter 5 summarizes the conclusions of this research and also includes a few 

suggestions for future works. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Drug delivery system (DDS) could assist and deliver the correct amount of drug 

to the site of action to maximize the desired therapeutic response in an optimum period 

of time (Hillery et al., 2001). When a drug is taken, the resulting biological responses 

such as lowering of blood pressure would occur which determined by the 

pharmacological properties of the drug (Kang and Lee, 2009). An interaction of the drug 

with specific receptors at the site of action usually produces these biological effects 

(Garland, 2017). The improvement of drug-releasing materials has been studied for the 

last three decades (Coelho et al., 2010). Their suitability for use in tissue engineering 

especially for cartilage and bone, pharmaceutical and cancer therapy have been well 

assessed (Nikkola et al., 2009). Drug delivery carriers have numerous advantages 

compared to the conventional drug administration approaches (Tiwari et al., 2012). Drug 

delivery has been established in order to conserve effective drug concentration in the 

bloodstream over a longer period of time, increase efficiency and minimize side effects 

of the drugs to enhance patients’ compliance (Jain, 2008). 

2.2 Drug Delivery System (DDS) 

2.2.1 Definition 

Drug delivery system (DDS) is a device or formulation that enables the 

introduction of a therapeutic material into the body and improves its efficiency and 
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safety by governing the time, place and rate of release of drugs in the body (Bruschi, 

2015). This system associates drug delivery procedures with engineered technology and 

generates the ability to specifically target the rate at which drug gets released and where 

it is released which can benefits patients in various ways by eliminating multiple 

administrations (Katie, 2016). Davis (2013) reported that DDS based on biodegradable 

polymers is beneficial for use as implants that provide a slow and sustain release of a 

pharmacological agent. 

According to the National Institute of Biomedical Imaging and Bioengineering 

(2018), drug has been used to improve health and the practice of the delivery system has 

changed extensively in the past few decades and even excessive modifications are 

anticipated in the near future. Biomedical engineers have contributed to improve 

understanding on the physiological barriers to deliver drug efficiently, for instance drug 

movement through cells and tissues and the development of innovative modes of drug 

delivery that have entered clinical practice (NIH, 2018). 

Shaik et al. (2012) stated that the approaches in DDS used in monitoring the 

pharmacodynamics, pharmacokinetics, efficiency, immunogenicity, biorecognition and 

non-specific poisonousness which related to polymer science, molecular biology and 

bioconjugate chemistry. These approaches are aimed to decrease drug loss, prevent 

unwanted side effects and increase drug bioavailability. Thus, extensive and intensive 

researches on the development of drug delivery and drug targeting systems have been 

conducted (Reddy and Swarnalatha, 2010, Bhagwat and Vaidhya, 2013). 
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DDS is considered ideal when the system achieves inert, biocompatible, 

mechanically strong, give comfort for the patient, capable of achieving high drug 

loading, readily processable, safe from accidental release, simple to administration and 

removal, easy to fabricate and sterilize and free of toxic leachable impurities (Li et al., 

2015). The advantages of DDS include maintain drug levels in a desired range, need for 

less dosing, eliminate over or under dosing, increase patient compliance and prevention 

of side effects (Wen et al., 2015). 

2.2.2 Concept/Mechanism of Drug Delivery System 

Conventional drug release system increases the drug concentration in the 

bloodstream and rapid reduction of the drug availability within short period of time 

(Singh and Lillard Jr, 2009). Huynh and Lee (2014) reported on the conventional system 

that has been improved with the controlled release system to achieve the objective of 

sustaining the drug level in the bloodstream for prolonged effect. In the practical of 

DDS, the concept of controlled release of drug from dosage form is to maintain its 

concentrations within the therapeutic range which can improve the permeability of drug 

across the skin and mucosal membranes (Takayama, 2015). The development of 

controlled release system using polymeric materials for the pharmaceutical application 

has been studied using poly(lactic‐co‐glycolic acid) (PLGA) by Gandhi et al. (2012), 

poly(vinyl alcohol)-graft-poly(ethylene glycol) (PVA-g-PEG) copolymer by Huynh and 

Lee (2014) and polylactides (PLA) by Sowjanya et al. (2017). There are four major 

mechanisms of DDS include diffusion, swelling, chemically controlled and degradable. 
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Figure 2.1 shows the mechanisms of diffusion-controlled drug delivery system. 

The diffusion-controlled release system is divided into reservoir (membrane-controlled) 

and monolithic (matrix-controlled) devices (Blagoeva and Nedev, 2006). In reservoir 

system, the drug is encapsulated as a core within a polymer coat or film. The diffusion 

process occurs through a membrane that controls the drug or solvent movement between 

two sides and the diffusion rate is determined by the membrane permeability and the 

device’s geometry (Fu and Kao, 2010). While the transport of the drug is by solution-

diffusion mechanism which related to the release characteristic modelling (Varshosaz 

and Hajian, 2004). In addition, when the device contains dissolved drug, the rate of 

release decreases exponentially with time because the drug concentration within the 

device decreases (Dukhin and Labib, 2017). However, if the active agent is in a 

saturated suspension, then the driving force for release is kept constant (zero order 

release) until the device is no longer saturated (Andersson et al., 2009). 

 
Figure 2.1: Schematic representation of (a) reservoir and (b) monolithic diffusion-

controlled drug delivery system mechanisms (Blagoeva and Nedev, 2006). 

While in a monolithic system, the drug is dispersed in a matrix and the release is 

controlled by diffusion from the system which can occur on a macroscopic scale 

(through pores in the polymer matrix) or on a molecular level (passing between polymer 

chains) (Andersson et al., 2009). According to Dizaj et al. (2015), the drug solubility and 
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its dissolution rate of monolithic system significantly influence the drug release kinetics. 

If the drug is present in the matrix below its solubility limit, it can be dissolved in a 

polymer matrix whereas if the drug is present above its solubility limit, it is dispersed 

(Medarevic et al., 2019). For a dispersed drug in a matrix, the dissolution rate is slower 

than the diffusion rate of the drug, thus the release rate is determined by the dissolution 

rate (dissolution-controlled), whereas diffusion-controlled accounted for a dissolved 

drug in a matrix in which the rate is vice versa (Skolakova et al., 2019). 

 The other mechanism of DDS is water penetration where the process of osmotic 

pressure from the incoming water pushes the drug out via the semi-permeable membrane 

(Keraliya et al., 2012). This controlled release system is divided into osmotically 

controlled and swelling (Patel and Patel, 2010). Study by Harrison (2007) explained that 

osmotically controlled system contains an osmotically active agent within a rigid 

housing which separated from the therapeutic agent by a movable wall. Based on the 

Figure 2.2, water is osmotically driven across the semipermeable wall of the housing 

under gradient osmotic pressure, thus will increase the pressure in the compartment of 

the osmotic agent (Siew, 2013, Nidhi et al., 2016). According to Keraliya et al. (2012), 

osmotic pump is the most promising controlled system used for oral and implantation. 

The osmotic pump consists of an inner core (containing drug and osmogens) coated with 

semipermeable membrane and as the core absorbs water the volume is expanded 

resulting in drug solution release through the delivery ports. While in swelling controlled 

system, the agent is dispersed in a hydrophilic polymer which is glassy in the dehydrated 

state (Ahmed, 2015). The therapeutic agent absorbs water or body fluids and swells 

which leads to the polymer releasing the agent into the outer environment because of 



19 
 

increasing in the formulation of aqueous solvent content (Calo and Khutoryanskiy, 

2015). 

 
Figure 2.2: Schematic of (a) osmotically controlled system and (b) formation of push 

layer by osmotic pressure to release out the drug (Siew, 2013). 

According to Sawadogo and Nacro (2016), chemically controlled system is 

where the therapeutic agent can be attached to a polymer backbone with changes its 

chemical construction in the biological fluid and the disintegration of the backbone by 

hydrolysis breaks the bond resulting in the releasing of the agent. Huynh and Lee (2014) 

and Nidhi et al. (2016) reported that the drug also can be dispersed in a biodegradable 

polymer without any transformation during the release period but later will be slowly 

degraded. 

On the other hand, degradable drug release mechanism is versatile and popular 

which mostly used in injection of implantation applications (Stewart et al., 2018). Figure 

2.3 shows the mechanism of degradable drug release system. The empty polymeric 

microspheres do not need surgical or removal procedures because of degradability into a 

non-toxic byproduct property and the depleted microspheres will degrade itself with 

surrounding environment (Pek et al., 2014, Chen and Liu, 2016). The most critical 
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criteria in degradable drug release systems is the degradable products are non-toxic and 

can be excreted out from the body easily in a safe manner (Fu and Kao, 2010). 

 
Figure 2.3: Schematic diagram of degradable drug release mechanism (Mustapha, 2014). 

2.2.3 Type of Drug Delivery System 

The objective of targeted drug delivery system is mainly to transfer drug into the 

targeted cells without any harmful and undesired effects on healthy tissues and organs 

(Sheikhpour et al., 2017). Targeted drug delivery also focuses on directing the 

therapeutic concentration of the drug and sustaining availability at the targeted location 

(Kumari et al., 2015). In order to achieve such objectives, it is crucial to recognize the 

classification of DDS. DDS can be classified into two types based on solving the desired 

positions which are active and passive targeting (Yu et al., 2016). Figure 2.4 shows the 

classification of types in DDS. 

 
Figure 2.4: Types of drug delivery system (Bhagwat and Vadhya, 2013). 
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Active targeting is the interaction between ligands on the drug carrier’s surface 

and receptors on the cell’s surface which leads to accurate targeting at the desired site 

(Aguilar, 2013). This system is basically based on a method that delivers a certain 

amount of therapeutic or diagnostic agents to a targeted disease area within the special 

organ in the body (Anarjan, 2019). For instance, ∂vß3, ∂vß5 integrins and extra domain 

B (EDB) fibronectin were discovered in angiogenic vessels using this approach (Nilsson 

et al., 2001). 

On the other hand, passive targeting involves the improvement of 

chemotherapeutic agents of vascular permeability of tumor cells or tissues (Chen et al., 

2016a). This approach normally occurs under certain conditions such as inflammation 

and hypoxia which are typical for tumours, thus the endothelium of blood vessels 

becomes more permeable than in the healthy state (Attia et al., 2019). Study by Alexis et 

al. (2008) reported poly(ethylene) glycol (PEG)ylated nanoparticles have decreased the 

adsorption of plasma protein on their surface and hepatic filtration via passive targeting. 

In brief, active targeting changes the natural distribution of a carrier guiding it to a 

specific cell or organ while passive targeting depends on the natural distribution of the 

drug and enhanced permeation and retention (EPR) effect (Yu et al., 2016). 

2.2.4 Route of Administration in Drug Delivery System 

The success of the drug administration is determined by the efficacy and safety 

to deliver the drug at the targeted area with minimal host’s defense system interaction 

(Din et al., 2017). The factors to be considered to achieve therapeutic effect include type 

of disease, desired effect and can be administered through enteral, parenteral, topical or 
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inhalation routes (Turner et al., 2011). Figure 2.5 shows the different type of drug 

administration routes. 

 
Figure 2.5: Major type of routes of drug administration (Pharma, 2015). 

 Enteral route is the most common and oldest route to deliver drug because it is 

simple and comfortable for patients (Ruiz and Montoto, 2018). The drug is absorbed into 

the systemic circulation through the oral, gastric mucosa, small intestine or rectum and 

can be divided into oral and sub-lingual routes (Hirota and Shimizu, 2012). According to 

Gautami (2016), oral route is mostly used for neutral drugs in a form of capsule, tablet, 

powder, emulsion or syrup. The advantages of orally administered drug include 

economical, no sterilization needed, suitable to produce local action, larger amount of 

drug can be given, easily self-administered and toxicity or overdose can be overcome 

with antidotes (Muheem et al., 2016, Saxen, 2016). Whereas sub-lingual route is the 

placement of small and lipid soluble drug under the tongue to allow diffusion into the 

capillary and enters the systemic circulation (Colombo et al., 2007). This type of route 

basically convenient to patients, rapid success of maximum therapeutic concentration, 

low infection and the drug not entering hepatic circulation (Maddison et al., 2008). 

 Based on Figure 2.6, the other route for drug administration is parenteral where 

poorly absorbed and unstable drug in gastrointestinal tract (GIT) is introduced directly 
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across body barrier’s defense into systemic circulation (Washington et al., 2001, Ahmed 

and Aljaeid, 2016). Parenteral route is having the highest drug bioavailability, providing 

the most control over the actual dose of drug delivered to the body and used for 

treatment of patients that require rapid onset of action (Jin et al., 2015). This route can 

be divided into five categories; intravenous (IV), intramuscular (IM), subcutaneous 

(SC), intraperitoneal (IP) and intracardiac (IC). IV route is the most used in parenteral 

type where the drug is administered into the vein which requires rapid effect and 

maximum control over drug level circulation, while IM is used for rapid onset and 

slowly absorbed drug to provide a sustain dose over an extended period of time (Hirota 

and Shimizu, 2012, Saxen, 2016). On the other hand, SC route requires absorption via 

simple diffusion which is slower effect compared to IV whereas IP route is used when 

large amount of blood replacement fluids are needed (Parasuraman et al., 2017). The 

other parenteral type of drug administration is IC where the drug is injected directly into 

the heart because very rapid absorption and onset of action are required (Turner et al., 

2011). 

 
Figure 2.6: Parenteral route of drug administration (Ahmed and Aljaeid, 2016). 
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 For topical route, the application is used directly when a local effect of the drug 

is desired which categorized into dermal (local) and transdermal (systemic) (Alkilani et 

al., 2015). Transdermal delivery consists of membrane permeation-controlled, adhesive 

dispersion-type, matrix diffusion-controlled and micro-reservoir dissolution-controlled 

systems (Bathe and Kapoor, 2015). The advantages of topical route include lower risk of 

side effects, steady level of drug in the system and local therapeutic effects (Hirota and 

Shimizu, 2012). While inhalation or pulmonary route involves volatile drug 

administration into the nose which directly passes to the lungs and eliminates systemic 

effects (Ibrahim et al., 2015). The merits of this route are easy, fewer doses required, 

minimum side effects as well as rapid onset of action and absorption (Hirota and 

Shimizu, 2012). 

2.2.5 Drug Delivery System Carrier/Device 

 The design of novel DDS which ables to transport an effective amount of cargo 

specifically to the target cell or tissue is one of the main challenges for the biomedical 

scientific community (Corilla and Vallet-Regi, 2013). Most clinically used drugs in oral 

or systemic administration are low molecular weight that exhibit short half-life in the 

bloodstream and a high overall clearance rate (Flynn, 2007). Thus, high initial drug 

doses are essential to sustain therapeutic concentrations over a prolonged time 

(Musteata, 2012). According to Devi (2010), some drugs are having an optimum 

concentration range within maximum benefit is derived, so concentration above or 

below this ideal range is considered toxic or no therapeutic effect, respectively. On the 

other hand, slow progress of severe disease treatment has suggested a growing need for 

multidisciplinary approaches to the therapeutic agents’ delivery to the target tissues 
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