
1D MULTIGRID SOLVER FOR FINITE ELEMENT

METHOD

By:

MOHAMAD AMIRUDDIN BIN AZHAR

(Matrix no. 143732)

Supervisor:

Dr. Muhammad Razi Bin Abdul Rahman

July 2022

This dissertation is submitted to

Universiti Sains Malaysia

As partial fulfilment of the requirement to graduate with honors degree in

BACHELOR OF ENGINEERING (MECHANICAL ENGINEERING)

School of Mechanical Engineering

Engineering Campus

Universiti Sains Malaysia

ii

DECLARATION

This work has not previously been accepted in substance for any degree and is not being

concurrently submitted in candidature for any degree.

Signed…………………………………… (MOHAMAD AMIRUDDIN BIN AZHAR)

Date………………………………………………………………….……...(24/7/2022)

Statement 1:

This thesis is the result of my own investigations, except where otherwise stated. Other

sources are acknowledged by giving explicit references. Bibliography/references are

appended.

Signed…………………………………… (MOHAMAD AMIRUDDIN BIN AZHAR)

Date………………………………………………………………………...(24/7/2022)

Statement 2:

I hereby give consent for my thesis, if accepted, to be available for photocopying and

for interlibrary loan, and for the title and summary to be made available outside

organizations.

Signed…………………………………… (MOHAMAD AMIRUDDIN BIN AZHAR)

Date………………………………………………………………………...(24/7/2022)

iii

ACKNOWLEDGE

First and foremost, I would like to express my gratitude to the Almighty God who is the

one who has always guided me to work on the right path in life. Without His grace, this

project could not become a reality. I received a lot of directly and indirectly help and

guidance from many respected persons who deserve our greatest appreciation in

completing my project and report. I would like to express my deepest gratitude to my

supervisor, Dr Muhammad Razi Bin Abdul Rahman for giving me this opportunity to

learn new things and providing a lot of advice and suggestions through numerous

consultations to assist me to complete this project. His guidance has helped me in all

the time of researching, programming and writing this thesis. I could not have imagined

having a better advisor and mentor for my final year project. In addition, I would also

like to expand my gratitude to our Final Year Project Coordinator, Dr Muhammad

Fauzinizam Bin Razali who introduced the guideline and requirements needed to

complete the project so that I can complete my final year project successfully. I believe

that I may face a lot of obstacles while going through the project development without

their guidance.

iv

TABLE OF CONTENT

DECLARATION ... ii

ACKNOWLEDGE ... iii

TABLE OF CONTENT .. iv

LIST OF FIGURES .. vi

LIST OF TABLES .. viii

LIST OF ABBREVIATIONS ... ix

ABSTRAK ... x

ABSTRACT .. xi

CHAPTER 1 INTRODUCTION ... 1

1.1 Project Overview ... 1

1.2 Problem Statement .. 4

1.3 Objectives .. 4

1.4 Scope of the Project ... 4

CHAPTER 2 LITERATURE REVIEW .. 5

2.1 Overview ... 5

2.2 Multigrid Method .. 5

2.3 Finite Element Method .. 5

2.4 Combination of Multigrid Method with Finite Element Method 6

2.5 Conclusion of the Research ... 9

CHAPTER 3 RESEARCH METHODOLOGY .. 10

3.1 Overview ... 10

3.2 1-D Case Study: Cantilever Beam Deflection ... 10

3.3 Finding of MG Method Coding with the Implementation of FEM 11

3.4 Hardware and Software ... 13

3.5 Performance Test of Algorithm ... 13

3.6 Problem Detection ... 14

v

3.7 Coding Modification ... 16

3.8 Flowchart of the Algorithm ... 17

3.9 Coding Explanation ... 21

3.10 Memory Usage Performance ... 26

3.11 Plotting Graph .. 27

CHAPTER 4 RESULT AND DISCUSSION .. 28

4.1 Overview ... 28

4.2 MG Solutions of the Cantilever Beam Problems .. 28

4.3 Performance Test Result of Unmodified Source Code 30

4.4 Performance Test Result of Modified Source Code 32

4.5 Performance Comparison .. 35

4.6 Maximum Number of Elements Result ... 36

4.7 Memory Usage Result ... 37

CHAPTER 5 CONCLUSION AND FUTURE WORK .. 40

5.1 Conclusion ... 40

5.2 Future Work .. 40

REFERENCES .. 41

APPENDICES ... 43

vi

LIST OF FIGURES

Figure 1.1: Example of Multigrid Solution in different iterations [2]. 2

Figure 1.2: Example of 2D domain discretized by finite differences and finite elements

[5]. .. 3

Figure 3.1: The main body program to record the time taken 14

Figure 3.2: The coding of four sections was tested ... 15

Figure 3.3: New function of the Gauss-Seidel Method ... 16

Figure 3.4: New coding for section 4 ... 17

Figure 3.5: Flowchart of the main program ... 18

Figure 3.6: Flowchart of the FEM function ... 19

Figure 3.7: Flowchart for Multigrid_TwoGrid function .. 20

Figure 3.8: The profile function ... 26

Figure 3.9: The profiler window .. 27

Figure 3.10: Additional function used for plotting graph .. 27

Figure 4.1: Deflection result for 50 elements .. 28

Figure 4.2: Deflection result for 100 elements .. 29

Figure 4.3: Deflection result for 150 elements .. 29

Figure 4.4: Graph result of performance test for unmodified code 31

Figure 4.5: The assumption of time taken for unmodified code 32

Figure 4.6: Graph result of performance test for modified code 34

Figure 4.7: Comparison graph of unmodified and modified code 35

Figure 4.8: Graph result of performance test for every number of elements 36

Figure 4.9: Graph of memory allocated and memory freed ... 38

Figure 4.10: Profiler result for 100 elements ... 39

Figure 4.11: Profiler result for Animate function .. 39

vii

A - 1: Main body program ... 43

A - 2: FEM function ... 44

A - 3: Multigrid_TwoGrid function part 1 ... 45

A - 4: Multigrid_TwoGrid function part 2 ... 46

A - 5: Gauss_Seidel Function .. 47

A - 6: Project_FineToCoarse function ... 48

A - 7: gauss_seidel2 function ... 48

A - 8: Result Function .. 49

A - 9: Animate function ... 50

viii

LIST OF TABLES

Table 3.1: The main program code explanation .. 21

Table 3.2: The FEM function code explanation .. 22

Table 3.3: The Multigrid_TwoGrid function explanation ... 23

Table 3.4: The Gauss-Seidel function explanation .. 24

Table 3.5: The Project_FineToCoarse function explanation 25

Table 3.6: The new Gauss-Seidel function explanation .. 25

Table 4.1: Result of the performance test for unmodified code 30

Table 4.2: Result of the performance test for modified code....................................... 33

Table 4.3: Result of memory usage ... 37

ix

LIST OF ABBREVIATIONS

MG Multigrid

FEM Finite Element Method

1D One-Dimension

CPU Central Processing Unit

RAM Random Access Memory

USM Universiti Sains Malaysia

x

ABSTRAK

Kod pengiraan menggunakan Kaedah Multigrid dengan gabungan Kaedah

Unsur Terhingga untuk menyelesaikan masalah matematik agak jarang digunakan

dalam domain awam. Biasanya, masalah matematik ini boleh diselesaikan hanya

menggunakan satu daripada dua kaedah tersebut. Contoh kod sedemikian yang ditulis

dalam bahasa pengaturcaraan MATLAB ditemui dalam repositori GitHub, di mana

algoritma yang dilaksanakan adalah jauh dari prestasi optimum. Algoritma yang

tersedia bagi penyelesai Multigrid dengan Kaedah Unsur Terhingga telah diubah suai

dan diuji untuk prestasinya. Dua jenis pengiraan telah digunakan untuk menentukan

prestasi penyelesai. Yang pertama ialah simulasi masa. Simulasi ini akan menentukan

masa yang diambil untuk simulasi selesai bagi setiap bilangan unsur. Prestasi algoritma

untuk setiap bilangan unsur boleh dikenal pasti daripada simulasi ini. Ujian masa pada

algoritma menunjukkan semakin tinggi bilangan unsur, lebih tinggi masa yang diambil

untuk menyelesaikan simulasi. Walau bagaimanapun, algoritma yang disediakan oleh

repositori GitHub adalah kurang cekap. Oleh itu, beberapa pengubahsuaian kepada

algoritma dibuat untuk meningkatkan prestasi penyelesai. Jenis kedua ialah simulasi

memori. Prestasi memori telah diuji dengan menentukan nilai memori yang digunakan

untuk setiap bilangan unsur. Walau bagaimanapun, data yang dihasilkan tidak

mencukupi dan tidak tepat. Oleh itu, prestasi algoritma tidak dapat ditentukan

menggunakan parameter ini. Seterusnya, algoritma telah diubah suai dengan

menggunakan fungsi Gauss-Seidel baharu. Algoritma baharu juga telah diuji

menggunakan simulasi masa. Kemudian, hasilnya dibandingkan dengan hasil simulasi

masa sebelum pengubahsuaian. Ujian memberikan hasil yang lebih ketara daripada

algoritma asal. Oleh itu, pengubahsuaian algoritma memberi impak positif kepada

kecekapan penyelesai.

xi

ABSTRACT

Computational code using the Multigrid Method with the combination of the

Finite Element Method to solve a mathematical problem is quite rare in the public

domain. Usually, the mathematical problem can be solved using only one of those two

methods. A sample of such code written in MATLAB programming language was

found in the GitHub repository, where the implemented algorithms are far from optimal.

This available algorithm of the Multigrid solver with the Finite Element Method was

modified and tested for its performance. Two kinds of computation have been used to

determine the performance of the solver. The first one is time simulation. This

simulation will determine the time taken for the simulation to complete for every

number of elements. The performance of the algorithm for any number of elements can

be identified from this simulation. The time test on the algorithm shows the high number

of elements, the higher time taken to complete the simulation. However, the algorithm

provided by the GitHub repository is less efficient. Therefore, some modifications to

the algorithm are made to increase the performance of the solver. The second type is

memory simulation. The memory performance was tested by determining the value of

memory used for every number of elements. However, the data produced is insufficient

and inaccurate. Therefore, the performance of the algorithm can not be determined

using this parameter. Next, the algorithm was modified by using a new Gauss-Seidel

function. The new algorithm also has been tested using time simulation. Then, the result

was compared with the result of the time simulation before the modification. The test

gives a more significant result than the original algorithm. Therefore, the modification

of the algorithm gives a positive impact on solver efficiency.

1

CHAPTER 1

INTRODUCTION

1.1 Project Overview

In this life, many problems can be solved using mathematical solutions such as

the numerical method, multigrid method, finite differential method, finite element

method, etc. This mathematical solution has been used for hundreds of years back there,

but it is so hard for humans to calculate this mathematical solution manually. The human

mind's limitations prevent it from grasping the behaviour of its complex surroundings

and inventions in a single action. The increasing use of computers in the current era will

reduce the workload of humans in this world. The computer is one of the intelligent

devices that help humans solve any type of problem. Discrete problems may now be

handled quickly, even when the number of elements is quite huge, thanks to the

development of digital computers [1]. All these mathematical methods will be

implemented into programming languages to help humans compute the solution in the

easiest and fastest way.

Mathematicians and engineers have taken various approaches to the

discretization of continuous problems [1]. Mathematicians have developed general

techniques for determining the stationarity of properly defined 'functionals' that can be

applied directly to the differential equations that govern the problem, such as finite-

difference approximations, various weighted residual procedures, and approximate

techniques for determining the stationarity of properly defined 'functionals' [1].

Engineers, on the other hand, frequently take a more natural approach to the problem

by drawing a parallel between real discrete elements and finite sections of a continuum

domain [1].

 There are many types of programming software that have been used to solve this

mathematical problem, such as Python, MATLAB, C++, ANSYS, etc. In the

engineering field, the common software used is MATLAB and ANSYS. This

programming software provides many engineering solutions, such as displaying the

stress and strain profile on the structural body of a car, displaying the heat profile on a

steel bar, and so on.

2

 The main focus of this paper is to conduct a research project about the multigrid

method and the finite element method. The multigrid method is used to solve many

numerical problems. Multigrid's main goal is to speed up the convergence of a basic

iterative approach called relaxation, which decreases short-wavelength errors by

performing a global correction of the fine grid solution approximation from time to

time, which is performed by solving a coarse problem. Independent of the fine grid

mesh size, this multigrid cycle often decreases all error components by a set amount far

below one. The numerical solution of elliptic partial differential equations in two or

more dimensions is one of multigrid's most common applications.

Figure 1.1: Example of Multigrid Solution in different iterations [2].

 Although J.T. Oden's early works on finite element analysis date from the 1960s,

they show the application of what was then a relatively poorly understood numerical

method to problems that are still considered difficult by today's standards, such as large

deformation elasticity, pneumatic structures, thermoelasticity, fluid flow, and

incompressible elasticity [3]. The Finite Element Method (FEM) is a basic numerical

method for solving partial differential equations with two or three variables in two or

3

three dimensions. The FEM separates a big system into smaller, simpler sections called

finite elements to solve a problem. The finite element method, which was first

established as an ad hoc engineering procedure for obtaining stress and strain

displacement solutions in structural analysis, has evolved in numerous ways [4]. The

finite element method is essentially geometry-free and theoretically be used in domains

of any form and with arbitrary BCs [5]. By definition, the finite element approach

produces unstructured meshes where the majority of complicated geometries can be

easily handled [5]. These characteristics distinguish the finite element approach as a

generic, systematic, powerful, and adaptable numerical method that outperforms other

numerical methods [5].

Figure 1.2: Example of 2D domain discretized by finite differences and finite elements [5].

 Both these methods are combined to increase the accuracy of the solution.

However, programming codes for this method are rarely found in public as the

complexity of the code is very high. On the GitHub repository, there are no

programming codes that implement the multigrid method with the finite element

method currently. One method for implementing the finite element method with the

multigrid solver is to modify the current multigrid solver code.

This project will start with finding and collecting information about the finite

element method that is implemented in the multigrid solver. The GitHub repository has

been used to find the application of the finite element method with a combination of

multigrid solvers. The multigrid solver codes have been searched throughout this

website to find the most suitable multigrid code to modify and implement the finite

element method.

4

At the end of this project, the programming structure for the 1D Finite Element

with the multigrid solver can be used to solve any simple 1D problem, such as 1D heat

conduction or 1D elasticity problems. By completing this task, the performance

characteristics of the multigrid solver can be identified.

1.2 Problem Statement

The Finite Element Method (FEM), combined with the multigrid (MG) method,

is well accepted to yield a highly accurate solution. The MG solver is an algorithm for

solving differential equations using a hierarchy of discretization. Its implementation in

the FEM is however very complex, such that existing code implementations are rarely

found in the public domain. For this purpose, this project will illustrate the principle of

the FEM-MG solver by implementing it in a 1D problem. The task is to set up a

programming structure for a 1D Finite Element with the multigrid solver that can be

solved for any simple 1D heat conduction or 1D elasticity problem.

1.3 Objectives

The specific objective for this project was:

i. To implement a multigrid method for solving a Finite Element method problem.

ii. To modify the available code of Multigrid solver with Finite Element Method.

iii. To identify the performance of the solver using a different number of elements.

iv. To improve the current available Multigrid solver with Finite Element Method

algorithm.

1.4 Scope of the Project

 This project involves the simulation of a 1D Multigrid solver with the Finite

Element Method. Different value of unknown was used for the simulated 1D problem

to obtain performance characteristics. The simulation was done using Python and

MATLAB software. The code was created to implement the finite element method into

multigrid code by modifying an existing example code.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

This chapter will explain the finding of the research paper on the topic of a

combination of the Multigrid Method with the Finite Element Method to solve the Finite

Element Problem. This section also includes a deep explanation of the Multigrid

Method and Finite Element Method.

2.2 Multigrid Method

The multigrid method is one of the fastest ways to solve differential equation

problems. The multigrid solver is an algorithm for solving differential equations using

a hierarchy of discretization. Multigrid methods are a class of algorithms used to solve

computational problems [6]. It is primarily used for solving linear and non-linear

boundary value problems [6]. The main reason for using the multigrid method is to

accelerate the convergence of the basic iterative method. The multigrid method can be

used in combination with any common discretization technique, such as the finite

element method. There are many types of multigrid algorithms, but the most frequent

feature used is a hierarchy of discretization. The major steps are smoothing, residual

computation, restriction, interpolation, and correction. There are three main types of

multigrid methods, which are V-Cycle, F-Cycle, and W-Cycle. For a discrete 2D

problem, the V-Cycle iteration is the fastest type to compute, while the F-Cycle and W-

Cycle iterations take 89% and 125% more time to compute, respectively. In terms of

3D problems, F-Cycle and W-Cycle take about 64% and 75% more time, respectively,

compared to V-Cycle by ignoring the overheads. To reduce the complexity, this project

will cover the 1D problem in combination with the finite element method.

2.3 Finite Element Method

 The finite element method is a common numerical method to solve partial

differential equations. This method is used widely in engineering fields, such as

mathematical modelling. With the advent of digital computers, discrete problems can

6

generally be solved readily even if the number of elements is very large [1]. As the

capacity of all computers is finite, continuous problems can only be solved exactly by

mathematical manipulation [1].

2.4 Combination of Multigrid Method with Finite Element Method

For the two-field issue, finite element methods are the most widely utilised

numerical discretization [7]. For example, a continuous Galerkin (CG) element for both

displacement and pressure are examined [7]. This paper is mainly focused on multigrid

for poroelasticity problems by using the finite element method with homogeneous

boundary conditions in two-dimensional space. The multigrid method is one of the most

efficient iterative techniques, reducing discrete equation computation to O(N) or

O(NlogN), where N is the linear system's scaling [7]. In this research, there are two

mains unknown which are displacement and pore pressure. The distributive Gauss-

Seidel iteration is smoother in the multigrid algorithm [7]. The demonstration of

multigrid in this paper was using the V-Cycle. The result is the method does not

converge within 200 iterations. The V-Cycle multigrid method with two-step pre and

two-step post-smoothing is almost uniform, as the numerical results show [7]. By

reviewing this paper, there is no combination of the multigrid method with the finite

element method.

 The computing of the solution to a system of equations is an important part of

finite element techniques and iso-geometric analysis [8]. Both of these analyses were

tested using the multigrid method. In this research, the finite element method was

combined with an immersed method. Immersed methods are useful tools for generating

body-fitted finite element discretization or analysis-suitable NURBS geometries in

isogeometric analysis, especially for problems involving complex, moving, or

implicitly defined geometries, to avoid time-consuming and computationally expensive

procedures [8]. This is especially difficult for systems obtained via immersed

techniques because such approaches typically provide system matrices that are

substantially ill-conditioned [8]. The multigrid V-cycle iteration is used in these

contributions. Multigrid methods successfully overcome the mesh-size dependency of

linear system conditioning and its influence on iterative solution methods' convergence

[8]. Although multigrid methods have not been fully investigated in the context of

7

immersed finite element methods, there are substantial studies available on closely

related features [8]. This also proves that the combination of the finite element method

with multigrid is very less used. This contribution's main goal is to provide a geometric

multigrid preconditioning approach that may be used with higher-order immersed finite

element techniques using conventional, isogeometric, and locally refined basis

functions [8]. The numerical findings are produced using a multi-grid baseline method

and a reasonably simple Schwarz block selection [8]. While the computational cost

scaling is already optimal in terms of system size, the structure of multigrid

preconditioners with Schwarz-type smoothers allows for changes that can further

improve efficiency [8].

 Anomaly diffusion, material science, image processing, finance, and

electromagnetic fluids all employ fractional equations to describe events [3]. In the

same manner that standard diffusion equations originate from Brownian random walks,

partial differential equations with fractional-order operators occur naturally when the

limit of discrete diffusion is dominated by stochastic processes [3]. The effective

solution of fractional equations presented on complex domains is a subject of substantial

practical relevance, and computational models for the numerical resolution of models

incorporating fractional derivatives in two or more dimensions are relatively sparse [3].

The goal of this project is to create all of the components needed to build an adaptive

finite element algorithm for approximating fractional partial differential equations [3].

In the end, this research has expanded the fractional Laplacian operator's numerical

approximation from globally quasi-uniform meshes to locally refined meshes in this

paper [3]. It used posterior error indicators and adaptive mesh refinement to overcome

delayed convergence caused by the inherent singularity of the solution at the boundary

[3].

 Fine-scale qualities impact the overall characteristics of any structural or natural

material [9]. All of those micro-details, however, cannot normally be directly taken into

account in modelling due to the tremendous scale and complexity of the calculation [9].

As a result, numerous homogenization approaches for a simpler analysis of

heterogeneous material have been devised [9]. They studied the evolution of multigrid

homogenisation in this study since it relates to materials that do not have a periodic

microstructure or a scale separation feature [9]. Linear elasticity for composite materials

flows in porous media, and electrostatics are examples of such problems [9]. At the

8

macro-scale, we apply the higher-order finite element method approximation and

provide a revised definition of the inter-grid operators, resulting in a rapid convergence

of both displacements and stresses in terms of not only the number of degrees of

freedom but also the CPU time [9]. This study used a new approach of inter-grid

mapping building to apply the hierarchical approximation of order up to five for

multigrid homogenization [9]. The numerical studies reveal a quick reduction in the

modelling error that each homogenization method invariably introduces [9].

 Direct numerical simulation of solid-liquid two-phase flows is challenging due

to the uneven domain inhabited by the fluid, which varies with particle motion [10].

Furthermore, because the particles are advected by the fluid and exert forces on it, the

body-liquid interaction necessitates the calculation of the fluid stress at the fluid-solid

interface, especially in the case of large numbers of particles [10]. Besides, the

interactions between the fluid and the particles, as well as particle collisions, add to the

problem's complexity [10]. To overcome such a problem, two different ways have been

proposed. The first is an extended ALE standard Galerkin finite element method that

incorporates both the fluid and particle equations of motion into a single linked

variational equation [10]. The second method is based on the concept of fictitious or

embedded domains [10]. The research has proposed a multigrid finite element method

based explicit fictitious boundary method [10]. A multigrid finite element solver

calculates the flow, and solid particles are free to travel through the computational mesh,

which may be selected separately from particles of any form, size, or number [10]. The

multigrid finite element method fictitious boundary technique has been introduced for

the direct numerical modelling of solid-liquid two-phase flows in 2D with many moving

particles [10]. Several comparisons between the reported findings and relevant

reference results from our calculations or the literature have demonstrated the reliability

of the method [10].

 Several engineering situations are modelled using partial differential equations

(PDEs) [11]. These equations must adhere to the specific boundary and initial

conditions, creating an analytical solution a difficult and not always doable process [11].

This paper provides a model for solving the hyperbolic PDE which is the wave equation

[11]. The finite difference method discretizes the transient wave equation, resulting in

a linear system that may be solved using a solver such as the Gauss-Seidel method [11].

Applying the multigrid algorithm, which is highly advocated in the literature and

9

considerably enhances the convergence factor, is one way to speed up the process of

getting the solution to this system [11]. The time-stepping method may be used to solve

physical problems described by PDEs that are time-dependent, in which the solution of

the previous time step is used as an initial estimate at each subsequent time step,

therefore solving a transient problem with a sequence of stationary wave equations [11].

To solve the wave equation discretized using the finite difference method, the

methodology provided here uses time-stepping with the multigrid method [11]. When

external forces acting on the problem are considered, similar results with the same

efficiency can be achieved [11]. There are various studies in the literature that

demonstrate the effectiveness of using the time-stepping technique in combination with

multigrid to solve EDPs [11]. Finally, this paper has described a system for solving one

and two-dimensional wave propagation problems using the finite difference technique

and weighted by a parameter η at various time stages [11]. This research has discovered

that by combining the multigrid algorithm with the lexicographical Gauss-Seidel solver

to solve the resultant system of equations, we were able to get discretization errors that

were close to our expectations while reducing computing time and linear complexity

[11].

2.5 Conclusion of the Research

In conclusion, the combination of the multigrid method and the finite element

method is very rare in public research. There are fewer papers that mention this

combination with the 1D problem. Therefore, the best solution to this problem can be

proposed in this project.

 This project is proposed to provide a solution to the finite element method

problem by using the multigrid solver. The multigrid solver is widely used in

most programming software to solve differential equations. The multigrid solver can be

implemented in the finite element method to increase the accuracy of the solution.

However, the combination of this method is very complex, such that existing code

implementations are rarely found in the public. Even very famous software such as

ANSYS also has limited uses for the multigrid method. This shows that it is not easy to

implement the finite element method into the multigrid method. However, this project

will measure the performance of the current multigrid solver in MATLAB.

10

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Overview

This chapter will go through the process that has been performed to complete

this project. The process started with finding a programming code followed by a

performance test and lastly modifying the code to increase the performance.

The programming code must be able to solve the matrix equation in order to

solve the 1D finite element problem such as the deflection of the cantilever beam, the

heat conduction problem and the elasticity problem. The matrix equation is shown

below.

𝐴 ∙ 𝑋 = 𝐵

where,

𝐴 = A constant value of the problem. (For example the position on the cantilever beam)

𝑋 = An unknown that needs to be found. (For example the deflection of the cantilever

beam)

𝐵 = A variable function. (For example the function of force moment on the cantilever

beam)

3.2 1-D Case Study: Cantilever Beam Deflection

A cantilever beam is a rigid structural part that is horizontally laid and supported

by only one static end. The type of cantilever that is used in this problem is the moment

connection on the wall under uniform load distributed. The general formula for the

deflection of a cantilever beam under a uniformly distributed load is,

𝜃 =
𝜔𝑙3

6𝐸𝐼

where,

𝜃 = Deflection of the beam

11

𝜔 = Load applied on the beam

𝑙 = The length of the beam

𝐸 = Young’s Modulus

𝐼 = Moment of Inertia

 The problem statement of this case study is the deflection ‘u’ of a cantilever

beam under uniformly distributed load is governed by,

𝑑2𝑢

𝑑𝑥2
= −150 + 300𝑥 − 150𝑥2

The boundary conditions are:

𝑢 =
𝜕𝑢

𝜕𝑥
= 0 𝑎𝑡 𝑥 = 0

Plot the beam deflection as a function of length. Take the length of the beam as 5 units.

Discretize the governing equations using FEM and solve using the Multigrid Gauss-

Seidel method [12].

 The discretization of the equation is using Galerkin’s Method with the final form

of the equation being in a matrix equation, KX=F, [12]

1

∆𝑥
[

1 −1
−1 1

] [
𝑢𝑖

𝑢𝑗
] =

[

−𝑑𝑢𝑖

𝑑𝑥
𝑑𝑢𝑗

𝑑𝑥

] +
150

∆𝑥

[

 (

𝑥𝑗
4 + 3𝑥𝑖

4

12
) − (

𝑥𝑗
3 + 2𝑥𝑖

3

3
) + (

𝑥𝑗
2 + 𝑥𝑖

2

2
) − 𝑥𝑗 (

𝑥𝑖
3

3
− 𝑥𝑖

2 + 𝑥𝑖)

(
𝑥𝑖

4 + 3𝑥𝑗
4

12
) − (

𝑥𝑖
3 + 2𝑥𝑗

3

3
) + (

𝑥𝑖
2 + 𝑥𝑗

2

2
) − 𝑥𝑖 (

𝑥𝑗
3

3
− 𝑥𝑗

2 + 𝑥𝑗)
]

3.3 Finding of MG Method Coding with the Implementation of FEM

This project starts with finding the most suitable coding that includes both MG

and FEM in the algorithm. The finding was made through the GitHub repository.

GitHub is a code hosting platform for version control and collaboration. Many

developers will use this repository to publish their code of the program for other users

to use. This platform is used to find any suitable algorithm for this project. There are

12

lots of results found by searching in this repository but it is only a few algorithms that

provide the combination of other methods with the MG method. At last, a set of

programming codes using MATLAB software was found that implement FEM in the

MG method. This programming code was published two years ago by Nitish Gudapati

with GitHub user ID “gnitish18”. This code is used Multigrid Gauss-Seidel to solve a

finite element analysis of a cantilever beam. There are six MATLAB codes provided by

the owner which are one main code and five function codes.

The list of the files is:

i. FEM_Multigrid.m

ii. Animate.m

iii. Multigrid_TwoGrid.m

iv. Gauss_Seidel.m

v. Project_FineCoarse.m

vi. Result.m

 All six files are important in order to perform the solution of the deflection

problem of the cantilever beam. The FEM_Multigrid.m file is the main body of the

program that consists of other five functions in it. The Animate.m file is a function to

display the animation of beam deflection. The Multigrid_TwoGrid.m file is a Function

to solve the matrix equation using the Multigrid Algorithm implementing two-grid. This

function is the most important because, in this function where happen all calculations

to solve the value of X. This function, it consists of two other functions which are the

“Gauss_Seidel” function and “Project_FineToCoarse” function. The Gauss_Seidel.m

file is a function to solve the matrix equation using the iterative Gauss-Seidel relaxation

method. The Project_FineToCoarse.m file is a function to project a given Fine-Grid

matrix to Coarse-Grid. Lastly, the Results.m file is a function to plot the analytical

solution and compare it with the FEM solution.

13

3.4 Hardware and Software

This project was a simulation and programming-type project. The hardware

used in this project to run the simulation is a Windows 11 laptop with AMD Ryzen 7

4800H and 16GB of installed RAM. The software used for the simulation is MATLAB

programming software. The software was installed with the basic add-on package.

3.5 Performance Test of Algorithm

Before performing the performance test, the algorithm was executed to make

sure there is no errors occurred while running the code. The process starts by choosing

a number of elements that need to be used for the calculation. The higher number of

elements, the higher accuracy of the result.

The process was continued by determining the parameter used to record the

performance. The parameter used in this test is the time taken to complete the solver

process. The executing time was recorded for every number of elements starting with

10 elements up to 250 elements. In order to plot a graph of time taken against the number

of elements, one new main coding was created and the old main coding was changed to

the FEM function coding. The “tictoc” function was added to the FEM function to

record the time taken. The new main program to record the execution time of the process

is shown in Figure 3.1 below.

14

Figure 3.1: The main body program to record the time taken

3.6 Problem Detection

To improve the performance of the process, the problem needs to be searched

in the coding. The main problem that needs to be searched is which line took a long

time to process. Four sections of the coding in the “Multigrid_TwoGrid” function file

were decided to be tested that potentially slowing down the process. All sections were

added with the “tictoc” function to record the time taken to run on every section. The

sections of the coding that were tested are shown in Figure 3.2 below.

15

Figure 3.2: The coding of four sections was tested

 In section 1, the Gauss-Seidel relaxation method is used to calculate the value

of X. Same goes with section 4, which also used the Gauss-Seidel relaxation method to

solve the value of X. These sections are suspected to be slowing down the process

because of “Gauss_Seidel” function has the “while” loop and lots of the “for” loop. For

section 2, even though the coding of the “Project_FineCoarse” function is short, it also

consists of a few loop functions that might be slowing down the process. Lastly, section

3 was chosen to be tested because this part is using the back-slash function that also can

take some time solving it.

16

The test was run three times using three different values of elements which are

50, 100 and 150 elements. The result of the test shows that section 4 is the slowest in

terms of time compared to other sections. Even though section 1 also used the same

function, section 4 was applying the Gauss-Seidel relaxation method until convergence

which took more time to complete the calculation.

3.7 Coding Modification

After identifying the problem section, the slowest section in time is modified to

a new coding function. The new Gauss-Seidel function was created to replace the

“Gauss_Seidel” function in section 4. The new Gauss-Seidel function was named as

“gauss_seidel2” function. This function was provided by the author [13] by referring to

one of the paper’s authors C.T. Kelley [14]. The function is different from the old

Gauss-Seidel function. This function implemented the mathematical symbol of the

back-slash operation to calculate the value of X. the equation consists of matrix B,

matrix X, upper and lower triangular matrix of matrix A and diagonal matrix of matrix

A. The coding of the “gauss_seidel2” function was modified to simpler codes as shown

in Figure 3.3 below.

Figure 3.3: New function of the Gauss-Seidel Method

 Next, the section 4 code also needs to be changed. First, the Ah matrix needs to

be split into three matrices which are upper triangular, lower triangular and diagonal. In

order to split those matrices, the “tril” function, “triu” function and “diag” function were

used. The new coding of section 4 was shown in Figure 3.4 below.

17

Figure 3.4: New coding for section 4

Finally, the main coding was modified to make it more clean and simple. The

maximum number of elements also increases to 500 elements. Then, the final code was

tested again using 250 elements to compare with the previous code performance. In

addition, the final code was also tested using the maximum number of elements and the

graph of time against the number of elements was plotted. The overall coding was

shown in the appendices section.

3.8 Flowchart of the Algorithm

 This sub-chapter will provide the overall flow of the process in form of a

flowchart. There are 3 three main flowcharts that will be shown in this part which are

the main body process, the FEM function and the Multigrid_TwoGrid function. The

flowchart of the main program, FEM function and Multigrid_TwoGrid function was

shown in Figure 3.5, Figure 3.6 and Figure 3.7 respectively. This flowchart will help

users easily understand the flow of the program.

18

Figure 3.5: Flowchart of the main program

19

Figure 3.6: Flowchart of the FEM function

20

Figure 3.7: Flowchart for Multigrid_TwoGrid function

Based on Figure 3.5, the process of the main program is a sample and easy to

understand. In this process, there is a loop function containing the FEM function which

is in an orange colour box. These orange boxes indicate the process is entering another

flowchart process. Therefore, the main program also contains one other function.

 Based on Figure 3.6, the flowchart shows that there is a lot of complex

calculation and one other function in the process. In this process, it focused on obtaining

the initial value. At the end of the process, it will return to the main program to record

execution time.

21

 Lastly, Figure 3.7 shows all the calculation processes to produce the deflection

result. This process consists of three other short functions which are the Gauss_Seidel

function, Project_FineCoarse function and Gauss_Seidel2 function. At the end of this

flow will return to the FEM function process.

3.9 Coding Explanation

This MG method solver with FEM algorithm consists of six MATLAB files

which are one main program file and five function files. The explanation of the main

program, FEM function, Multigrid_TwoGrid function, Gauss_Seidel function,

Project_FineCoarse Function and Gauss_Seidel2 function codes as shown in Table 3.1,

Table 3.2, Table 3.3, Table 3.4, Table 3.5 and Table 3.6 respectively.

Table 3.1: The main program code explanation

MATLAB codes Description

clear;
close all;
clc;

Clear all workspace values, close all

windows and a clear command window.

sample = input("Number of sample:
");

Choose the number of samples to run this

analysis (more samples, more accurate,

more time-consuming).

a = 0;
x = zeros(1,50);
y = zeros(50,1);

Define the initial value and create a zores

matrix for the number of elements and

time taken.

for m = 10:10:500
 time = 0;
 for i = 1:sample
 time_in_second =
FEM_process(m);
 time = time +
time_in_second;
 end
 time = time/sample;
 a = a + 1;
 x(1,a) = m;
 y(a,1) = time/60;
end

Start recording the time taken for every

element up to 500 elements (increment of

10).

plot(x,y)
title('Graph of time taken to
complete the process against number
of elements')

Plot graph time against the number of

elements.

22

xlabel('Number of elements')
ylabel('Time taken to complete the
process (minutes)')

Table 3.2: The FEM function code explanation

MATLAB codes Description

function time_in_second =
FEM_process(m)

Define function.

tic

Start the stopwatch function.

m = m + mod(m,2);

Change the odd number of elements to

even in order to satisfy the multigrid

transformation matrix sizes.

n = m+1;

l = 5;

h = l/m;

k = 1/h*[1, -1; -1, 1];

Ah = zeros(n,n);

F = zeros(n,1);

Define the initial value:

i. Initialize the number of nodes

ii. Define the length of the beam

iii. Length of each element

iv. Individual stiffness matrix

v. Deflection matrix

vi. Force matrix

for i = 1:m
Ah(i,i) = Ah(i,i) + k(1,1);
Ah(i,i+1) = Ah(i,i+1) + k(1,2);
Ah(i+1,i) = Ah(i+1,i) + k(2,1);
Ah(i+1,i+1) = Ah(i+1,i+1) + k(2,2);
end

For loop to define the overall stiffness

matrix.

for i = 1:m
xi = i*h;
xj = xi-h;

t = (xi^4-xj^4)/12 - (xi^3-xj^3)/3
+ (xi^2-xj^2)/2;

T1 = -xj^3/3 + xj^2 - xj + 1/h*t;
T2 = xi^3/3 - xi^2 + xi - 1/h*t;

F(i) = F(i) + 150*T1;
F(i+1) = F(i+1) + 150*T2;
end

For loop to form force matrix (F) in A*X

= F.

The operation is:

i. Initialize the nodal locations

ii. Initialize Common term

iii. Initialize the terms

iv. Update the Force Matrix

23

F(n) = F(n) + (-150*l + 150*l^2 -
50*l^3);

Add the last term of the force matrix –

slope

U = Multigrid_TwoGrid(Ah, F);

Solve the equation using Multigrid

Gauss-Seidel.

time_in_second = toc; Record the time of the stopwatch and

return to the main program.

Table 3.3: The Multigrid_TwoGrid function explanation

MATLAB codes Description

function U = Multigrid_TwoGrid(Ah,
F)

Define function.

[n,~] = size(Ah);

Determine the size of the matrix.

u(1:n,1) = 0;

U(1:n,1) = 0;

U_0 = 0;

v1 = 1;

fl = 1;

I = zeros(n,floor(n/2));

Define the initial value of:

i. Initialization of Initial Deflection

matrix.

ii. Define the Final Deflection

matrix.

iii. Boundary condition.

iv. Number of iterations for Gauss-

Seidel.

v. Flag to ensure the first iteration.

vi. Define Projection Operator

matrix.

while (U_0 - U(1) > 0 || fl == 1)

While loop with condition 𝑈0 − 𝑈1

larger than 0 or flag value equal to 1.

The flag condition is used to make sure

the first loop is run.

fl = 0;
v1 = v1 + 1;

Disable the flag and increase the number

of iterations.

U = Gauss_Seidel(Ah, F, u, 0, v1);

Applying the Gauss-Seidel relaxation

method with v1 iterations.

24

for i = 1:floor(n/2)
 for j = 2*i-1:2*i+1
 if mod(j,2) == 0
 I(j,i) = 2;
 else
 I(j,i) = 1;
 end
 end
end

Initialize the Projection Operator matrix

as tri-diagonal.

R = 0.5*I';

Initialize the Restriction Matrix.

rh = F - Ah*U;

Compute Residue.

r2h = R*rh;

Project Residue from the fine grid to

coarse.

A2h = Project_FineToCoarse(Ah);

Project Stiffness matrix from the fine

grid to coarse.

e2h = A2h\r2h;

Solve to find the error.

eh = I*e2h;

Interpolate error from a coarse grid to

fine.

U = U - eh;

Update the solution

l = tril(Ah,-1);
d = diag(diag(Ah));
u = triu(Ah,1);

Define value for upper triangular, lower

triangular and diagonal matrix for Ah.

x_new = gauss_seidel2(n, l, d, u,
F, U);

Applying the new Gauss-Seidel method.

U = x_new;

Enter the new value of X into U.

Table 3.4: The Gauss-Seidel function explanation

MATLAB codes Description

function X = Gauss_Seidel(A, B, X,
fl, v)

Define function.

if ~fl

The decision function if the flag is

disabled, runs the first part.

for k = 1:v

Run the loop until the k value is equal to

the number of iterations.

x_old = X;

Store previous iteration values.

	1D Multigrid Solver For Finite Element Method_Mohamad Amiruddin Azhar_M4_2022_ESAR

