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ABSTRAK 

Kod pengiraan menggunakan Kaedah Multigrid dengan gabungan Kaedah 

Unsur Terhingga untuk menyelesaikan masalah matematik agak jarang digunakan 

dalam domain awam. Biasanya, masalah matematik ini boleh diselesaikan hanya 

menggunakan satu daripada dua kaedah tersebut. Contoh kod sedemikian yang ditulis 

dalam bahasa pengaturcaraan MATLAB ditemui dalam repositori GitHub, di mana 

algoritma yang dilaksanakan adalah jauh dari prestasi optimum. Algoritma yang 

tersedia bagi penyelesai Multigrid dengan Kaedah Unsur Terhingga telah diubah suai 

dan diuji untuk prestasinya. Dua jenis pengiraan telah digunakan untuk menentukan 

prestasi penyelesai. Yang pertama ialah simulasi masa. Simulasi ini akan menentukan 

masa yang diambil untuk simulasi selesai bagi setiap bilangan unsur. Prestasi algoritma 

untuk setiap bilangan unsur boleh dikenal pasti daripada simulasi ini. Ujian masa pada 

algoritma menunjukkan semakin tinggi bilangan unsur, lebih tinggi masa yang diambil 

untuk menyelesaikan simulasi. Walau bagaimanapun, algoritma yang disediakan oleh 

repositori GitHub adalah kurang cekap. Oleh itu, beberapa pengubahsuaian kepada 

algoritma dibuat untuk meningkatkan prestasi penyelesai. Jenis kedua ialah simulasi 

memori. Prestasi memori telah diuji dengan menentukan nilai memori yang digunakan 

untuk setiap bilangan unsur. Walau bagaimanapun, data yang dihasilkan tidak 

mencukupi dan tidak tepat. Oleh itu, prestasi algoritma tidak dapat ditentukan 

menggunakan parameter ini. Seterusnya, algoritma telah diubah suai dengan 

menggunakan fungsi Gauss-Seidel baharu. Algoritma baharu juga telah diuji 

menggunakan simulasi masa. Kemudian, hasilnya dibandingkan dengan hasil simulasi 

masa sebelum pengubahsuaian. Ujian memberikan hasil yang lebih ketara daripada 

algoritma asal. Oleh itu, pengubahsuaian algoritma memberi impak positif kepada 

kecekapan penyelesai. 
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ABSTRACT 

Computational code using the Multigrid Method with the combination of the 

Finite Element Method to solve a mathematical problem is quite rare in the public 

domain. Usually, the mathematical problem can be solved using only one of those two 

methods. A sample of such code written in MATLAB programming language was 

found in the GitHub repository, where the implemented algorithms are far from optimal. 

This available algorithm of the Multigrid solver with the Finite Element Method was 

modified and tested for its performance. Two kinds of computation have been used to 

determine the performance of the solver. The first one is time simulation. This 

simulation will determine the time taken for the simulation to complete for every 

number of elements. The performance of the algorithm for any number of elements can 

be identified from this simulation. The time test on the algorithm shows the high number 

of elements, the higher time taken to complete the simulation. However, the algorithm 

provided by the GitHub repository is less efficient. Therefore, some modifications to 

the algorithm are made to increase the performance of the solver. The second type is 

memory simulation. The memory performance was tested by determining the value of 

memory used for every number of elements. However, the data produced is insufficient 

and inaccurate. Therefore, the performance of the algorithm can not be determined 

using this parameter. Next, the algorithm was modified by using a new Gauss-Seidel 

function. The new algorithm also has been tested using time simulation. Then, the result 

was compared with the result of the time simulation before the modification. The test 

gives a more significant result than the original algorithm. Therefore, the modification 

of the algorithm gives a positive impact on solver efficiency.
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CHAPTER 1 

INTRODUCTION 

1.1 Project Overview 

In this life, many problems can be solved using mathematical solutions such as 

the numerical method, multigrid method, finite differential method, finite element 

method, etc. This mathematical solution has been used for hundreds of years back there, 

but it is so hard for humans to calculate this mathematical solution manually. The human 

mind's limitations prevent it from grasping the behaviour of its complex surroundings 

and inventions in a single action. The increasing use of computers in the current era will 

reduce the workload of humans in this world. The computer is one of the intelligent 

devices that help humans solve any type of problem. Discrete problems may now be 

handled quickly, even when the number of elements is quite huge, thanks to the 

development of digital computers [1]. All these mathematical methods will be 

implemented into programming languages to help humans compute the solution in the 

easiest and fastest way. 

Mathematicians and engineers have taken various approaches to the 

discretization of continuous problems [1]. Mathematicians have developed general 

techniques for determining the stationarity of properly defined 'functionals' that can be 

applied directly to the differential equations that govern the problem, such as finite-

difference approximations, various weighted residual procedures, and approximate 

techniques for determining the stationarity of properly defined 'functionals' [1]. 

Engineers, on the other hand, frequently take a more natural approach to the problem 

by drawing a parallel between real discrete elements and finite sections of a continuum 

domain [1]. 

 There are many types of programming software that have been used to solve this 

mathematical problem, such as Python, MATLAB, C++, ANSYS, etc. In the 

engineering field, the common software used is MATLAB and ANSYS. This 

programming software provides many engineering solutions, such as displaying the 

stress and strain profile on the structural body of a car, displaying the heat profile on a 

steel bar, and so on. 
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 The main focus of this paper is to conduct a research project about the multigrid 

method and the finite element method. The multigrid method is used to solve many 

numerical problems. Multigrid's main goal is to speed up the convergence of a basic 

iterative approach called relaxation, which decreases short-wavelength errors by 

performing a global correction of the fine grid solution approximation from time to 

time, which is performed by solving a coarse problem. Independent of the fine grid 

mesh size, this multigrid cycle often decreases all error components by a set amount far 

below one. The numerical solution of elliptic partial differential equations in two or 

more dimensions is one of multigrid's most common applications. 

 

 

Figure 1.1: Example of Multigrid Solution in different iterations [2]. 

 Although J.T. Oden's early works on finite element analysis date from the 1960s, 

they show the application of what was then a relatively poorly understood numerical 

method to problems that are still considered difficult by today's standards, such as large 

deformation elasticity, pneumatic structures, thermoelasticity, fluid flow, and 

incompressible elasticity [3]. The Finite Element Method (FEM) is a basic numerical 

method for solving partial differential equations with two or three variables in two or 
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three dimensions. The FEM separates a big system into smaller, simpler sections called 

finite elements to solve a problem. The finite element method, which was first 

established as an ad hoc engineering procedure for obtaining stress and strain 

displacement solutions in structural analysis, has evolved in numerous ways [4]. The 

finite element method is essentially geometry-free and theoretically be used in domains 

of any form and with arbitrary BCs [5]. By definition, the finite element approach 

produces unstructured meshes where the majority of complicated geometries can be 

easily handled [5]. These characteristics distinguish the finite element approach as a 

generic, systematic, powerful, and adaptable numerical method that outperforms other 

numerical methods [5]. 

 

 

Figure 1.2: Example of 2D domain discretized by finite differences and finite elements [5]. 

 Both these methods are combined to increase the accuracy of the solution. 

However, programming codes for this method are rarely found in public as the 

complexity of the code is very high. On the GitHub repository, there are no 

programming codes that implement the multigrid method with the finite element 

method currently. One method for implementing the finite element method with the 

multigrid solver is to modify the current multigrid solver code. 

This project will start with finding and collecting information about the finite 

element method that is implemented in the multigrid solver. The GitHub repository has 

been used to find the application of the finite element method with a combination of 

multigrid solvers. The multigrid solver codes have been searched throughout this 

website to find the most suitable multigrid code to modify and implement the finite 

element method. 
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At the end of this project, the programming structure for the 1D Finite Element 

with the multigrid solver can be used to solve any simple 1D problem, such as 1D heat 

conduction or 1D elasticity problems. By completing this task, the performance 

characteristics of the multigrid solver can be identified. 

 

1.2 Problem Statement  

The Finite Element Method (FEM), combined with the multigrid (MG) method, 

is well accepted to yield a highly accurate solution. The MG solver is an algorithm for 

solving differential equations using a hierarchy of discretization. Its implementation in 

the FEM is however very complex, such that existing code implementations are rarely 

found in the public domain. For this purpose, this project will illustrate the principle of 

the FEM-MG solver by implementing it in a 1D problem. The task is to set up a 

programming structure for a 1D Finite Element with the multigrid solver that can be 

solved for any simple 1D heat conduction or 1D elasticity problem. 

 

1.3 Objectives 

The specific objective for this project was: 

i. To implement a multigrid method for solving a Finite Element method problem. 

ii. To modify the available code of Multigrid solver with Finite Element Method. 

iii. To identify the performance of the solver using a different number of elements. 

iv. To improve the current available Multigrid solver with Finite Element Method 

algorithm. 

 

1.4 Scope of the Project 

 This project involves the simulation of a 1D Multigrid solver with the Finite 

Element Method. Different value of unknown was used for the simulated 1D problem 

to obtain performance characteristics. The simulation was done using Python and 

MATLAB software. The code was created to implement the finite element method into 

multigrid code by modifying an existing example code. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview 

This chapter will explain the finding of the research paper on the topic of a 

combination of the Multigrid Method with the Finite Element Method to solve the Finite 

Element Problem. This section also includes a deep explanation of the Multigrid 

Method and Finite Element Method. 

 

2.2 Multigrid Method 

The multigrid method is one of the fastest ways to solve differential equation 

problems. The multigrid solver is an algorithm for solving differential equations using 

a hierarchy of discretization. Multigrid methods are a class of algorithms used to solve 

computational problems [6]. It is primarily used for solving linear and non-linear 

boundary value problems [6]. The main reason for using the multigrid method is to 

accelerate the convergence of the basic iterative method. The multigrid method can be 

used in combination with any common discretization technique, such as the finite 

element method. There are many types of multigrid algorithms, but the most frequent 

feature used is a hierarchy of discretization. The major steps are smoothing, residual 

computation, restriction, interpolation, and correction. There are three main types of 

multigrid methods, which are V-Cycle, F-Cycle, and W-Cycle. For a discrete 2D 

problem, the V-Cycle iteration is the fastest type to compute, while the F-Cycle and W-

Cycle iterations take 89% and 125% more time to compute, respectively. In terms of 

3D problems, F-Cycle and W-Cycle take about 64% and 75% more time, respectively, 

compared to V-Cycle by ignoring the overheads. To reduce the complexity, this project 

will cover the 1D problem in combination with the finite element method. 

 

2.3 Finite Element Method 

 The finite element method is a common numerical method to solve partial 

differential equations. This method is used widely in engineering fields, such as 

mathematical modelling. With the advent of digital computers, discrete problems can 
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generally be solved readily even if the number of elements is very large [1]. As the 

capacity of all computers is finite, continuous problems can only be solved exactly by 

mathematical manipulation [1]. 

 

2.4 Combination of Multigrid Method with Finite Element Method 

For the two-field issue, finite element methods are the most widely utilised 

numerical discretization [7]. For example, a continuous Galerkin (CG) element for both 

displacement and pressure are examined [7]. This paper is mainly focused on multigrid 

for poroelasticity problems by using the finite element method with homogeneous 

boundary conditions in two-dimensional space. The multigrid method is one of the most 

efficient iterative techniques, reducing discrete equation computation to O(N) or 

O(NlogN), where N is the linear system's scaling [7]. In this research, there are two 

mains unknown which are displacement and pore pressure. The distributive Gauss-

Seidel iteration is smoother in the multigrid algorithm [7]. The demonstration of 

multigrid in this paper was using the V-Cycle. The result is the method does not 

converge within 200 iterations. The V-Cycle multigrid method with two-step pre and 

two-step post-smoothing is almost uniform, as the numerical results show [7]. By 

reviewing this paper, there is no combination of the multigrid method with the finite 

element method. 

 The computing of the solution to a system of equations is an important part of 

finite element techniques and iso-geometric analysis [8]. Both of these analyses were 

tested using the multigrid method. In this research, the finite element method was 

combined with an immersed method. Immersed methods are useful tools for generating 

body-fitted finite element discretization or analysis-suitable NURBS geometries in 

isogeometric analysis, especially for problems involving complex, moving, or 

implicitly defined geometries, to avoid time-consuming and computationally expensive 

procedures [8]. This is especially difficult for systems obtained via immersed 

techniques because such approaches typically provide system matrices that are 

substantially ill-conditioned [8]. The multigrid V-cycle iteration is used in these 

contributions. Multigrid methods successfully overcome the mesh-size dependency of 

linear system conditioning and its influence on iterative solution methods' convergence 

[8]. Although multigrid methods have not been fully investigated in the context of 
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immersed finite element methods, there are substantial studies available on closely 

related features [8]. This also proves that the combination of the finite element method 

with multigrid is very less used. This contribution's main goal is to provide a geometric 

multigrid preconditioning approach that may be used with higher-order immersed finite 

element techniques using conventional, isogeometric, and locally refined basis 

functions [8]. The numerical findings are produced using a multi-grid baseline method 

and a reasonably simple Schwarz block selection [8]. While the computational cost 

scaling is already optimal in terms of system size, the structure of multigrid 

preconditioners with Schwarz-type smoothers allows for changes that can further 

improve efficiency [8]. 

 Anomaly diffusion, material science, image processing, finance, and 

electromagnetic fluids all employ fractional equations to describe events [3]. In the 

same manner that standard diffusion equations originate from Brownian random walks, 

partial differential equations with fractional-order operators occur naturally when the 

limit of discrete diffusion is dominated by stochastic processes [3]. The effective 

solution of fractional equations presented on complex domains is a subject of substantial 

practical relevance, and computational models for the numerical resolution of models 

incorporating fractional derivatives in two or more dimensions are relatively sparse [3]. 

The goal of this project is to create all of the components needed to build an adaptive 

finite element algorithm for approximating fractional partial differential equations [3]. 

In the end, this research has expanded the fractional Laplacian operator's numerical 

approximation from globally quasi-uniform meshes to locally refined meshes in this 

paper [3]. It used posterior error indicators and adaptive mesh refinement to overcome 

delayed convergence caused by the inherent singularity of the solution at the boundary 

[3].  

 Fine-scale qualities impact the overall characteristics of any structural or natural 

material [9]. All of those micro-details, however, cannot normally be directly taken into 

account in modelling due to the tremendous scale and complexity of the calculation [9]. 

As a result, numerous homogenization approaches for a simpler analysis of 

heterogeneous material have been devised [9]. They studied the evolution of multigrid 

homogenisation in this study since it relates to materials that do not have a periodic 

microstructure or a scale separation feature [9]. Linear elasticity for composite materials 

flows in porous media, and electrostatics are examples of such problems [9]. At the 
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macro-scale, we apply the higher-order finite element method approximation and 

provide a revised definition of the inter-grid operators, resulting in a rapid convergence 

of both displacements and stresses in terms of not only the number of degrees of 

freedom but also the CPU time [9]. This study used a new approach of inter-grid 

mapping building to apply the hierarchical approximation of order up to five for 

multigrid homogenization [9]. The numerical studies reveal a quick reduction in the 

modelling error that each homogenization method invariably introduces [9].  

 Direct numerical simulation of solid-liquid two-phase flows is challenging due 

to the uneven domain inhabited by the fluid, which varies with particle motion [10]. 

Furthermore, because the particles are advected by the fluid and exert forces on it, the 

body-liquid interaction necessitates the calculation of the fluid stress at the fluid-solid 

interface, especially in the case of large numbers of particles [10]. Besides, the 

interactions between the fluid and the particles, as well as particle collisions, add to the 

problem's complexity [10]. To overcome such a problem, two different ways have been 

proposed. The first is an extended ALE standard Galerkin finite element method that 

incorporates both the fluid and particle equations of motion into a single linked 

variational equation [10]. The second method is based on the concept of fictitious or 

embedded domains [10]. The research has proposed a multigrid finite element method 

based explicit fictitious boundary method [10]. A multigrid finite element solver 

calculates the flow, and solid particles are free to travel through the computational mesh, 

which may be selected separately from particles of any form, size, or number [10]. The 

multigrid finite element method fictitious boundary technique has been introduced for 

the direct numerical modelling of solid-liquid two-phase flows in 2D with many moving 

particles [10]. Several comparisons between the reported findings and relevant 

reference results from our calculations or the literature have demonstrated the reliability 

of the method [10].  

 Several engineering situations are modelled using partial differential equations 

(PDEs) [11]. These equations must adhere to the specific boundary and initial 

conditions, creating an analytical solution a difficult and not always doable process [11]. 

This paper provides a model for solving the hyperbolic PDE which is the wave equation 

[11]. The finite difference method discretizes the transient wave equation, resulting in 

a linear system that may be solved using a solver such as the Gauss-Seidel method [11]. 

Applying the multigrid algorithm, which is highly advocated in the literature and 
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considerably enhances the convergence factor, is one way to speed up the process of 

getting the solution to this system [11]. The time-stepping method may be used to solve 

physical problems described by PDEs that are time-dependent, in which the solution of 

the previous time step is used as an initial estimate at each subsequent time step, 

therefore solving a transient problem with a sequence of stationary wave equations [11]. 

To solve the wave equation discretized using the finite difference method, the 

methodology provided here uses time-stepping with the multigrid method [11]. When 

external forces acting on the problem are considered, similar results with the same 

efficiency can be achieved [11]. There are various studies in the literature that 

demonstrate the effectiveness of using the time-stepping technique in combination with 

multigrid to solve EDPs [11]. Finally, this paper has described a system for solving one 

and two-dimensional wave propagation problems using the finite difference technique 

and weighted by a parameter η at various time stages [11]. This research has discovered 

that by combining the multigrid algorithm with the lexicographical Gauss-Seidel solver 

to solve the resultant system of equations, we were able to get discretization errors that 

were close to our expectations while reducing computing time and linear complexity 

[11]. 

 

2.5 Conclusion of the Research 

In conclusion, the combination of the multigrid method and the finite element 

method is very rare in public research. There are fewer papers that mention this 

combination with the 1D problem. Therefore, the best solution to this problem can be 

proposed in this project. 

 This project is proposed to provide a solution to the finite element method 

problem by using the multigrid solver. The multigrid solver is widely used in 

most programming software to solve differential equations. The multigrid solver can be 

implemented in the finite element method to increase the accuracy of the solution. 

However, the combination of this method is very complex, such that existing code 

implementations are rarely found in the public. Even very famous software such as 

ANSYS also has limited uses for the multigrid method. This shows that it is not easy to 

implement the finite element method into the multigrid method. However, this project 

will measure the performance of the current multigrid solver in MATLAB. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

3.1 Overview 

This chapter will go through the process that has been performed to complete 

this project. The process started with finding a programming code followed by a 

performance test and lastly modifying the code to increase the performance. 

The programming code must be able to solve the matrix equation in order to 

solve the 1D finite element problem such as the deflection of the cantilever beam, the 

heat conduction problem and the elasticity problem. The matrix equation is shown 

below. 

𝐴 ∙ 𝑋 = 𝐵 

where, 

𝐴 = A constant value of the problem. (For example the position on the cantilever beam) 

𝑋 = An unknown that needs to be found. (For example the deflection of the cantilever 

beam) 

𝐵 = A variable function. (For example the function of force moment on the cantilever 

beam) 

 

3.2 1-D Case Study: Cantilever Beam Deflection 

A cantilever beam is a rigid structural part that is horizontally laid and supported 

by only one static end. The type of cantilever that is used in this problem is the moment 

connection on the wall under uniform load distributed. The general formula for the 

deflection of a cantilever beam under a uniformly distributed load is, 

𝜃 =
𝜔𝑙3

6𝐸𝐼
 

where, 

𝜃 = Deflection of the beam 
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𝜔 = Load applied on the beam 

𝑙 = The length of the beam 

𝐸 = Young’s Modulus 

𝐼 = Moment of Inertia 

 The problem statement of this case study is the deflection ‘u’ of a cantilever 

beam under uniformly distributed load is governed by, 

𝑑2𝑢

𝑑𝑥2
= −150 + 300𝑥 − 150𝑥2 

The boundary conditions are: 

𝑢 =
𝜕𝑢

𝜕𝑥
= 0        𝑎𝑡    𝑥 = 0 

Plot the beam deflection as a function of length. Take the length of the beam as 5 units. 

Discretize the governing equations using FEM and solve using the Multigrid Gauss-

Seidel method [12]. 

 The discretization of the equation is using Galerkin’s Method with the final form 

of the equation being in a matrix equation, KX=F, [12] 

1

∆𝑥
[

1 −1
−1 1

] [
𝑢𝑖

𝑢𝑗
] = 

[

−𝑑𝑢𝑖

𝑑𝑥
𝑑𝑢𝑗

𝑑𝑥

] +
150

∆𝑥

[
 
 
 
 (

𝑥𝑗
4 + 3𝑥𝑖

4

12
) − (

𝑥𝑗
3 + 2𝑥𝑖

3

3
) + (

𝑥𝑗
2 + 𝑥𝑖

2

2
) − 𝑥𝑗 (

𝑥𝑖
3

3
− 𝑥𝑖

2 + 𝑥𝑖)

(
𝑥𝑖

4 + 3𝑥𝑗
4

12
) − (

𝑥𝑖
3 + 2𝑥𝑗

3

3
) + (

𝑥𝑖
2 + 𝑥𝑗

2

2
) − 𝑥𝑖 (

𝑥𝑗
3

3
− 𝑥𝑗

2 + 𝑥𝑗)
]
 
 
 
 

 

 

3.3 Finding of MG Method Coding with the Implementation of FEM 

This project starts with finding the most suitable coding that includes both MG 

and FEM in the algorithm. The finding was made through the GitHub repository. 

GitHub is a code hosting platform for version control and collaboration. Many 

developers will use this repository to publish their code of the program for other users 

to use. This platform is used to find any suitable algorithm for this project. There are 
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lots of results found by searching in this repository but it is only a few algorithms that 

provide the combination of other methods with the MG method. At last, a set of 

programming codes using MATLAB software was found that implement FEM in the 

MG method. This programming code was published two years ago by Nitish Gudapati 

with GitHub user ID “gnitish18”. This code is used Multigrid Gauss-Seidel to solve a 

finite element analysis of a cantilever beam. There are six MATLAB codes provided by 

the owner which are one main code and five function codes. 

The list of the files is: 

i. FEM_Multigrid.m 

ii. Animate.m 

iii. Multigrid_TwoGrid.m 

iv. Gauss_Seidel.m 

v. Project_FineCoarse.m 

vi. Result.m 

 All six files are important in order to perform the solution of the deflection 

problem of the cantilever beam. The FEM_Multigrid.m file is the main body of the 

program that consists of other five functions in it. The Animate.m file is a function to 

display the animation of beam deflection. The Multigrid_TwoGrid.m file is a Function 

to solve the matrix equation using the Multigrid Algorithm implementing two-grid. This 

function is the most important because, in this function where happen all calculations 

to solve the value of X. This function, it consists of two other functions which are the 

“Gauss_Seidel” function and “Project_FineToCoarse” function. The Gauss_Seidel.m 

file is a function to solve the matrix equation using the iterative Gauss-Seidel relaxation 

method. The Project_FineToCoarse.m file is a function to project a given Fine-Grid 

matrix to Coarse-Grid. Lastly, the Results.m file is a function to plot the analytical 

solution and compare it with the FEM solution. 
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3.4 Hardware and Software 

This project was a simulation and programming-type project. The hardware 

used in this project to run the simulation is a Windows 11 laptop with AMD Ryzen 7 

4800H and 16GB of installed RAM. The software used for the simulation is MATLAB 

programming software. The software was installed with the basic add-on package. 

 

3.5 Performance Test of Algorithm 

Before performing the performance test, the algorithm was executed to make 

sure there is no errors occurred while running the code. The process starts by choosing 

a number of elements that need to be used for the calculation. The higher number of 

elements, the higher accuracy of the result.  

The process was continued by determining the parameter used to record the 

performance. The parameter used in this test is the time taken to complete the solver 

process. The executing time was recorded for every number of elements starting with 

10 elements up to 250 elements. In order to plot a graph of time taken against the number 

of elements, one new main coding was created and the old main coding was changed to 

the FEM function coding. The “tictoc” function was added to the FEM function to 

record the time taken. The new main program to record the execution time of the process 

is shown in Figure 3.1 below. 
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Figure 3.1: The main body program to record the time taken 

3.6 Problem Detection 

To improve the performance of the process, the problem needs to be searched 

in the coding. The main problem that needs to be searched is which line took a long 

time to process. Four sections of the coding in the “Multigrid_TwoGrid” function file 

were decided to be tested that potentially slowing down the process. All sections were 

added with the “tictoc” function to record the time taken to run on every section. The 

sections of the coding that were tested are shown in Figure 3.2 below.  
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Figure 3.2: The coding of four sections was tested 

 In section 1, the Gauss-Seidel relaxation method is used to calculate the value 

of X. Same goes with section 4, which also used the Gauss-Seidel relaxation method to 

solve the value of X. These sections are suspected to be slowing down the process 

because of “Gauss_Seidel” function has the “while” loop and lots of the “for” loop. For 

section 2, even though the coding of the “Project_FineCoarse” function is short, it also 

consists of a few loop functions that might be slowing down the process. Lastly, section 

3 was chosen to be tested because this part is using the back-slash function that also can 

take some time solving it. 
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The test was run three times using three different values of elements which are 

50, 100 and 150 elements. The result of the test shows that section 4 is the slowest in 

terms of time compared to other sections. Even though section 1 also used the same 

function, section 4 was applying the Gauss-Seidel relaxation method until convergence 

which took more time to complete the calculation. 

 

3.7 Coding Modification 

After identifying the problem section, the slowest section in time is modified to 

a new coding function. The new Gauss-Seidel function was created to replace the 

“Gauss_Seidel” function in section 4. The new Gauss-Seidel function was named as 

“gauss_seidel2” function. This function was provided by the author [13] by referring to 

one of the paper’s authors C.T. Kelley [14]. The function is different from the old 

Gauss-Seidel function. This function implemented the mathematical symbol of the 

back-slash operation to calculate the value of X. the equation consists of matrix B, 

matrix X, upper and lower triangular matrix of matrix A and diagonal matrix of matrix 

A. The coding of the “gauss_seidel2” function was modified to simpler codes as shown 

in Figure 3.3 below. 

 

Figure 3.3: New function of the Gauss-Seidel Method 

 Next, the section 4 code also needs to be changed. First, the Ah matrix needs to 

be split into three matrices which are upper triangular, lower triangular and diagonal. In 

order to split those matrices, the “tril” function, “triu” function and “diag” function were 

used. The new coding of section 4 was shown in Figure 3.4 below. 
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Figure 3.4: New coding for section 4 

Finally, the main coding was modified to make it more clean and simple. The 

maximum number of elements also increases to 500 elements. Then, the final code was 

tested again using 250 elements to compare with the previous code performance. In 

addition, the final code was also tested using the maximum number of elements and the 

graph of time against the number of elements was plotted. The overall coding was 

shown in the appendices section. 

 

3.8 Flowchart of the Algorithm 

  This sub-chapter will provide the overall flow of the process in form of a 

flowchart. There are 3 three main flowcharts that will be shown in this part which are 

the main body process, the FEM function and the Multigrid_TwoGrid function. The 

flowchart of the main program, FEM function and Multigrid_TwoGrid function was 

shown in Figure 3.5, Figure 3.6 and Figure 3.7 respectively. This flowchart will help 

users easily understand the flow of the program. 
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Figure 3.5: Flowchart of the main program 
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Figure 3.6: Flowchart of the FEM function 
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Figure 3.7: Flowchart for Multigrid_TwoGrid function 

Based on Figure 3.5, the process of the main program is a sample and easy to 

understand. In this process, there is a loop function containing the FEM function which 

is in an orange colour box. These orange boxes indicate the process is entering another 

flowchart process. Therefore, the main program also contains one other function. 

 Based on Figure 3.6, the flowchart shows that there is a lot of complex 

calculation and one other function in the process. In this process, it focused on obtaining 

the initial value. At the end of the process, it will return to the main program to record 

execution time. 
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 Lastly, Figure 3.7 shows all the calculation processes to produce the deflection 

result. This process consists of three other short functions which are the Gauss_Seidel 

function, Project_FineCoarse function and Gauss_Seidel2 function. At the end of this 

flow will return to the FEM function process. 

 

3.9 Coding Explanation 

This MG method solver with FEM algorithm consists of six MATLAB files 

which are one main program file and five function files. The explanation of the main 

program, FEM function, Multigrid_TwoGrid function, Gauss_Seidel function, 

Project_FineCoarse Function and Gauss_Seidel2 function codes as shown in Table 3.1, 

Table 3.2, Table 3.3, Table 3.4, Table 3.5 and Table 3.6 respectively. 

Table 3.1: The main program code explanation 

MATLAB codes Description 

clear; 
close all; 
clc; 
 

Clear all workspace values, close all 

windows and a clear command window. 

sample = input("Number of sample: 
"); 

Choose the number of samples to run this 

analysis (more samples, more accurate, 

more time-consuming). 

a = 0; 
x = zeros(1,50); 
y = zeros(50,1); 
 

Define the initial value and create a zores 

matrix for the number of elements and 

time taken. 

for m = 10:10:500 
    time = 0;    
    for i = 1:sample     
        time_in_second = 
FEM_process(m); 
        time = time + 
time_in_second; 
    end 
    time = time/sample; 
    a = a + 1; 
    x(1,a) = m; 
    y(a,1) = time/60; 
end 

 

Start recording the time taken for every 

element up to 500 elements (increment of 

10). 

plot(x,y) 
title('Graph of time taken to 
complete the process against number 
of elements') 

Plot graph time against the number of 

elements. 
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xlabel('Number of elements') 
ylabel('Time taken to complete the 
process (minutes)') 
 

 

 

Table 3.2: The FEM function code explanation 

MATLAB codes Description 

function time_in_second = 
FEM_process(m) 
 

Define function. 

tic 

 
Start the stopwatch function. 

m = m + mod(m,2); 
 

Change the odd number of elements to 

even in order to satisfy the multigrid 

transformation matrix sizes. 

n     = m+1; 
 
l     = 5; 
 
h     = l/m; 
 
k     = 1/h*[1, -1; -1, 1]; 
 
Ah    = zeros(n,n); 
 
F     = zeros(n,1); 

 

Define the initial value: 

i. Initialize the number of nodes 

ii. Define the length of the beam 

iii. Length of each element 

iv. Individual stiffness matrix 

v. Deflection matrix 

vi. Force matrix 

for i = 1:m 
Ah(i,i)     = Ah(i,i)     + k(1,1); 
Ah(i,i+1)   = Ah(i,i+1)   + k(1,2); 
Ah(i+1,i)   = Ah(i+1,i)   + k(2,1); 
Ah(i+1,i+1) = Ah(i+1,i+1) + k(2,2); 
end 

 

For loop to define the overall stiffness 

matrix. 

for i = 1:m 
xi = i*h;  
xj = xi-h; 
     
t = (xi^4-xj^4)/12 - (xi^3-xj^3)/3 
+ (xi^2-xj^2)/2; 
 
T1 = -xj^3/3 + xj^2 - xj + 1/h*t; 
T2 = xi^3/3 - xi^2 + xi - 1/h*t; 
     
F(i)   = F(i)   + 150*T1; 
F(i+1) = F(i+1) + 150*T2; 
end 
 

For loop to form force matrix (F) in A*X 

= F. 

The operation is: 

i. Initialize the nodal locations 

ii. Initialize Common term 

iii. Initialize the terms 

iv. Update the Force Matrix 
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F(n) = F(n) + (-150*l + 150*l^2 - 
50*l^3); 
 

Add the last term of the force matrix – 

slope 

U = Multigrid_TwoGrid(Ah, F); 
 

Solve the equation using Multigrid 

Gauss-Seidel. 

time_in_second = toc; Record the time of the stopwatch and 

return to the main program. 

 

Table 3.3: The Multigrid_TwoGrid function explanation 

MATLAB codes Description 

function U = Multigrid_TwoGrid(Ah, 
F) 
 

Define function. 

[n,~]    = size(Ah); 

 
Determine the size of the matrix. 

u(1:n,1) = 0; 
 
U(1:n,1) = 0; 
 
U_0      = 0; 
 
v1       = 1; 
 
fl       = 1; 
 
I = zeros(n,floor(n/2));    

 

Define the initial value of: 

i. Initialization of Initial Deflection 

matrix. 

ii. Define the Final Deflection 

matrix. 

iii. Boundary condition. 

iv. Number of iterations for Gauss-

Seidel. 

v. Flag to ensure the first iteration. 

vi. Define Projection Operator 

matrix. 

while (U_0 - U(1) > 0 || fl == 1) 
 

While loop with condition 𝑈0 − 𝑈1  

larger than 0 or flag value equal to 1. 

The flag condition is used to make sure 

the first loop is run. 

fl = 0; 
v1 = v1 + 1; 
 

Disable the flag and increase the number 

of iterations. 

U  = Gauss_Seidel(Ah, F, u, 0, v1); 
 

Applying the Gauss-Seidel relaxation 

method with v1 iterations. 
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for i = 1:floor(n/2) 
   for j = 2*i-1:2*i+1 
       if mod(j,2) == 0 
            I(j,i) = 2; 
       else 
            I(j,i) = 1; 
       end 
    end 
end 
 

Initialize the Projection Operator matrix 

as tri-diagonal. 

R   = 0.5*I'; 
 

Initialize the Restriction Matrix. 

rh  = F - Ah*U; 
 

Compute Residue. 

r2h = R*rh; 
 

Project Residue from the fine grid to 

coarse. 

A2h = Project_FineToCoarse(Ah); 
 

Project Stiffness matrix from the fine 

grid to coarse. 

e2h = A2h\r2h; 
 

Solve to find the error. 

eh  = I*e2h; 
 

Interpolate error from a coarse grid to 

fine. 

U  = U - eh; 
 

Update the solution 

l = tril(Ah,-1); 
d = diag(diag(Ah)); 
u = triu(Ah,1); 
 

Define value for upper triangular, lower 

triangular and diagonal matrix for Ah. 

x_new = gauss_seidel2( n, l, d, u, 
F, U ); 
 

Applying the new Gauss-Seidel method. 

U = x_new; 
 

Enter the new value of X into U. 

 

Table 3.4: The Gauss-Seidel function explanation 

MATLAB codes Description 

function X = Gauss_Seidel(A, B, X, 
fl, v) 
 

Define function. 

if ~fl 

 
The decision function if the flag is 

disabled, runs the first part. 

for k = 1:v 
 

Run the loop until the k value is equal to 

the number of iterations. 

x_old = X; 
 

Store previous iteration values. 
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