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ABSTRAK 

Ketersediaan data besar (BD) adalah faktor kritikal digunakan oleh pembuat 

semikonduktor untuk meningkatkan ketepatan ramalan mereka. Pengilang dapat 

menggunakan data ini untuk meramalkan permintaan pengguna dengan tepat dalam 

pembuatan semikonduktor dan membuat tekaan terbaik mengenai jumlah setiap variasi 

produk yang akan dibuat melalui pembuatan terpilih berdasarkan risiko yang dikira. 

Potensi lima pembelajaran mesin yang berbeza telah dikaji dalam kajian ini: Linear 

Model Regression, Multi-layer Perceptron Regressor Model (MLP), K-Nearest 

Neighbour Regressor Model (KNN), Hoeffding Tree Regressor Model (HT), and 

Hoeffding Adaptive Tree Regressor (HAT). Tiga metrik statistik digunakan untuk 

menilai ketepatan model yang dibina: mean absolute error (MAE), root mean squared 

error (RMSE), and residual distribution. Dalam eksperimen Meta, Imblearn, Expert, 

dan Ensemble telah digunakan untuk meningkatkan prestasi. Seiring dengan modelnya, 

kaedah pengesanan diaplikasikan seperti ADWIN ke dalam eksperimen kami untuk 

melihat perubahan pesat dalam menghasilkan BD. Perbandingan kajian menunjukkan 

bahawa model Linear Model Regression menggunakan kaedah peningkatan Box Cox 

mengungguli MLP, KNN, HT, dan HAT. Dalam kajian ini, model hubungan 

dikembangkan menggunakan modul River perlombongan data tambahan dalam perisian 

sumber terbuka Python. Hasil keseluruhan menunjukkan bahawa model Linear Model 

Regresssion (Box Cox mendekati) dapat berhasil diterapkan dalam pilihan pembuatan 

untuk rantai bekalan semikonduktor dengan menggunakan BD yang dihasilkan.
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ABSTRACT 

The availability of Big Data (BD) is a critical factor that semiconductor makers 

can leverage to increase their forecast accuracy. Manufacturers can use this data to 

better forecast future consumer demand in semiconductor manufacturing and make 

best guesses about the quantities of each product variant to create via selective 

manufacturing based on calculated risk. The potential of five distinct machine learning 

models was investigated in this study: Linear Model Regression, Multi-layer 

Perceptron Regressor Model (MLP), K-Nearest Neighbour Regressor Model (KNN), 

Hoeffding Tree Regressor Model (HT), and Hoeffding Adaptive Tree Regressor 

(HAT). Three statistical metrics were used to assess the accuracy of constructed 

models: mean absolute error (MAE), root mean squared error (RMSE), and residual 

distribution. Meta, Imblearn, Expert, and Ensemble were employed in this experiment 

to enhance the machine learning technique. Along with the model, a drift detection 

method has been implemented such as ADWIN into our experiments to observe rapid 

changes in the generated BD. The comparison of research showed that the Linear 

Model Regression model using the Box-Cox improvement method outperformed 

MLP, KNN, HT, and HAT. In this study, the relationship model has been developed 

using the incremental data mining River's library in open source software Python. The 

overall results indicated that the Linear Model Regression model (Box-Cox 

approached) model could be successfully applied in the semiconductor supply chain 

by using the generated BD.
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CHAPTER 1  
INTRODUCTION 

1.1 Overview of Data Stream Mining in Semiconductor Manufacturing 

The semiconductor manufacturing industry is highly complex. The major 

processes in most semiconductor industries are in the following sequence: production 

of silicon wafers from pure silicon material, fabrication of integrated circuits onto the 

raw bare silicon wafers, assembly by putting the integrated circuit inside a package to 

form a ready-to-use product, and testing of the finished products. The number of 

process steps in wafer fabrication, front end-stage to semiconductor manufacturing is 

typically over 500, and each wafer is individually tracked because while wafer to wafer 

(WTW) variation can be incredibly small and elusive, it still impacts device yield 

(Munirathinam and Ramadoss 2016).  

The semiconductor fabrication is highly automated, with the system generating 

large amounts of data and often on the order of a few terabytes per day, for instance, 

there are ~500 steps in semiconductor chip processing that generates terabytes of data 

daily (Munirathinam and Ramadoss 2015). Mining is a crucial method to extract and 

analyse useful information since the semiconductor fabrication process is a very 

complex manufacturing process composed of hundreds of steps, and interaction 

between different varieties can be difficult to fully understand, and data mining help 

to emphasize such relationships. Advanced statistical modelling techniques also help 

to analyse and build the relationship that explains such variation and its performance. 

This research studies and compares various stream data mining models using 

simulated data. The primary objective of the research is to look into suitable methods 

and programming platforms allowing stream data mining. Due to the exploratory 

nature of the work, the research is considered preliminary technical investigation, 

rather than industry application which will be addressed as future work. 

1.2 Overview Project Background 

The advancement of semiconductor integrated circuit (IC) in smaller 

technological nodes coupled with the complex module packaging enabled multi-chip 

integration in a single package with a wide variety of features. For instance, an IC can 

be marketed at different prices with options on needed features thus given birth to 
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numerous variants. Furthermore, a customer will pay higher for an IC variant with 

faster transceiver speed and lower power where manufacturers can be shown in 

electrical testing. Subsequently, the manufacturer can command higher profits by 

binning out IC into different variants and selling better performance IC at a higher 

price while the lower performance IC at a more economical price and produced a wide 

range of marketing. This different variant of IC manufacturing is called selective 

manufacturing. This kind of strategy is allowed outsourcing companies to collaborate 

with other companies to produce and distribute a product. For example, a fabless 

company able to produce semiconductors and come out with different variants of 

semiconductors manufacturing. The manufacturing industry is currently in the midst 

of a data-driven revolution, which promises to transform traditional manufacturing 

facilities into highly optimized smart manufacturing facilities. These smart facilities 

are focused on creating manufacturing intelligence from real-time data to support 

accurate and timely decision-making that can have a positive impact across the 

entire organization. Therefore, manufacturing facilities must be able to manage the 

demands of the exponential increase in data production, as well as possessing the 

analytical techniques needed to extract meaning from these large datasets. More 

specifically, organizations must be able to work with BD technologies to meet the 

demands of smart manufacturing. The availability of BD enables the manufacturer to 

better predict the future demand outlook of the customer and do the best guesstimate 

quantities for each product variant to manufacture with selective manufacturing based 

on calculated risk.  

1.3 Problem Statement 

Advancement in semiconductor integrated circuit (IC) in smaller technological 

nodes coupled with complex module packaging enabled multi-chip integration in a 

single package with a wide variety of features (Mӧnch et al, 2018a). For example, a 

field-programmable gate array with unprecedented logic density hosts a wide variety 

of features such as embedded processors, DSP blocks, clocking, and high-speed serial. 

Such an IC can be marketed at different price points with options on needed features 

hence giving birth to numerous variants. Customers will pay higher for IC variants 

with faster transceiver speed and lower power where manufacturers can bin out during 

electrical testing. This allows manufacturers to command higher profits by binning out 
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IC into different variants, selling better performance IC at a higher price while lower 

performance IC at a more economical price and capturing broader market applications. 

Such a strategy to manufacture different variants out of a single complex IC is called 

selective manufacturing. The strategy is particularly important for semiconductor 

outsourcing, which allows fabless supply chains or a range of virtual enterprises in 

which different firms collaborate to produce and distribute a product (Mӧnch et al, 

2018). 

However, there are several challenges on this. Firstly, it is not easy for a 

manufacturer to control process variations to consistently produce a given percentage 

of higher performance variants out of an IC. In addition, yield may vary significantly 

over time, across facilities, and across different manufacturing technologies and 

products, especially the introduction of new products or processes into high-volume 

production (Mӧnch et al, 2018). Secondly, manufacturers cannot really predict future 

demand outlook of customers to decide which variant to produce more for cost 

optimization. Short product life cycles and different drivers of product demand limit 

which statistical forecasting approaches can be applied (Uzsoy et al., 2018). Customers 

might order more standard performance variants while manufacturers produce more 

low-performance variants. In addition, the lead time to manufacture an IC generally 

takes about 20 to 25 weeks so manufacturers must look ahead and estimate what to 

produce today for orders that are coming a few months later. This requires 

manufacturers to take a calculated risk when selective manufacturing is performed 

against specifics predictions from customer ordering patterns and market demand 

outlook.  

The manufacturing industry currently undergoes a data-driven revolution to 

become highly optimized smart manufacturing facilities (O’Donovan et al., 2015).  

One key thing semiconductor manufacturer can rely on to improve their prediction 

accuracy is the availability of Big Data (BD). Big Data is a combination of structured, 

semi-structured, and unstructured data collected by organizations that can be mined 

for information and used in machine learning projects, predictive modelling, and other 

advanced analytics applications. The entire semiconductor supply chain which 

includes manufacturers themselves, vendors, and customers generates a huge amount 

of BD constantly every day. The information systems support business and 

manufacturing intelligence by storing increasingly BD (O’Donovan et al., 2015). Such 

data can be used by manufacturers to better predict the future demand outlook of 
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customers and do best guesstimate quantities for each product variant to manufacture 

with selective manufacturing based on calculated risk. This research focuses on 

developing an operation and analytics model to predict and optimize selective 

manufacturing in the semiconductor supply chain based on the availability of BD. This 

research aims at constructing a relationship model to mathematically explain how 

leading indicators and BD contribute to selective manufacturing decision making and 

develop an algorithm to predict and optimize selective manufacturing options for the 

semiconductor supply chain.  

1.4 Objectives 

The research objective of this research is to examine the performance of 

various stream data analytics models onto simulated data with a structure similar to 

selective manufacturing. 

1.5 Scope of Project 

This project is based on the River library in Python and a simulated data stream. 

Several machine learning methods include Neural Network, Linear Model Regression, 

Hoeffding Tree Regressor, Hoeffding Adaptive Tree Regressor, and K-Nearest 

Neighbour. All the models from the algorithms have been extracted and are compared 

to which the model produced the best prediction by comparing the performance 

metrics. The research also implements several drift detection algorithms to track 

sudden changes in the generated data. Furthermore, the Meta, Imblearn, Expert, and 

Ensemble were used to develop an improved technique for the algorithm model, which 

was then tested. Then, compare the performance of the various models and select the 

one that exhibits the best MAE, RMSE, SMAPE, and residual distribution 

performance. 
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CHAPTER 2  
LITERATURE REVIEW 

2.1 Introduction of Data Stream Mining 

Data stream mining is the process of analysing and extracting useful 

information from continuous and rapid data streams (Zhang et al. 2012). The process 

involves many technical areas such as classification, detection, and clustering. Today, 

huge volumes of sensory, transactional, and web data are continuously generated as 

streams of data. These change continuously with the updates of information where the 

forthcoming data is combined along with existing data. Streaming data can be 

considered as one of the main sources of what is called BD. More than half of the 

global population was already using email in 2019 with 3,93 billion users and the 

number is predicted to reach 4.37 billion users in 2023 (Altaylar 2020). These users 

would send out 347 billion emails per day by the end of 2023. Data stream mining is 

crucial for the big organization since they constantly generate large amounts of data. 

For example, a big organization like Google handles more than 3.5 billion searches on 

daily basis, NASA satellites generate around 4TB images and Walmart records more 

than 20 million transactions (Nguyen, Woon, and Ng 2015). 

Three common challenges in BD are velocity, volume, and variety (Fong, 

Wong, and Vasilakos 2016). Velocity challenge means that the huge amount of data 

to be handled at an escalating high speed, Variety is a problem that makes data 

processing and integration difficult due to the data come from various sources and they 

are formatted differently and for the Volume problem, it means that the storing, 

processing and analysis over them both computational and archiving challenging. In 

contrast to stationary data in traditional cluster learning scenarios, streaming data can 

be extracted just a single time and is unbound in size. traditional data mining 

approaches are not suitable for streaming data (Finlay, Pears, and Connor 2014), as 

they results in unstable models with limited applicability for the construction of 

predictive models to determine to build outcomes in the advance of the build attempt. 

BD transverse enterprise data processing pipelines in a streaming manner due 

to the ubiquitous use of sensors and network monitoring software. As a result, 

organizations are turning to process systems for data or event sources and wish to 

develop complicated analytics online (Ari et al., 2012). Furthermore, to handle and 

analyse the massive data that may have a high level of uncertainty, there is an 
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additional difficulty in choosing a suitable systems architecture (Bodyanskiy et al., 

2016). This was how they constructed a cascade neo-fuzzy system with a pooling of 

extended neo-fuzzy neurons. This method allows stationary and stochastic non-linear 

chaotic signals, such as data streams, to have both filtering and tracking capabilities in 

online mode. 

2.1.1 Type of Data 

In traditional data mining, this data is often referred to as "batch processing" 

data. In other words, all data is immediately available and stored in memory (Wares, 

Isaacs, and Elyan 2019). Batch-based processing involves the extraction of 

information from large amounts of data, and the outcome is expected once the entire 

process has been completed (Benjelloun et al. 2020). Each block is processed 

individually, and each block is separated by a period, whereas batch processing 

operations are frequently executed simultaneously and in sequential order. Its primary 

advantage is the ability to break down huge jobs into smaller pieces in order to 

maximize efficiency (Benjelloun et al. 2020). Because of this, Benjelloun et al. (2020) 

review the MapReduce paradigm, which is the most well-known processing paradigm 

for this type of processing. The following is the formal definition of the term 

MapReduce: When it comes to commercial applications, MapReduce is a 

programming model that may be applied to a wide variety of scenarios. It is intended 

for the processing of enormous amounts of data in parallel, and it accomplishes this by 

dividing the work into several separate jobs. 

 Unlike batch data, the data stream is an infinite series of data points identified 

either by time stamps or by an index. In data sources, they can also see data in an 

integer, categorical, graphical vector of data in hierarchical or unstructured formats in 

organized or structured data (PhridviRaj and GuruRao 2014). These data streams are 

either static or changing and are graded based on their core distribution. Particularly, 

data streams generate dynamically with unbound size (Alothali, Alashwal, and Harous 

2019). Although batch data is different from the data stream, there is a certain 

technique that handles data stream as a batch which is called micro-batching. They 

(Shahrivari 2014), (Ksieniewicz and Zyblewski 2020) treated the stream as a sequence 

of small batches of data. The amount of data being generated is increasing, and streams 
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are continuous and extremely fast. It is critical to approach this data differently since 

it demands rapid acquisition and processing. Stream processing (Benjelloun et al. 

2020) is utilized when data needs to be analysed as soon as it is received, which is 

often the case. When this type of processing is not used when it is required, it can result 

in a variety of problems, including data value loss over time as a result of excessive 

latency.  

2.1.2 Regression Method for Data Stream Mining 

In context, data stream mining, method or technique is needed to effectively 

analyze, integrate, acquire and transform data, extract valuable patterns in real-time 

with only one scan and maintain the continuity of the process (Alothali et al., 2019). 

Generally, there are two method types that have been well known used, which are the 

classification and regression techniques. In these techniques, there are a hundred kinds 

of algorithms that used different kinds of methods or approaches. However, in this 

context, the objective is to specified this such a problem to be as precise as possible in 

approximating the mapping function (f), so that if fresh input data (x) is added to the 

dataset, the output variable (y) can be predicted (Friedman, 2012). Both classification 

and regression techniques are based on the concept of making predictions using known 

datasets (referred to as training datasets). However, because the output variables are 

both numerical and continuous, the regression is chosen as the experiment strategy. 

This part will discuss a review article on a few regression algorithms that have will be 

employed in this study and experimentation. 

2.1.2(a) Linear Regression 

Consider the regression issue (Su et al., 2012), which entails fitting a 

continuous response Y to a set of predictors 𝑋1,..., 𝑋𝑝. By fitting a linear equation to 

observed data, linear regression seeks to model the relationship between two variables. 

One variable is thought of as an explanatory variable, while the other is thought of as 

a dependent variable. The simplest model type is linear regression, which represents 

the regression function as a linear collection of components. As follows is the 

definition of the linear model: 
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𝑦
𝑖

= β0 + β1x𝑖1 + ⋯ + β𝑝x𝑖𝑝 + ε𝑖  

In matrix form, 

𝑦 = 𝑋β + ε 

where as 

1. (Linearity) μ = [E(𝑦𝑖|𝑥𝑖)]𝑛𝑥1 =  𝑋β  

2. (Independence) ε𝑖  are independent of each other;  

3. (Homoscedasticity), ε𝑖’s have equal variance 𝜎2 ;  

4. (Normality) ε𝑖’s are normally distributed. 

2.1.2(b) KNN Regressor 

In KNN-based regression (Barrash, Shen, and Giannakis 2019), �̂� is first 

generating a graph in which each node represents a data sample and is connected to k 

additional training samples that are "near" to x in some way. KNN regression is a non-

parametric technique that approximates the relationship between independent 

variables and continuous outcomes intuitively by averaging observations in the same 

neighbourhood. The following is a simplified representation of the KNN regressor that 

is best for the linear Gaussian data model: 

�̂�
𝑘𝑁𝑁

(𝑋) =  
1

𝑘
∑ y(𝑗)(x)

𝑘

j=1 

 

where as: 

1. Let 𝑥(𝑗)(𝑥) denote the jth closest training datum (neighbour) to x 

2. Let y(𝑗)(x) be the y-value pertaining to 𝑥(𝑗)(𝑥) 

 

2.1.2(c) MLP Regressor 

An artificial neural network (ANN) is a network made up of synthetic neurons 

or nodes that mimic biological neurons (Nassif, Ho, and Capretz 2013). The feed-

forward method ANN layers are typically denoted by the terms input, hidden, and 

output. If no hidden layer exists, this sort of ANN is referred to as a perceptron. At 

least one hidden layer is present in an MLP, and each input vector is represented by a 
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