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ABSTRAK 

Sistem klasifikasi pergerakan manusia menandakan teknologi industri era baru 

ini untuk memantau prestasi tugasan dan mengesahkan kualiti proses manual dengan 

menggunakan cara automasi. Namun demikian, kajian pada masa ini banyak bertumpu 

kepada tangkapan gerakan dengan penanda yang memerlukan peralatan mahal dan 

pemasangan sensor di bahagian badan subjek yang tertentu. Model klasifikasi 

pergerakan tanpa penanda masih berkurang perkembangan dalam bidang pembuatan. 

Oleh itu, penyelidikan ini bertujuan untuk membangunkan sebuah model klasifikasi 

pergerakan tanpa penanda untuk pekerja-pekerja berdasarkan timbunan model rangka 

dalam video pergerakan dan menentukan strategi perlombongan data yang terbaik bagi 

mengkategorikan kelas pergerakan manusia dalam industri. Lapan orang yang berumur 

23 hingga 24 tahun sukarela untuk melibatkan diri dalam ekperimen melaksanakan 

empat jenis pergerakan, iaitu memindahkan kotak, memindahkan baldi, menyapu lantai 

dan mengepel lantai. Semua pergerakan dirakam dalam video secara berasingan 

mengikut jenis pergerakan. Semua rakaman video akan ditindihkan dengan model 

rangka yang terdiri daripada koordinat bahagian badan dan garisan penyambungan 

bahagian badan melalui algoritma pengaturcaraan. The algoritma menggunakan set data 

COCO dan modul OpenCV dalam Python untuk menganggarkan koordinat bahagian 

badan dalam model rangka. Data yang diekstrak daripada model rangka mengandungi 

halaju asal, halaju kumulatif dan pecutan kumulatif bagi setiap bahagian badan yang 

terlibat. Proses perlombongan data pergerakan termasuk normalisasi data, subsampel 

secara rawak dan klasifikasi data untuk mencari kriteria terbaik mengasingkan kelas 

pergerakan. Data vektor pergerakan dinormalisasi dengan tiga teknik normalisasi yang 

terdiri daripada normalisasi penskalaan perpuluhan, normalisasi min-maks dan 

normalisasi skor-Z untuk membentuk tiga set data bagi proses perlombongan data. 
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Ketiga-tiga set data dicubakan dengan lapan pengelasan untuk mendapatkan kombinasi 

algoritma pengelasan dan teknik normalisasi yang terbaik untuk mengelaskan data. 

Lapan algoritma pengelasan yang dikaji ialah ZeroR, OneR, J48 pepohon keputusan, 

kehutanan rawak, pepohon rawak, pengelas Bayes naif, jiran k-terdekat (k = 5) dan 

perceptron berlapisan. Keputusan pengkajian menunjukkan bahawa pengelas kehutanan 

rawak mencatatkan ketepatan pengelasan tertinggi dengan set data yang dinormalisasi 

oleh teknik min-maks, 81.75% bagi set data tanpa subsampel semula, 92.37% bagi set 

data yang melaksanakan cara subsampel rawak. Normalisasi min-maks hanya 

memberikan peningkatan keputusan yang tidak signifikan dengan menggunakan 

algoritma pengelasan sama, tetapi cara subsampel semula secara rawak meningkatkan 

ketepatan klasifikasi dengan margin besar. Cara subsampel secara rawak 

menyingkirkan data yang tidak relevan dan menggantikan nilai-nilai tersebut dengan 

salinan data yang lain. Teknik normalisasi dan pengelas perlombongan data yang paling 

sesuai telah ditambahkan ke dalam model klasifikasi pergerakan manusia untuk 

melengkapkan perkembangan model. 

 

.
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ABSTRACT 

Motion classification system marks a new era of industrial technology to 

monitor task performance and validate the quality of manual processes using 

automation. However, the current study trend pointed towards the marker-based motion 

capture system that demanded the expensive and extensive equipment setup. The 

markerless motion classification model is still underdeveloped in the manufacturing 

industry. Therefore, this research is purposed to develop a markerless motion 

classification model of shopfloor operators using stick model augmentation on the 

motion video and identify the best data mining strategy for the industrial motion 

classification.  Eight participants within 23 to 24 years old participated in an experiment 

to perform four distinct motion sequences: moving box, moving pail, sweeping and 

mopping the floor, recorded in separate videos. All videos were augmented with a stick 

model made up of keypoints and lines using the programming model. The programming 

model incorporated the COCO dataset and OpenCV module to estimate the coordinates 

and body joints for a stick model overlay. The data extracted from the stick model 

featured the initial velocity, cumulative velocity and acceleration for each body joint. 

Motion data mining process included the data normalization, random subsampling 

method and data classification to discover the best information for separating motion 

classes. The motion vector data extracted were normalized with three different 

techniques: the decimal scaling normalization, min-max normalization, and Z-score 

normalization, to create three datasets for further data mining. All the datasets were 

experimented with eight classifiers to determine the best machine learning classifier and 

normalization technique to classify the model data. The eight tested classifiers were 

ZeroR, OneR, J48, random forest, random tree, Naïve Bayes, K-nearest neighbours (K 

= 5) and multilayer perceptron. The result showed that the random forest classifier 
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scored the best performance with the highest recorded data classification accuracy in its 

min-max normalized dataset, 81.75% for the dataset before random subsampling and 

92.37% for the resampled dataset. The min-max normalization gives only a slight 

advantage over the other normalization techniques using the same dataset. However, 

the random subsampling method dramatically improves the classification accuracy by 

eliminating the noise data and replacing them with replicated instances to balance the 

class. The best normalization method and data mining classifier were inserted into the 

motion classification model to complete the development process. 
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CHAPTER 1  

INTRODUCTION 

1.1 Overview 

This chapter covers a brief background of shopfloor operator motion 

classification in the performance evaluation. Problem statements are discussed after 

extracting information from literature research. It leads to the proposed research 

objective to resolve the problem stated, followed by the scope of work to clarify the 

direction of research implementation. 

1.2 Research Background 

 Human motion analysis is emerging as one of the crucial elements in the 

manufacturing industry to measure performance evaluation. With video technology 

advancing rapidly, human motion data has gathered many study interests from 

biomechanical experts and computer vision explorers. Motion analysis serves as an 

essential feature to detect and classify specific human motion in many applications such 

as sports performance analysis (Ferdinands, 2010), medical rehabilitation (H. Zhou & 

Hu, 2008), video surveillance (Garibotto, 2009) and virtual reality gaming (Kloiber et 

al., 2020). In the manufacturing field, the motion classification helps to verify the 

presence of action in an inevitable process by operators. Conversely, the absence of 

specific actions can lead to process defects and incompletion (Aehnelt et al., 2014). 

Furthermore, it also improves workplace safety by detecting actions that might lead to 

potential injury and supports robotic-human interaction with the simulation of human 

motion activity. (Han et al., 2012) 

The book “Human Motion Sensing and Recognition: A Fuzzy Qualitative 

Approach” describes motion analysis as the combination of sensing the human body 
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and extracting the static or dynamic data in the form of gesture, behaviour, and actions 

from the human body (Liu et al., 2017). Fundamentally, human motion analysis systems 

consist of the description and recognition of human body motion. Motion analysis 

system can be expanded into several sub-parts with tracking, classification, 

quantification and prediction. Motion classification, which strongly associates with 

motion recognition, identifies the pattern of human body parts movement based on 

image sequences and eventually makes successful categorization (Hernandez et al., 

2009). 

Recent years’ trend indicated a transition from the manual evaluation of human 

movement to a vision-based motion recognition method.  Due to the subjectivity of 

human view, random error and motion variation can affect the human judgement 

accuracy. Therefore, plenty of researches dived deep into the potentials of using 

computer vision or artificial intelligence model to recognize human activities (Colyer 

et al., 2018; Kale & Patil, 2016; Yu et al., 2019). It aligned with the ongoing trend of 

utilizing computer technology to replace manual work to improve efficiency without 

compromising accuracy.  

The history of the vision-based motion classification model started a few 

decades ago when fixed-axis and parallel projection assumption is discovered to 

calibrate feature points relative to the previous position for the human body parts (Webb 

& Aggarwal, 1981). The general framework of a vision-based motion classification 

model involves movement scene capturing, human tracking, humans and motion 

representation, motion recognition and classification into its respective class (Mohamed 

& Ali, 2013). The model generally processes each frame from the motion video 

according to its frame sequences. After a human is detected in a video frame, 
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segmentation of the frame image is applied to obtain the region of interest (Rittscher & 

Blake, 1999).  

The motion can be visualized by augmenting a stick-figure model, volumetric 

model, 2D-blobs and geometric drawing (Aggarwal & Cai, 1999). Among these motion 

visualization methods, stick figure model offers a simple but efficient solution to 

estimate a human posture at a particular frame. The stick-figure model is a skeleton-like 

model comprising several keypoints, with each representing a body part. A keypoint is 

the coordinate of an observed body part in the image. A line connects each pair of body 

parts. These body parts act as moving joints, and their motion vectors are evaluated in 

comparison to their counterparts of the previous frame (Choi et al., 2012). By 

comparing the person’s movement between each frame, the motion is categorized by 

one of the several activity recognitions approaches such as pattern-based recognition 

and dynamic-time wrapping (Liang Wang et al., 2003). 

Due to variation in each person’s physiques and way of executing activities, a 

motion recognition model might face a question of robustness and accuracy. The same 

question also applies to many noise factors in a factory setting such as location, lighting 

and clothing (Aehnelt et al., 2014). Therefore, it is vital to obtain diverse data for 

processing to improve the model’s performance. A knowledge discovery process 

identifies the rules and information to differentiate the class of motion in the captured 

or real-time video from these data.  

The knowledge discovery process (KDD), also known as knowledge discovery 

in database, is defined as the nontrivial research process, techniques and tools used to 

identify valid, novel, potentially useful, and ultimately understandable patterns in data 

(Agrawal & Shafer, 1996).  Known as a machine-learning process, it consists of a few 

steps from developing algorithm application to consolidating the discovered knowledge 
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(Cios et al., 2007). Data mining is a vital step in the process flow. It outputs the patterns 

from the large sets of well-prepared data using the classifier methods such as 

classification rules, decision trees and conditional probability (Barhate et al., 2018). The 

evolution of data mining from the 1990s led to its expanded range of applications, 

including face and body motion analysis (Mariscal et al., 2010). Many of the classifiers 

were developed as readily-used datasets and automated algorithms to evaluate the 

human face and body pose. Testing this concept into the manufacturing field might 

revolutionize the performance review procedure of workers in the factory. 

1.3 Problem Statement 

Lately, companies slowly learned the powerful tool of implementing automated 

biomechanical motion analysis to evaluate the operators' performance (Bortolini et al., 

2020). However, the complicated experimental setup or physical cooperative equipment 

setting like motion capture markers limits the application of the current motion-tracking 

model despite its incredible effectiveness. Moreover, the marker or fiducials placed on 

the workers will affect their normal movement and ultimately, their performance.  

Meanwhile, the vision-based markerless motion classification model has low 

number of researches done on its implementation in the manufacturing industry. 

Previous research on related scope mostly covered basic activities like running, 

standing, sports, and medical abnormality (Geng et al., 2016; Lu & Chang, 2012). 

Insufficient evidence of results hurt the confidence of factories to adopt the markerless 

motion classification system for identifying more complicated activities in the 

production line, especially considering the factory environment being full of 

background noise. Therefore, a research about markerless biomechanical motion 



5 

classification model with the computer vision and data mining techniques is potentially 

beneficial in manufacturing field. 

1.4 Research Objective 

There are two main objectives in this study which are listed as followed: 

a) To develop a descriptive model of motion classification based on the 

overlay of stick-figure model on the operator’s motion in video frames. 

b) To evaluate the classification accuracy of motion classification model 

using data mining classifier algorithms and determine the most suitable 

data mining strategy.  

1.5 Scope of Study 

A descriptive model of human motion classification analysis based on the stick-

figure model augmentation in each video frame featuring an operator detected is 

developed to identify and verify the motion activity carried out by the production 

operator. Programming algorithms of stick-figure model overlay are developed with 

Python to estimate the position of body parts and calculate the vector variables of the 

motion. The video samples are collected with a camera using different subjects and four 

types of activities. The vector data is extracted into a data file format and pre-processed 

for data mining using the programming software of Python. The data mining process is 

implemented on the data file using the WEKA Experimenter interface to identify the 

patterns from the motion data. Different classifier methods with various settings are 

tested to determine the best classifier methods based on the classification accuracy. 
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CHAPTER 2  
LITERATURE REVIEW 

2.1 Overview 

The study of human motion using computer graphics technology has been 

actively pursued since the evolution of the rotoscoping concept (Moeslund & Granum, 

2001), which transferred realistic human motion into animation. This chapter reviews 

these studies from many aspects. Application and previous methods of motion 

classification in the manufacturing industry are discussed. It is followed by reviews on 

the current existing markerless motion classification model. Past study results of the 

human motion tracking and segmentation based on video frame are presented. 

Specifically, the visualisation using a stick figure model onto a human figure in the 

video frame is focused.  

The second part of this research involves data mining. Consequently, the data 

extraction and data mining strategy are studied separately from the available research 

to gather the methodology and results for these two stages.  

2.2 Motion Analysis in Manufacturing Industry 

The rise of motion analysis technologies has enabled the industry to estimate the 

human pose and manufacturing activity more accurately. According to the survey from 

Menolotto et al. (2020), the industrial research about motion analysis primarily targeted 

the health and safety factors in the workplace, with over 60% of the reviewed literatures 

discussing this application. Conversely, productivity evaluation and task monitoring 

only occupied a low portion of research purposes in the same collection of studies 

(Menolotto et al., 2020). It indicated the unfairly low amount of attention to the manual 

process’s motion tracking and performance evaluation of the production line. The 

limited application could cause the under-utilisation of motion data technology in the 
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industry. The most-used devices to capture and detect motion discussed in the same 

survey are the inertial measurement units (IMUs) sensors and camera-based motion 

capture system. 

Kubota et al. (2019) tested the implementation of wearable inertial sensors with 

motion capture camera in the activity recognition of automotive activities. The activities 

were broken down into sequences based on walking, scanning, attaching and receiving 

to control the variation of actions. The experiment subject was entitled to 

simultaneously wear the Vicon markers as a motion capture marker and Myo armband, 

a surface electromyography (sEMG) sensor. The setup of markers and sensors were 

shown in Figure 2-1. Mobile characteristic of sensors and motion capture camera 

enabled flexible data collection regardless of places. However, the experimental setup 

would require expensive equipment and lengthy preparation time of wearing, which 

could cause inconvenience to the conventional production line. It also suffered from the 

common difficulty to detect fine-grained motions.  

 

Figure 2-1: Sensors setup on the participant’s arm with Vicon markers in the red box 

and Myo armband in the blue oval (Kubota et al., 2019). 
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Fine-grained action typically involves the frequent interactions between human 

hands or fingers with objects. It is a standard feature in manual manufacturing activity. 

However, fine-grained action recognition is significantly more complex than gross 

actions such as standing and sitting down due to the higher level of features required. A 

mid-level action recognition approach was developed, with frame image being divided 

into several parts but only interaction parts being cropped out for data processing (Y. 

Zhou et al., 2015). Such an approach was emulated by other researchers for hand pose 

recognition using OpenPose (Kobayashi, 2019) and with a fine-grained motion 

estimation approach (FGME) for video frame interpolation (Yan et al., 2020). Both 

applied the convolutional neural network (CNN) based on the constructed bounding 

box of interacting body parts, as shown in Figure 2-2, to recognise the action. These 

approaches eliminated non-moving objects and background in the video frame but were 

experimented with similar background and action sequences. The effect of different 

environment and activity type on classification accuracy remains in doubt. 

 

Figure 2-2: Interpolation result using FGME approach with a red box indicating 

cropped interaction part (Yan et al., 2021) 

 

The alternative method of motion analysis in the industry used the advanced 

Kinect sensors and camera similar to the Microsoft Kinect system in gaming 

application. Kinect V2 sensors, combined with an RGB camera, an infrared camera and 

an infrared emitter, outputted three different images, with one of them being the depth 

image. The depth image shaded the image contours with different colours based on the 

distance between sensors and camera (Caruso et al., 2017). Besides the depth map, a 
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skeleton-like stick figure model can also be extracted from the Kinect sensors via a 

skeleton model descriptor. Kinect system could achieve acceptable accuracy in motion 

detection and be capable of capturing 3D motions. However, the markers and Kinect 

equipment are less affordable and convenient to set up. It also had the potential problem 

of poor edge detection under dark-coloured background (Dutta, 2012). 

Meanwhile, Yu et al. (2019) had used the single RGB camera-based 3D motion 

capture algorithm to obtain the motion data for biomechanical analysis of fatigue. The 

methodology mainly aimed to test the absence of marker which might affect the 

worker’s movement. The study discovered that this 3D motion modelling method could 

estimate the worker’s 3D joint locations within an error margin of 4cm, which was just 

acceptable. In addition, Akanmu et al. (2018) examined the sensor-based Inertia 3DSuit 

motion capture suit in the construction industry to investigate the effect of these motions 

on the fatigue of body joints and reassign the workforce for work optimisation. These 

two methods have a common goal of studying construction activity but required 

expensive tools instead of the cheaper conventional camera to gather data.  

2.3 Markerless Motion Classification Model 

Without using motion capture markers, the multi-camera recording played the 

role to reconstruct the 3D view of moving human bodies. Nakano et al. (2020) tested 

the setup of multiple video camera from different angles to obtain the frames from 

various views before merging as 3D visualisation through the direct linear 

transformation (DLT) method. An alternate form of multi-camera setting practised the 

asynchronous way by applying audio synchronisation to the conventional video camera 

recordings and then sent for 3D mesh reconstruction using a feature-based approach 

(Hasler et al., 2009). However, the synchronised camera setup was a more modern trend 
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in markerless motion capture (Y. Wang et al., 2018). The feasibility of multi-camera 

setups is also a considerable concern in the factory setting with space limitations.  

For the single video camera, Kanko et al. (2021) proved that the single 2D 

camera view with a deep-learning approach could produce the results of gait analysis 

and movement estimation as comparable as the marker-based model. The results were 

echoed by Wang et al. (2018) in comparing the accuracy of movement joint angles 

between marker-free and marker-based approach. 

A study was carried out to adopt the single-camera to capture the video of 

general movements by infants and recognise the abnormality in those movements. The 

study outputted successful result to classify the abnormality. It followed a framework 

starting from feature extraction using computer vision, movement analysis using 

formula calculations and finally, the movement classification with a feedforward-type 

network known as a log-linearised Gaussian mixture network (LLGMN) (Tsuji et al., 

2020).  

A low-budget 2D-camera system developed by Zult et al. (2019) showed that 

the conventional video camera could extract the valid keypoints of body parts in the 

video frame based on the markers. The markers could be replaced by virtual coordinate 

points using a computer vision module such as OpenPose (Xu et al., 2020). The study 

by Kim et al. (2021) applied the OpenPose module, a type of artificial intelligence-

assisted motion analysis system, to predict the knee and hip movement angles in a video 

captured using the smartphone camera. The validity of this OpenPose-based system 

with the post-processing automated algorithm showed early promise but may require 

further verification. 
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2.4 Human Motion Segmentation 

Motion segmentation serves as the pre-processing stage of motion analysis to 

cluster the long frame sequences depicting human actions into several shorter, non-

overlapping video segments. Subspace clustering works by searching subspace and 

cluster from a dataset and categorising data into new distinctive spaces based on similar 

features. For example, an approach proposed by Xia et al. (2018) discussed 

implementing a robust kernel low-rank representation method to combine with the 

sparse subspace clustering. Its sparse representation of motion data could be used for 

motion recognition, but it ignored the temporal correlation between successive frames. 

Temporal data clustering aims to cut long sequential data into a set of non-

overlapping parts. L. Wang et al. (2019) applied this clustering method in motion data 

segmentation. They emphasised that temporal information was crucial to achieving 

accurate model performance. The temporal clustering method had its drawback due to 

it being an unsupervised learning method. The transfer learning approach can overcome 

the unpredictable result of this unsupervised clustering method. 

As the motion is analysed in the video format, a data mining strategy to consider 

time sequence in the video was discussed in several works (Mallikharjuna & Reddy, 

2020; Tasoulis et al., 2013; Vijayakumar & Nedunchezhian, 2012). Mallikharjuna & 

Reddy (2020) explained the framework of video data mining with several stages. The 

video frames were splat into individual images before analysing and extracting data on 

all the individual images. Poms et al. (2018) added that the efficient video analysis 

extracted a fixed interval of frames without taking all frames to conserve the 

computational power of video data mining.  

Transfer learning benefits from the prior knowledge from related source data to 

improve feature identification in the target data. Many recent studies practised transfer 
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learning based on existing datasets on the Internet to visualise the object motion. Several 

works have partially (T. Zhou et al., 2020) or fully adapted (J. Zhang et al., 2017) the 

transfer learning by applying deep neural network classifier parameters in these datasets 

to estimate the motion. Furthermore, the Haar cascade classifiers were tested to detect 

the human from the image data after being transformed into a thermal or grayscale map. 

It proved helpful, especially for detecting multiple people in the same image frame 

(Setjo et al., 2017). However, the classifiers can also incorrectly detect objects with 

similar characteristics as human.  

Qu et al. (2020) suggested an automated human segmentation by mapping 

motion data into a hidden space map to apply character function without using body 

position coordinates. Choudhury et al. (2018) proposed a process flow to detect and 

partition the image region of human with background elimination by deviation 

thresholding and using holistic human descriptor to represent human silhouette 

orientation histogram. The shortcomings, however, were the ability to segment the 

human partially blocked by obstacles or workpiece and under the changing light in the 

environment.  

Rubino et al. (2015) introduced semantic motion detection, which identifies the 

matches of objects between two views using semantic information. Its underlying 

principle was similar to the convolutional neural network model that obtained pattern 

from training data to identify features in the target data. Simonyan & Zisserman (2014) 

proposed a two-stream convolutional network model that incorporated spatial and 

temporal networks. This model identified the moving action in the testing video with 

prior knowledge of training data from the optical flow model. Meanwhile, D. Zhou & 

He (2020) estimated the human body region in the image using the recurrent network 

model by transforming the image into a pose heatmap. The coordinates of body joints 
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would be evaluated from the heat map, and these coordinates are vital to constructing 

the stick figure model.  

2.5 Visualisation of Stick Figure Model on Human Motion 

Stick figure model, also called the skeleton model, is a skeleton-like structure to 

track the body motion pattern by representing the important body joints and connect 

these joints into a complete model (Guo et al., 1994). It is accomplished by annotations 

of keypoints from the body pose estimation.  

The earlier work used hand-crafted features such as Histogram of Oriented 

Gradient (HOG) to construct the stick model. However, the accuracy of identified 

keypoints was below the acceptable range (Dalal & Triggs, 2005). The modern studies 

of human body position estimation in a media file are divided into two main categories: 

single-person and multi-body. For the single-person approach, there are two types of 

frameworks to locate the body parts. The frameworks are direct regression and 

converting into heatmap (Dang et al., 2019).  

For direct regression, Chan et al. (2016) explored the simplified version of the 

2D human motion stick model developed through a mathematical regression coefficient 

model. The simplified 2D stick model presented a more straightforward interpretation 

with the usage of joints as calculation points. The 2D stick model was constructed by 

several points of body parts and lines, as shown in Figure 2-3.  
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Figure 2-3: A Simple 2D Stick Model Comprising of Three Main Body Segments 

(Chan et al., 2016) 

 

However, the regression-based stick model construction always requires 

additional procedures to map the feature points accurately onto the subject in an image. 

Carreira et al. (2016) introduced a corrective measure by providing a simple error 

feedback connection in the neural network model structure. The predicted error was fed 

back into the network like backpropagation to improve the prediction of keypoint 

locations progressively. Luvizon et al. (2019) presented an improvised method called 

Soft-argmax operation. This operation can convert the feature maps directly to joint 

coordinates by finding the maximum values from the target functions after being 

integrated into the deep convolutional neural network. This new method achieved a 

comparable result as the heatmap-based framework. However, the problem existed in 

expanding into multi-person cases, unlike the heatmap-based approach. 

The foundation of the detection-based framework usually lies in the deep 

learning datasets that are pre-trained using thousands of human images. Sun et al. (2019) 

implemented an approach that used a convolutional neural network with two-strides 

convolutions to reduce the resolution and the main body that outputted the feature maps. 

At the end of the network, the regressor estimated the key point positions by evaluating 
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the loss function of the heat map using comparisons between predicted heatmap and 

ground-truth heatmap.  

COCO and MPII are two of the most popular datasets, with them acting as 

benchmarks in several studies’ experiments (Carreira et al., 2016; Papandreou et al., 

2017; Sun et al., 2019). COCO datasets contained over 200,000 labelled pictures with 

keypoints and human instances to train the model. It functions by defining the object 

keypoint similarity (OKS) and calculating the mean average precision (AP) over 10 

OKS thresholds as the primary comparison metric (Lin et al., 2014; Xiao et al., 2018). 

MPII datasets consist of over 40,000 body-pose pictures with a wide variability of 

appearance and activities in different environments. MPII datasets evaluate the presence 

of body pose by calculating the head-normalised probability of correct keypoint 

(PCKh), which indicates the current joints if the PCKh score falls within the calculated 

pixels of ground-truth position (Andriluka et al., 2014).  

The COCO-WholeBody dataset was the extension of the COCO dataset, and it 

estimated the whole-body position with more attention details to each body part. 

Meanwhile, these datasets exist in multi-people detection variations such as MPII 

human multi-person dataset and COCO keypoint challenge dataset. Fang et al. (2017) 

proposed the regional multi-person pose estimation (RMPE) that used a top-down 

strategy by segmenting regions containing individual human and identifying the 

keypoints in each region representing a human body. The approach had a weakness of 

classifying people with overlapping regions and similar characteristics with the 

background. The RPME approach contrasted with another multi-person pose estimation 

strategy called the bottom-up strategy. The online-available OpenPose module applied 

the bottom-up Part Affinity Field (PAF) approach that recognised the keypoints first 

before associating with individual persons (Cao et al., 2021). The module only 
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recognises human pose but without any classification of activities which is the objective 

of our study. 

2.6 Motion Data Extraction  

Motion data can be obtained in many ways. The most convenient method is by 

using sensors. Most sensor-based motion data were extracted from the calibrated output 

of the sensors such as orientation, acceleration (Um et al., 2017), and movement 

intensity (Shi et al., 2020) before being sent to the following convolutional neural 

network (CNN) or recurrent neural network (RNN) for classification. Drumond et al. 

(2018) evaluated the subject movement against time with the joint rotation, orientation 

and angular speed using the IMUs sensors as a pre-processing step of the RNN. 

Nonetheless, sensor-based neural network classification requires a time-consuming 

process flow from preparing sensors to classification output. 

The suitable parameters of stick-figure model data extraction usually revolve 

around joint motion and vector data. Grigg et al. (2018) used the joint angle data, while 

Elias et al.  (2017) chose the feature vector values as the extracted motion attributes. 

Sedmidubsky et al. (2021) deduced that the raw skeleton model data of individual pose 

could be compared using similarity measures such as Euclidean distance. While the 

Euclidean distance can be computed using feature vector values, both attributes had 

difficulty distinguishing the similar or complex type of actions. 

 Fong et al. (2015) suggested a large set of attributes selected as shown in Table 

2-1 for further classification. The attributes selected include axis position, velocity, and 

acceleration before using the summation formula to add the values together to consider 

the time series factor.  
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Table 2-1: Gesture Attribute Data Selection by Fong et al. (2015) 

Position Data Vector Data 

(1) lh𝑥: position of left hand (𝑥 

coordinate) 

 (1) Vectorial velocity of left hand (𝑥 

coordinate) 

(2) lh𝑦: position of left hand (𝑦 

coordinate) 

 (2) Vectorial velocity of left hand (𝑦 

coordinate) 

(3) lh𝑧: position of left hand (𝑧 

coordinate)  

(3) Vectorial velocity of left hand (𝑧 

coordinate) 

(4) rh𝑥: position of right hand (𝑥 

coordinate) 

(4) Vectorial velocity of right hand (𝑥 

coordinate) 

(5) rh𝑦: position of right hand (𝑦 

coordinate) 

(5) Vectorial velocity of right hand (𝑦 

coordinate) 

(6) rh𝑧: position of right hand (𝑧 

coordinate) 

(6) Vectorial velocity of right hand (𝑧 

coordinate) 

(7) h𝑥: position of head (𝑥 coordinate)  (7) Vectorial velocity of left wrist (𝑥 

coordinate) 

(8) h𝑦: position of head (𝑦 coordinate)  (8) Vectorial velocity of left wrist (𝑦 

coordinate) 

(9) h𝑧: position of head (𝑧 coordinate)  (9) Vectorial velocity of left wrist (𝑧 

coordinate) 

(10) s𝑥: position of spine (𝑥 coordinate)  (10) Vectorial velocity of right wrist (𝑥 

coordinate) 

(11) s𝑦: position of spine (𝑦 coordinate)  (11) Vectorial velocity of right wrist (𝑦 

coordinate) 

(12) s𝑧: position of spine (𝑧 coordinate)  (12) Vectorial velocity of right wrist (𝑧 

coordinate) 

(13) lw𝑥: position of left wrist (𝑥 

coordinate)  

(13) Vectorial acceleration of left hand (𝑥 

coordinate) 

(14) lw𝑦: position of left wrist (𝑦 

coordinate)  

(14) Vectorial acceleration of left hand (𝑦 

coordinate) 

(15) lw𝑧: position of left wrist (𝑧 

coordinate)  

(15) Vectorial acceleration of left hand (𝑧 

coordinate) 

(16) rw𝑥: position of right wrist (𝑥 

coordinate)  

(16) Vectorial acceleration of right hand 

(𝑥 coordinate) 

(17) rw𝑦: position of right wrist (𝑦 

coordinate)  

(17) Vectorial acceleration of right hand 

(𝑦 coordinate) 

(18) rw𝑧: position of right wrist (𝑧 

coordinate)  

(18) Vectorial acceleration of right hand 

(𝑧 coordinate) 

 (19) Vectorial acceleration of left wrist 

(𝑥 coordinate) 

 (20) Vectorial acceleration of left wrist 

(𝑦 coordinate) 

 (21) Vectorial acceleration of left wrist (𝑧 

coordinate) 

 (22) Vectorial acceleration of right wrist 

(𝑥 coordinate) 

 (23) Vectorial acceleration of right wrist 

(𝑦 coordinate) 
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 (24) Vectorial acceleration of right wrist 

(𝑧 coordinate) 

 (25) Scalar velocity of left hand 

 (26) Scalar velocity of right hand 

 (27) Scalar velocity of left wrist 

 (28) Scalar velocity of right wrist 

 (29) Scalar velocity of left hand 

 (30) Scalar velocity of right hand 

 (31) Scalar velocity of left wrist 

 (32) Scalar velocity of right wrist 

 

2.7 Data Mining Strategy for Motion Classification 

Al-jabery et al. (2020) explained the criticality of the data preparation procedure 

and its general flow. The data preparation is purposed to clean the unimportant data and 

enhance the data quality before the actual data mining process. Its general flow consists 

of removing or replacing missing values, converting numeric class attribute into 

nominal class, removing redundant instances, detecting outliers and normalization. The 

data class is labelled with action descriptive words in the motion dataset that can save 

the effort to convert numeric attributes. The missing values in the time-series video data 

can be estimated using several approaches such as the deterministic approach, stochastic 

approach, and regression model (Fung, 2006). These approaches fill the missing values 

with the fit function or interpolation method that consider the complete time-series data. 

However, the missing value estimation of motion data may require different strategies 

that only look into a small group of frames near the time point because a full video data 

function demands high computational power.  

Resampling is proved as one of the data preprocessing method that potentially 

improve the data mining process if the class distribution is imbalanced such as the 

research by Khaldy & Kambhampati (2018) to investigate the effect of resampling on 

the heart failure dataset. Common resampling method include the K-fold cross 

validation, bootstrap method and random subsampling method. Mehra & Agrawal 
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(2020) compared the random under-sampling and random over-sampling to evaluate 

their application in the imbalanced dataset. The random under-sampling removed part 

of the instances from majority classes, while over-sampling method duplicated several 

instances from minority classes to balance the class bias. In the motion dataset, the class 

bias is balanced but the noise instances in these classes might potentially raise some 

data classification issues. The resampling method can eliminate these instances without 

causing imbalanced data classes. 

Switonski et al. (2019) explored markerless motion extraction data mining in 

the research regarding motion capture data. The researcher utilised dynamic time 

warping (DTW) to classify the human motion data into gait patterns. The model 

identified the variation in the orientation of motion capture and subject for motion 

recognition in time-series data. It obtained the angles in the joint data and evaluated the 

closest probability of classification with the minimum distance classifiers (MDC). 

MDC was combined with k-nearest neighbour (KNN) classifiers to extract the 

advantages of both types of classifiers for better accuracy and consistency. Schneider 

et al. (2019) also applied the DTW approach after annotating the skeleton model based 

on the OpenPose module dataset to evaluate the warping distance. Before the classifier 

was applied, the image data in coordinates were normalised to condense the data range 

into a smaller number. Then, the warping distance of time-series data was classified 

using nearest neighbour classifiers. The result still had limitations such as reliance on 

the representativeness of the dataset, poor precision of recognition when noise reduction 

is needed, and motion capture marker setup required.  

Qian et al. (2010) tested the multi-class support vector machine (SVM) 

classifiers by extracting the centroids and instantaneous speed of human motion after 

eliminating the background. The frame sequence comparison outputted the contour 
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coding of motion energy image (CCMEI) with square-to-circular coordinates 

transformation that changed the plane coordinates into polar coordinates. SVM also 

acted as the classifiers in the study by Choi et al. (2013) to classify the gait motion 

pattern. The parameters used include the joint angle and distances between body parts. 

While SVM is an excellent option to recognise motion with great accuracy, plenty more 

classifiers are yet to be tested in motion classification.  

Yang & Zhao (2011) adopted the decision tree classifiers to determine 

firefighters’ motion class, but the attributes were composed of string-type descriptions 

and not in numeric form. H. Zhang et al. (2012) tested three classifiers of Naïve Bayes, 

SVM and random forest in classifying six different motions for an interactive system. 

The result deduced that the Random Forest classifier scored the highest classification 

accuracy using position and vector data. Li et al. (2020) also examined the motion 

recognition model using the random forest algorithm using the normalised joint 

coordinates difference between keyframes. Fong et al. (2015) agreed with the result of 

the random forest classifier being the best performance using position and vector data 

from the skeleton model. Its classification accuracy was higher than the neural network 

approach and other traditional classifiers.  

2.8 Summary 

The markerless motion classification model plays a vital role in the 

manufacturing industry to monitor tasks compliances and control process quality based 

on the information from past reviews. The majority of motion analysis methods in the 

current industry focused on the marker-based model, but the setup cost and time proved 

the vast obstacles. Many previous reports have proved a markerless motion 

classification model with single 2D cameras with comparable results as complicated 
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and expensive 3D camera systems. The subject’s body motion tracking without markers 

can be segmented by converting the video into individual frames. Each frame is 

transformed into a depth map or heat map to detect the presence of the human. The stick 

figure model augmentation is developed through programming with the help of existing 

datasets such as COCO and MPII datasets to estimate the positions of each joint. The 

pre-processing of data mining includes the extraction of position and vector data from 

stick model and calculation of time-series factor by cumulative sum. Data mining 

experiments should be carried out for testing whether Random Forest classifiers 

performed better than other data mining classifiers in motion classification, as suggested 

by previous studies. 
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CHAPTER 3  
METHODOLOGY 

3.1 Overview 

This chapter explains the development process of the automated markerless 

motion classification model. The experimental activity capture via video recording was 

carried out to obtain the video samples. The stick figure model was overlaid onto the 

human motion in the capture video frame-by-frame using open-source Google Colab 

software with the downloaded COCO datasets. The motion data composed of all body 

joint positions were retrieved from the stick model and used for calculating vector 

motion velocity and acceleration between frames. The calculated data were extracted 

into a dataset file to implement the data preprocessing before the data mining process. 

The data preprocessing step involves the normalization of motion data and the data 

cleaning procedure. The study experimented with different normalization techniques 

and classifiers in the data mining experiment to identify the best and normalization 

methods and classifiers for motion classification. The classifiers were tested on the 

motion dataset using WEKA software, and the results were compared among the tested 

classifiers. The knowledge discovered from the data mining experiment was combined 

into the model to complete the development process. 

3.2 Experimental Motion Selection 

As the research focused more on the operator's motions from the production site, 

the experiment was designed to involve activities likely to be observed in the factory. 

The motion activities featured in the experiment were decided to be moving carton box, 

moving pail, sweeping floor and mopping the floor. The descriptions of each motion 

activity were included in Table 3-1. The activities were also illustrated in Figure 3-1 

using a sample video frame for each participant's action.  
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Table 3-1: Descriptions for each type of experimental motion activities 

Motion Activity Description 

Move box Bend down the body, lift the box with two hands, stand upright, 

walk a few steps, bend down the body, put down the box, 

resume to a standing position 

Move pail Bend down the body, lift pail by its handle with one hand, stand 

upright, walk a few steps, bend down the body, put down the 

pail, resume to a standing position 

Sweeping Grasp a broom with one hand, move the broom down until its 

brush touching the floor, pull the broom to sweep the dirt, lift 

the broom up 

Mopping Grasp a mop with two hands, slightly bend the body, move the 

mop in a direction while it touches the floor, change mop 

movement to the opposite direction 

  

 
(a) 

 

 

 
(b) 
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(c) 

 
(d) 

Figure 3-1: Experimental motion classes featured in the motion classification, (a) 

moving box, (b) moving pail, (c) sweeping, (d) mopping 

Eight participants between the age of 23 to 24 years old volunteered to 

participate in the motion video collection. Each participant was required to perform a 

set of afro-mentioned activities in different settings. Due to variation in different 

persons executing the action, it affected the pose recognition (Lau et al., 2009), so the 

movement classification experiment should not be limited to a single person. The 

different backgrounds and light conditions were applied in the video sample collection 

because various backgrounds in the video affected the motion recognition using a 

markerless system (Bosch et al., 2008). The indoor and outdoor environments were both 

used in the video recording as background. The outdoor used the natural light, while the 

indoor light condition had the options of being bright and dim.  
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