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LUP MOUFANG, MAGMA DAN IDENTITI MOUFANG

ABSTRAK

Teori lup adalah suatu generalisasi teori kumpulan; lup Moufang merupakan su-

atu jenis lup. Empat identiti (Moufang) yang setara digunakan untuk mengaksiomkan

lup tersebut. Lup Moufang juga berkongsi banyak sifat dengan kumpulan walaupun

secara am mereka tidak memenuhi hukum sekutuan; Teorem Moufang lah yang mewu-

judkan hubungan yang rapat ini. Bukti yang sedia ada mengenai kesetaraan empat

identiti Moufang melibatkan konsep "autotopisma", suatu konsep yang benar-benar

sukar dalam dirinya sendiri, sedangkan tidak terdapat sebarang bukti lengkap untuk

Teorem Moufang (walaupun wujud beberapa bukti yang munasabah diterima). Tesis

ini menyediakan bukti yang mudah, asas dan lengkap untuk kedua-dua teorem terse-

but. Seterusnya, kesetaraan versi "tempatan" bagi empat identiti Moufang dikaji di

bawah keadaan yang umum, iaitu magma di bawah syarat-syarat yang perlu dan men-

cukupi. Akhirnya, penyelidikan ini memberikan penyelesaian (separa) bagi lup Mo-

ufang berperingkat ganjil p2q4.
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MOUFANG LOOPS, MAGMAS AND THE MOUFANG IDENTITIES

ABSTRACT

Loop theory is a generalization of group theory; Moufang loops are a variety of

loops. Four equivalent (Moufang) identities axiomatize these loops. Moufang loops

also share many similar properties as groups though generally they are not associative;

Moufang’s Theorem is pivotal in establishing this close relationship. The existing

proof of the equivalence of the Moufang identities involves the notion of "autotopism",

a completely difficult concept in itself, whereas there is no known complete proof of the

Moufang’s Theorem (though several reasonably acceptable proofs exist). This thesis

provides a simple, basic and complete proof of both. Moreover, the equivalence of

the localized versions of the four identities is studied under the generalized setting of

magmas and proven under necessary and sufficient conditions. Finally, this research

gives a (partial) resolution of Moufang loops of odd order p2q4.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Moufang loops were first introduced by the German mathematician, Ruth Moufang

in her paper: "Zur Struktur von Alternativkorpern" [Moufang (1935)]. She originally

presented loops that satisfy the identity (xy ·x)z = x(y ·xz). She also wrote about loops

that satisfy the identities: xy · zx = x(yz · x) and (xy · z)y = x(y · zy). In what appears

to be three different varieties of loops axiomatized by the three identities, she proved

the equivalence of the first and third identities. However she gave a separate definition

for loops that satisfy the second identity which is (quite) obviously equivalent to the

identity xy · zx = (x · yz)x. Bruck (1971) however proved that all of these (four) iden-

tities were equivalent in the variety of loops. These identities were later referred to as

the Moufang Identities. Hence, the loops that satisfied any one of these (equivalent)

identities could be simply called Moufang loops. Original definition of Moufang loops

talks about quasigroups and loops but the proof of the equivalence of the Moufang

identities provided by Bruck brought in an additional concept, that is autotopism. To

study Moufang loops one needs to have a proper grasp of these identities and the fact

that they are all equivalent. Hence, there is the need to also be at home with the proof

of their equivalence. Reading through the work of others who have also proved the

equivalence of these identities, it was also noticed that each of them made use of auto-

topism. For example, Pflugfelder (1990) also provided the proof for the equivalence of

these Moufang identities but still using autotopism. Also Drapal (2010) again provided
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proof for the equivalence of the Moufang identities. But going through the work, one

discovers that he made use of the traditional style of using autotopism to prove it. Thus

from available literature on this topic, the proofs for the equivalence of these Moufang

identities use autotopism.

On the one hand, the study of autotopism can produce many new results about loops

but the concept itself can be daunting to a novice. Now, given the fact that these iden-

tities and the proof of their equivalence serves as a gateway into the study of Moufang

loops, there is the need to find a proof that is more direct and devoid of autotopism,

making use of only basic properties of quasigroups and loops.

A magma is defined as a set with a binary operation and a two-sided neutral element;

this makes magmas even more general than loops since a magma needs the additional

"quasigroup" condition to be called a loop. Thus, the work extends to cover results for

magmas satisfying either the right or left inverse property. So, this research investi-

gates these identities in the general setting of magmas, rather than restricting attention

to loops. Hence, the proof of the equivalence of the identities in the general setting of

a magma extends the research on loops in Chapter 3.

Secondly, Moufang’s theorem which states that if 〈L, ·〉 is a Moufang loop such that

if three elements of L are associative in a particular order, then the same three ele-

ments generate an associative subloop of 〈L, ·〉, is a foundational result in the study

of Moufang loops. Moreover, Moufang’s Theorem continues with the statement, "any

two elements in a Moufang loop generate an associative subloop of 〈L, ·〉." Though the

"proof" of this theorem has been presented in Bruck (1971), it is merely an outline of

the proof; hence, it is not complete. In fact, he notes (on page 119) that the proof he

provides is valid only for a specific class of Moufang loops. Moreover, this proof is
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technical and difficult to comprehend. Of recent, Pflugfelder (1990) provided a proof

of the theorem but the proof still follows "Bruck’s strategy" (see page 93). Later Drapal

(2010) gave a proof of Moufang’s Theorem with the aim of making the proof a simple

one. However, a closer look at his work betrays the aim since most of the concepts

used are not too different from that of Bruck’s. This he admitted in the same work

with the following statement: "All these ingredients are present in a varying degree

of explicitness in Bruck’s proof. The proof presented here only organizes them in a

different way." So from existing literature, there is no complete proof of the theorem.

Thus in Chapter 4, for the first time, a complete proof of Moufang’s Theorem is being

presented. Moreover, this proof uses basic methods that can be truly called "simpli-

fied."

Having settled the proofs of the basic and fundamental results on Moufang loops, the

research look towards solving an open problem that uses much application of these

results. Extensive work has been done in answering the question "Given a positive in-

teger n, which Moufang loops of order n, are associative?" If the existence of a nonas-

sociative Moufang loop 〈L, ·〉 of order n is known, then a nonassociative Moufang loop

of order mn can be constructed using the direct product of 〈L, ·〉 with any (for example,

the cyclic) group of order m. Thus, if all Moufang loops of order mn are proven to

be associative, then all Moufang loops of order m (and n) are associative. This prob-

lem can be studied by dividing it into two cases of n even, and n odd. The case for

n even were completely resolved by the works of Chein (1974) and, Chein and Rajah

(2000) which left only the case of n odd to be studied. Chein (1974) also proved that

all Moufang loops of order p3 are groups, whereas Bruck (1946) proved the existence

of nonassociative Moufang loops of order 34. Meanwhile Leong (1974) proved that all
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Moufang loops of order p4 (p a prime greater than 3) are groups. Also, Wright (1965)

had proved the existence of nonassociative Moufang loops of order p5 (p also a prime

greater than 3). Chein (1974) started the ball rolling by studying the associativity of

Moufang loops of a specific order by writing the order as the power of a prime or a

product of powers of distinct primes. Continuing along this line, Leong and Rajah

(1996a) proved that all Moufang loops of odd order pq2 and p2q2 (where p < q are

primes) are associative. Rajah (2001) proved the existence of nonassociative Moufang

loops of odd order pq3 (p and q distinct primes) if and only if q ≡ 1(mod p) (that is,

q > p). This was the first known construction of a minimally nonassociative Moufang

loop of odd order whose order involves the product of distinct primes. Thus, for odd

primes p and q with q ≡ 1(mod p), by using direct product one can easily construct a

nonassociative Moufang loop whose order is a higher power of p or q in pq3, or the

product of pq3 with (one or more) other primes. Hence, the question on nonexistence

for "higher" powers than pq3 requires that q 6≡ 1(mod p) as a necessary condition.

Moving in this direction, Rajah and Chee (2011a), Rajah and Chee (2011b), and Chee

and Rajah (2014) respectively proved that all Moufang loops of odd order p2q3, p3q3

and pq4 with q 6≡ 1 (mod p) are groups. Hence the next unresolved order involving

powers of only two (distinct) primes is p2q4. This was actually an open problem raised

by Chee and Rajah (2014). Ademola (2017) partially solved this problem with the

added condition that q 6≡ −1(mod p). Though this condition is a sufficient condition,

its necessity is unjustified. Hence, there are two ways to completely resolve this: jus-

tify the necessity of this added condition by constructing a nonassociative Moufang

loop when q≡−1(mod p), or prove that it is an unnecessary condition by removing it

and proving it to be associative nevertheless.
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1.2 Problem Statements

These statements arise from the discussion in the previous section:

1. The known existing proofs of the equivalence of the four Moufang identities

made use of autotopism, a concept which could have been avoided.

2. The known existing proofs of the equivalence of the four Moufang identities are

only for loops and not for the general variety of magmas.

3. The known existing proofs of the equivalence are given only for the four Mo-

ufang identities, not localized versions of the identities.

4. Though the theory of Moufang loops depend on Moufang’s Theorem, no com-

plete proof of this theorem exists in literature.

5. Nonassociative Moufang loops of order 34 (Bruck (1946)) and p5 for prime

p > 3 (Wright (1965)) are known to exist. Rajah (2001) had proved the exis-

tence of nonassociative Moufang loops of order pq3 for odd primes p and q with

q≡ 1(mod p). Investigation on existence for higher powers of p and q, therefore,

needs the necessary additional condition q 6≡ 1(mod p). Moufang loops of odd

order p2q3 and pq4 satisfying this condition have been proven to be associative.

So there remains the next case p2q4 with q 6≡ 1(mod p). Though partially re-

solved (proven to be associative) by Ademola (2017) using the added condition

q 6≡ −1(mod p), its necessity is unjustified.
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1.3 Research Objectives

The following are the objectives of this work:

1. To prove the equivalence of the four Moufang identities using basic properties

of loops and avoiding autotopism.

2. To investigate localized versions of the four Moufang identities in the general

setting of magmas.

3. To provide a complete proof of Moufang’s Theorem.

4. To resolve the case of Moufang loops of order p2q4 for distinct odd primes p

and q with q 6≡ 1(mod p) (that is, without the added condition q 6≡ −1(mod

p)), or alternatively prove that this is a necessary condition for associativity by

constructing a nonassociative Moufang loop for some q≡−1(mod p).

1.4 Methodology

Since there are basically four research objectives (with only the first two having simi-

larities), a break down of the methodology corresponding to each objective is given as

follows:

1. The first objective is achieved using algebraic methods of equational reasoning and

the definitions of loops and quasigroups.

(i) First prove that loops that satisfy any of the four Moufang identities have

other (additional) properties like flexible identity, (right and left) alternative
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identities and (right and left) inverse properties.

(ii) Next, assume that an identity, say "A", holds and using this identity and

strictly those basic properties that have been proven, to prove that another

identity, "B", is true.

(iii) Continuing this method (in (ii)), to move next from "B" to "C", then to "D"

and finally back to "A" to establish the equivalence of the four.

2. For the second objective:

(i) Define the 12 local versions of the four Moufang identities.

(ii) Define magmas that have the right (alternatively left) inverse property and

establish some of their properties.

(iii) Establish properties that hold for four of the local elements.

(iv) Study conditions under which equivalence can exist amongst the four local

versions under the general setting of magmas with the right (alternatively left)

inverse property.

3. For the third objective:

(i) Start with the assumption that three fixed elements in a Moufang loop asso-

ciate in a particular order, then prove that these same three elements associate

in any order.
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(ii) Next, prove that positive powers and inverses of these three elements asso-

ciate.

(iii) Finally, using progressive lemmas, prove that any product of powers of these

three elements associate.

The above is achieved through a systematic build up of proofs using the Moufang

identities and properties.

4. The fourth objective is achieved by first taking note of these two equivalent state-

ments:

(a) Suppose there exists a nonassociative Moufang loop L of order m. Then the

direct product of L with any (for example, the cyclic) group of order n is a

nonassociative Moufang loop of order mn.

(b) Suppose it has been proven that all Moufang loops of order m are associative,

and n is a (positive integer) divisor of m. Then all Moufang loops of order n are

associative.

(i) Assume that there exists a nonassociative Moufang loop of order p2q4, where

2 < p < q are primes and q 6≡ 1(mod p).

(ii) Since Leong and Rajah (1997) have proven that the associator subloop of a

nonassociative Moufang loop is a (minimal normal) elementary abelian group,

all the possible orders of the associator subloop of this Moufang loop are

considered case by case.
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(iii) Whenever discussion of a particular case in (ii) contradicts other known re-

sults/facts (particularly about Moufang loops) move on to another case until

every case is covered.

(iv) If no contradiction is reached in a particular case in (ii), then it is inferred

that there is a possibility of the existence of a nonassociative Moufang loop

of order p2q4 satisfying all the properties and conditions established. The

next step is to provide an example of the existence of such a nonassociative

Moufang loop by obtaining a product rule between any two of its elements

using the properties of the Moufang loop under consideration.

1.5 Organisation of Thesis

This thesis begins by providing some basic definitions, notations and known results

that are relevant and will be used in this work. It then proceeds to provide the "auto-

topism free" proof of the equivalence of the four Moufang identities and also investi-

gate these identities in the general setting of magmas in Chapter 3. Chapter 4 presents

the first known complete proof of Moufang’s Theorem. Chapter 5 proves the nonexis-

tence of nonassociative Moufang loops of odd order p2q4 when p > 3 and establishes

conditions for the existence of nonassociative Moufang loops of odd order 32q4 when

q 6≡ 1(mod 3).

1.6 Definitions and Notations

This section gives some basic definitions and properties that will be needed in subse-

quent chapters. For further definitions that are not listed here, the reader can consult
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Bruck (1971) and Glauberman (1968).

Definition 1.1. Let L be a nonempty set. A function from L× L to L is defined as

a binary operation on L. If "·" is a binary operation on L then 〈L, ·〉 is defined as a

binary system. Moreover, if "·" maps (x,y)∈ L×L to z∈ L, write x ·y= z, or sometimes

merely as xy = z if the binary operation used has been clarified.

Definition 1.2. A binary system 〈L, ·〉 is said to have:

(i) a left identity element eL ∈ L i f eL · x = x ∀ x ∈ L;

(ii) a right identity element eR ∈ L i f x · eR = x ∀ x ∈ L;

(iii) an identity element e ∈ L i f e · x = x · e = x ∀ x ∈ L.

[Note: An identity element is usually called a "neutral element" in the variety of mag-

mas though their definitions are identical.]

Definition 1.3. Let 〈L, ·〉 be a binary system with an identity element e. An element

y ∈ L is said to be an inverse of the element x ∈ L if x · y = y · x = e. If x ∈ L has a

unique inverse, denote its inverse as x−1.

Definition 1.4. Let 〈L, ·〉 be a binary system and a,b ∈ L. Then 〈L, ·〉 is defined as a

quasigroup if there exist unique (not necessarily distinct) elements x,y ∈ L such that

a · x = b and y ·a = b.

[Note: It is common to denote the x and y in the last definition as x = a\b and y = b/a,

where "\" and "/" are called the left and right divisions respectively and in fact are also

binary operations on L.] So it is possible to define a quasigroup as 〈L, ·,\,/〉, that is, a

non-empty set L with the three binary operations "·", "\" and "/".

Definition 1.5. A quasigroup 〈L, ·,\,/〉, that has an identity element is called a loop.

[However, the simpler notation 〈L, ·〉 shall be used for a loop.]

Definition 1.6. A Moufang loop is a loop 〈L, ·〉 that satisfies any of the following
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(equivalent) identities

(A) : z(xy · z) = zx · yz (C) : z(x · zy) = (zx · z)y

(B) : (z · xy)z = zx · yz (D) : (xz · y)z = x(z · yz)

for any x,y,z ∈ L.

[Henceforth, for the purpose of brevity, the loop 〈L, ·〉 shall simply be writen as (the

loop) L. Moreover, while writing the product of many elements, the binary operation

and parentheses can be omitted if no confusion arises and accept that juxtaposition

precedes "·" which then precedes parentheses. For example, x · (y · (x · z)) will be writ-

ten as x(y · xz) and this means first compute xz, then multiply y on its left, and again

multiply x on the left of the element y · xz.]

Definition 1.7. A magma is a set with a binary operation and a two-sided neutral (or

identity) element.

Definition 1.8. A local element in an identity (or law) is defined as the element that is

held as a constant in the identity (law). Moreover, this "new" identity is called a local

version of the (original) identity (law).

Definition 1.9. The three different sets of local elements in the associative law are de-

fined as follows:

(i) left nucleus, Nλ (L) = {a : a · xy = ax · y,∀ x,y ∈ L},

(ii) middle nucleus, Nµ(L) = {a : x ·ay = xa · y,∀ x,y ∈ L}, and

(iii) right nucleus, Nρ(L) = {a : x · ya = xy ·a,∀ x,y ∈ L}.

11



Definition 1.10. The following identities:

(i) : xy · x = x · yx (iii) : yx · x = y · xx

(ii) : x · xy = xx · y

are called the flexible, left alternative and right alternative identities respectively. A

loop 〈L, ·〉 is said to be an alternative loop if it satisfies both the left and right alterna-

tive identities. Moreover, in the local version of these identities, x is called the flexible,

left alternative and right alternative element in (i), (ii) and (iii) respectively.

Definition 1.11. Suppose L is a quasigroup (loop).

(i) If there exists a bijection θλ : x→ xλ such that xλ · xy = y for all x and y in L, then

L is said to have the left inverse property (LIP).

(ii) If there exists a bijection θρ : x→ xρ such that yx · xρ = y for all x and y in L, then

L is said to have the right inverse property (RIP).

(iii) L is said to have the inverse property and is called an IP quasigroup (loop), if it

has both the LIP and the RIP.

[Note that a loop that satisfies the identity x−1 · xy = y = yx · x−1 where x−1 is the

inverse of x is an IP loop.]

Definition 1.12. The Moufang identities defined in Definition 1.6 are localized into 12

different identities in a binary system 〈Q, ·〉 and labeled as follows, ∀ x,y,z ∈ Q and

a ∈ Q:

(A2) : a(xy ·a) = ax · ya (C2) : a(x ·ay) = (ax ·a)y

(A1x) : z(ay · z) = za · yz (C1x) : z(a · zy) = (za · z)y

(A1y) : z(xa · z) = zx ·az (C1y) : z(x · za) = (zx · z)a
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(B2) : (a · xy)a = ax · ya (D2) : (xa · y)a = x(a · ya)

(B1x) : (z ·ay)z = za · yz (D1x) : (az · y)z = a(z · yz)

(B1y) : (z · xa)z = zx ·az (D1y) : (xz ·a)z = x(z ·az)

Definition 1.13. The element "a" that satisfies the identity (A1x) is called an (A1x)

element, and (A1x)Q denotes the set of all (A1x) elements in Q. The analogous defini-

tions for the other 11 identities are given in a similar fashion.

[Note that (A2) is equivalent to (B2) in the variety of magmas (this is seen by setting

y in (A2) and x in (B2) equal to the identity element e); aside this trivial equivalence,

none of these identities implies the other in the variety of magmas [Phillips (2009)].

So, for any given magma, these 12 different “local Moufang laws” axiomatize up to 11

different “Moufang subsets” (none of which has to be a submagma) [Phillips (2019)].]

[Unlike in groups, the definition of normality of subloops of a loop has additional

properties due to their nonassociativity (in general). The following three definitions

help define normal subloops of a loop.]

Definition 1.14. Suppose L is a loop. Then L (x) : y→ yL (x) = xy and R(x) : y→

yR(x) = yx are respectively called the left and right translations of an element y ∈ L

by an element x ∈ L.

Definition 1.15. I(L) = 〈R(x,y), L (x,y), T (x)|x,y ∈ L〉 is called the inner mapping

group of a loop L, where

R(x,y) = R(x)R(y)R(xy)−1,

L (x,y) = L (x)L (y)L (yx)−1,

T (x) = R(x)L (x)−1.
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Definition 1.16. A bijection mapping of a triple (α,β ,γ) from a loop 〈L, ·〉 onto a loop

〈H,◦〉 is called an isotopism if xα ◦ yβ = (x · y)γ, ∀ x,y ∈ L, in which case the loop

〈H,◦〉 is called an isotope of the loop 〈L, ·〉. The loops 〈L, ·〉 and 〈H,◦〉 are said to be

isotopic to each other. This isotopism is called an autotopism if 〈H,◦〉= 〈L, ·〉.

Definition 1.17. The associator subloop of a loop L, denoted by La, is the subloop

generated by all the associators (x,y,z) in L where xy · z = (x · yz)(x,y,z). La is also

defined as La = (L,L,L) = 〈(l1, l2, l3)|li ∈ L〉.

[L is associative if and only if La = {1}.]

Definition 1.18. Lc, the commutator subloop of L, is the subloop generated by all the

commutators [x,y] in L where xy = yx · [x,y].

[L is commutative if and only if Lc = {1}.]

Definition 1.19. Let K be a subloop of L. K is said to be a normal subloop of L,

denoted K �L, if Kθ = {kθ |k ∈ K}= K for all θ ∈ I(L).

Definition 1.20. Let K be a normal subloop of L.

(i) K is a proper normal subloop of L if K 6= L.

(ii) L/K is a proper quotient loop of L if K 6= {1}.

Definition 1.21. Suppose K is a normal subloop of L.

(i) K is called a minimal normal subloop of L if K is non-trivial and contains no proper

non-trivial subloop which is normal in L.

(ii) K is called a maximal normal subloop of L if K is not a proper subloop of every

other proper normal subloop of L.

Definition 1.22. The nucleus of L is the subloop generated by all x ∈Nλ (L)∩Nµ(L)∩

Nρ(L) and is denoted as N = N(L).

Definition 1.23. Let H be a subloop of L. The centraliser of H in L, is defined as

14



CL(H) = {g ∈ L|gh = hg for all h ∈ H}.

Definition 1.24. Let K be a subloop of L and π a set of primes.

(i) A positive integer n is a π-number if every prime divisor of n lies in π .

(ii) For each positive integer n, let nπ be the largest π-number that divides n.

(iii) K is a π-loop if the order of every element of K is a π-number.

(iv) K is a Hall π-subloop of L if |K|= |L|π .

(v) K is a Sylow p-subloop of L if K is a Hall π-subloop of L such that π contains only

one prime p.

Definition 1.25. Let L be a loop.

(i) x ∈ L is defined as a power associative element if xx · x = x · xx.

(ii) L is a power associative loop if every element in L is power associative.

(iii) Suppose p is a prime and x is a power associative element of L. If x has a finite

order, then x is defined as a p-element if |x|= pα for some non-negative integer α .

Definition 1.26. (m,n) is defined as the greatest common divisor of the integers m and

n.

Definition 1.27. A Moufang loop L is said to be minimally nonassociative if it is not

associative but all proper subloops and proper quotient loops of L are associative.
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CHAPTER 2

BASIC PROPERTIES AND KNOWN RESULTS

2.1 Introduction

Presented in this chapter are some known results that will be used in Chapter 5 only.

In view of the fact that the results in Chapters 3 and 4 are alternative proofs to existing

ones (except for the results on magmas which are entirely new and fresh), there is no

quote or use of already established results. Instead, in keeping faith with the goal of

providing direct alternative proofs, all the results needed and used in these chapters are

proved using direct algebraic methods.

2.2 Known Results

The following theorem is, in fact, Moufang’s Theorem which will be proved in Chap-

ter 4. Many of the subsequently stated theorems or propositions below were proven

using this theorem; some were proven by assuming the equivalence of the Moufang

identities. So, when proving Moufang’s Theorem none of them will be used; in fact,

every result in Chapter 4 is proven directly using either the basic definitions stated in

Chapter 1 or some results obtained in Chapter 3. More importantly, all the results in

Chapter 3 were proven from scratch.

Theorem 2.1. (Bruck, 1971, Moufang’s Theorem, p.117) Suppose L is a Moufang

loop. Then L is diassociative, that is, 〈x,y〉 is a group for any x,y in L. In addition, if

(x,y,z) = 1 for some x,y,z in L, then 〈x,y,z〉 is a group.
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Theorem 2.2. (Bruck, 1971, Theorem 2.1, p.114) Suppose L is a Moufang loop. Then

the nucleus N = N(L) is a normal subloop of L.

Proposition 2.3. (Bruck, 1971, Lemmas 5.4(5.16), p.124; 3.2, p.117 and (4.1), p.120)

Let x,y,z ∈ L be elements of a Moufang loop L. Then

(a) xL (z,y) = x(x,y,z)−1,

(b) (xn)θ = (xθ)n for any integer n with x ∈ L and θ ∈ I(L).

Proposition 2.4. (Leong and Rajah, 1997, Lemma 6) Suppose L is a minimally nonas-

sociative Moufang loop of odd order. Then La is a Sylow subloop of N =⇒ La = N.

Proposition 2.5. (Chee and Rajah, 2012, Proposition 3.4) Suppose L is a minimally

nonassociative Moufang loop of odd order. Then (k1k2, l1, l2) = (k1, l1, l2)(k2, l1, l2) for

each ki ∈ La and li ∈ L.

Theorem 2.6. (Rajah and Chee, 2011a, Lemmas 3.18, 3.19), (Chee and Rajah, 2012,

Theorem 3.7, 4.7), (Leong and Rajah, 1996b, Lemma 6(a), (c)), (Leong and Rajah,

1997, Lemma 1(b)) Suppose L is a minimally nonassociative Moufang loop of odd

order and M is a maximal normal subloop of L. Then

(a) (k,w, l) 6= 1 for some k ∈ La,w ∈ M, l ∈ L =⇒ La contains a proper non-trivial

subloop which is normal in M.

(b) for any w ∈ M and l ∈ L, there exists some k0 ∈ La \ {1} such that (k0,w, l) =

(u−1k0u,w, l) = 1 for all u ∈M.

(c) (k,w, l) = (l,k,w−1)−1 for any k ∈ La,w ∈M, and l ∈ L.

(d) ((k,w, l)[k,w],w, l) = 1 for any k ∈ La,w ∈M, and l ∈ L.

(e) La �N if and only if (La,M,L) = {1}.

(f) La and Lc lie in M, and L = M〈x〉 for any x ∈ L\M.
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Theorem 2.7. (Chee and Rajah, 2014, Lemma 4.4) Suppose L is a minimally nonas-

sociative Moufang loop of odd order and M a maximal normal subloop of L.

(a) Suppose there exist some k ∈ La, w ∈ M and l ∈ L such that (k,w, l) = 1. Then

(k,La〈w〉, l) = {1}.

(b) Suppose there exist some k ∈ La, w ∈ M and l ∈ L such that [k,w] = 1. Then

[k,La〈w〉] = {1}.

Theorem 2.8. (Chee and Rajah, 2014, Lemma 4.5), (Rajah and Chee, 2011c, Lemma

4.2, 4.4) Suppose L is a minimally nonassociative Moufang loop of odd order and M a

maximal normal subloop of L.

(a) Suppose there exist some k ∈ La \{1} and x ∈ L\M such that (k,M,x) = [k,M] =

{1}. Then La �N.

(b) If La⊆N, then for every x∈ L\M, there exist some g,h∈M\La such that (x,g,h) 6=

1.

(c) If La ⊆ N, then [M,(L\M,M,M)] = {1}.

Proposition 2.9. (Rajah and Chee, 2011a, Lemma 3.17) Suppose L is a Moufang loop

of odd order and K a normal Hall subloop of L. Let K = 〈x〉La for some x ∈ K\La and

La ⊆ N. Then K ⊆ N.

Proposition 2.10. (Rajah and Chee, 2011c, Lemma 4.5) If G is a group and r,s, t ∈ G

with [r, t] = [s, t] = 1 such that r−1sr = sαtβ , for some α , β ∈ Z+; then r−nsrn =

sαn
tβ (α0+α1+...+αn−1).

Proposition 2.11. (Chee and Rajah, 2014, Lemma 4.2) Let L be a nonassociative

Moufang loop of odd order and x∈ L. Suppose |La|= p2 for some prime p and (|x|, p−

1) = 1. If there exists some k0 ∈ La \{1} such that [k0,x] = 1, then [La,x]⊆ 〈k0〉.
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Proposition 2.12. (Chee and Rajah, 2014, Cor. 4.3) Let L be a nonassociative Mo-

ufang loop of odd order and x ∈ L. Suppose |La|= p2 for some prime p and (|x|, p) =

(|x|, p−1)= 1. If there exists some k0 ∈ La\{1} such that [k0,x] = 1, then [La,x] = {1}.

Theorem 2.13. (Niven et al., 2008, Theorem 2.27, p.54) Let q be a prime. Then the

congruence µn ≡ 1(mod q) has (n,q−1) solutions for µ .

Theorem 2.14. (Glauberman, 1968, Theorem 12, 16) Let L be a Moufang loop of odd

order, K a subloop of L, and π a set of primes. Then

(a) L is solvable,

(b) L contains a Hall π -subloop.

Theorem 2.15. (Grishkov and Zavarnitsine, 2005, Lagrange’s Theorem) Suppose L is

a Moufang loop. Then |K| divides |L| for every K a subloop of L.

Theorem 2.16. Any Moufang loop L is a group if |L| is any of the following orders:

(a) (Chein, 1974, Cor. 4, Prop. 3) p, p2, p3 or pq; for p and q distinct primes.

(b) (Purtill, 1988, Theorem 3.1, 3.3) pqr or p2q; for p, q and r odd primes with

p < q < r.

(c) (Leong and Rajah, 1995, Theorem) pq2; for p and q distinct odd primes.

(d) (Leong and Rajah, 1996a, Theorem) pα1
1 pα2

2 · · · pαn
n ; for 1 ≤ αi ≤ 2 and each pi

distinct primes and αi ≤ 2.

(e) (Leong and Rajah, 1997, Theorem 1) pαqβ1
1 qβ2

2 · · ·q
βn
n ; for p and qi primes with

p < q1 < ... < qn, and βi ≤ 2, with α ≤ 3, or α ≤ 4 when p > 3.

(f) (Rajah and Chee, 2011b, Theorem 4.2) pα1
1 pα2

2 · · · pαn
n q3; for distinct odd primes

p1, p2, ..., pn,q with q 6≡ 1(mod pi), q > pi and 1≤ αi ≤ 2.

(g) (Chee and Rajah, 2014, Theorem 4.8) pq4, for p and q odd primes with p < q, and

q 6≡ 1(mod p).
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Proposition 2.17. (Leong and Rajah, 1995, Lemma 2) Let L be a Moufang loop of

odd order and every proper subloop of L be a group. If there exists a minimal normal

Sylow subloop in L, then L is a group.

Proposition 2.18. (Leong and Rajah, 1996b, Lemma 3) Suppose L is a Moufang loop

of odd order such that every proper subloop and proper quotient loop of L is a group.

Let Q be a Hall subloop of L such that (|La|, |Q|) = 1, and Q�LaQ. Then L is a group.

Proposition 2.19. (Leong and Rajah, 1996b, Lemma 2) Let L be a Moufang loop of

odd order and every proper subloop of L be a group. If N contains a Hall subloop of

L, then L is a group.

Theorem 2.20. (Leong and Rajah, 1996b, Lemma 1) Let L be a Moufang loop and

R�L. If the quotient L/R is a group then La ⊂ R.

Theorem 2.21. (Leong and Rajah, 1997, Lemma 1(a)), (Glauberman, 1968, Theorem

7), (Chee and Rajah, 2012, Lemma 3.3(b)) Suppose L is a minimally nonassociative

Moufang loop of odd order. Then

(a) La is a minimal normal subloop of L; and is an elementary abelian group.

(b) La is the unique minimal normal subloop of L and (La,La,L) = {1}.

Proposition 2.22. (Leong and Rajah, 1997, Lemma 5) Let K be a subloop of CL(La)

and (|K|, |La|) = 1. Then K ⊂ N.

Proposition 2.23. (Ademola and Rajah, 2016, Lemma 4.1) Suppose |L|= pαm where

p is the smallest prime dividing |L| with (p,m) = 1, |L| is odd and α ∈ {1,2}. Then

there exists a subloop M of order m normal in L.

Theorem 2.24. (Rajah and Chee, 2011c, Lemma 4.1) Suppose L is a Moufang loop of

order pα1
1 pα2

2 · · · pαn
n q, where p1, p2, ..., pn and q are odd primes with p1 < p2 < ... <

pn < q and α1,α2, ...,αn ∈ Z+, q 6≡ 1(mod pi) for all i. Then there exists a normal
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subloop of order pα1
1 pα2

2 · · · pαn
n in L.

Theorem 2.25. (Chee and Rajah, 2012, Cor. 4.2) Suppose L is a nonassociative Mo-

ufang loop. If L is finite, then |L|/|N| 6= 1, p or pq; where p and q are (not necessarily

distinct) primes.

Proposition 2.26. (Ademola, 2017, Lemma 5.3) Let L be a Moufang loop of odd order

and R be a normal Hall subloop of L. Then there does not exist any element x ∈ R\N

such that R⊂ 〈x〉N.

Proposition 2.27. (Ademola, 2017, Lemma 5.5) Let L be a finite Moufang loop and

K �L such that |L||K| is a prime or the product of two (not necessarily distinct) primes.

Then L = HK for some associative subloop H of L. Moreover, H = 〈x〉 for some

x ∈ L\K if |L||K| is a prime.

Theorem 2.28. (Gagola III, 2014, Theorem 1) Suppose L is a finite Moufang loop

with an order that is coprime to six. Then any minimal normal subloop of L will be

contained in the nucleus of L.
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CHAPTER 3

MOUFANG IDENTITIES ON LOOPS AND MAGMAS

3.1 Introduction

A Moufang loop 〈L, ·〉 is a loop that satisfies any one of the identities: xy ·zx = (x ·yz)x,

xy · zx = x(yz · x), (xy · z)y = x(y · zy) or x(y · xz) = (xy · x)z. This definition, in itself,

quietly assumes the equivalence of these four identities, since on the one hand, it is

defining a single variety of loops, but on the other hand, four apparently different iden-

tities are used (to define it). Bruck (1971), Pflugfelder (1990) and Drapal (2010) con-

tain proofs that these four identities are equivalent for loops. However, these proofs are

cumbersome as they require additional knowledge about autotopism and hence making

it highly technical. This chapter, provides an alternative proof of the equivalence - a

proof that is done in an algebraic manner which can be followed and understood with

little or no difficulty. It also proves that, not only these identities, but localized (gen-

eralized) versions of these identities, are equivalent in magmas (which are generalized

versions of loops).

3.2 Equivalence of the Four Identities in Loops

Though the main objective is to prove the equivalence of the Moufang identities by

using purely algebraic methods, the proof involves establishing several other (well-

known) properties of Moufang loops as well. This includes the properties of left and

right cancelation laws, associativity between any two elements, existence of a (unique)

22



inverse element for every element and the inverse property. Though proofs of these

properties do exist in literature, but it is to be noted that some of them do use addi-

tional concepts and definitions as well (Bruck (1971), Pflugfelder (1990) and Drapal

(2010)). So, in order to maintain the claim that the equivalence of the four Moufang

identities can be proven by using a purely algebraic method, these other properties are

also proven in a likewise manner. This ensures that this work is as self-contained as

possible.

In the following theorems, various properties of loops that satisfy any one of the fol-

lowing (Moufang) identities are obtained. So, in the statement of Lemmas 3.3, 3.4,

3.5, 3.6 and Theorem 3.7, these are the identities that are referred to:

xy · zx = (x · yz)x (3.1)

(xy · z)y = x(y · zy) (3.2)

x(y · xz) = (xy · x)z (3.3)

Note that instead of the four Moufang identities listed in the introduction, only three

of them are chosen (and numbered). This is because the identity xy · zx = x(yz · x) can

be shown to be equivalent to the identity (3.1). The equivalence of (3.1), (3.2) and

(3.3) is first proved before proving (3.1) is equivalent to the other "missing" identity,

invariably proving the equivalence of all four Moufang identities.

Lemma 3.1. (Left and right cancelation laws) Let 〈L, ·〉 be a quasigroup and

x,y,z ∈ L. Then 〈L, ·〉 satisfies the left and right cancelation laws, that is, x ·y = x · z⇒

y = z (LCL); and x · y = z · y⇒ x = z (RCL) respectively.
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Proof. Let x ·y = x · z⇒ x ·y−x · z = 0⇒ x(y− z) = 0⇒ y = z. Similarly if x ·y = z ·y

then x = z.

Lemma 3.2. A binary system that contains both left and right identities contains a

unique identity element which is the unique left and right identity element of the system.

Proof. Use Definition 1.2(a) and (b) to get eR = eL ·eR = eL if eR and eL are respectively

some right and left identities. Then, if e′R and e′L are also right and left identities

respectively, also e′R = eL and eR = e′L. This completes the proof of this lemma.

Lemma 3.3. (Associativity of two elements) Let 〈L, ·〉 be a loop. Suppose L satisfies

any one of the three Moufang identities (3.1), (3.2) or (3.3). Then L is both a flexible

and alternative loop.

Proof. Since L is a loop, it contains the identity element e.

Case 1: Suppose (3.1) holds. For any x,y ∈ L, xe · yx = (x · ey)x by (3.1)⇒ x · yx =

xy · x, which proves the flexible identity. Also for x,y ∈ L, by the quasigroup property,

there exists u ∈ L such that xu = y. Now by (3.1) and the flexible identity

xu ·xx = (x ·ux)x = (xu ·x)x⇒ y ·xx = yx ·x, which proves the right alternative identity.

Similarly for x,y ∈ L, there exists v ∈ L such that vx = y. Then by (3.1) and the right

alternative identity, xx · vx = (x · xv)x = x(xv · x) = x(x · vx) ⇒ xx · y = x · xy, which

proves the left alternative identity.

Case 2: Suppose (3.2) holds. Then (ex · y)x = e(x · yx) by (3.2), for any x,y ∈ L. So

xy · x = x · yx which proves the flexible identity. Also by (3.2) and the flexible identity,

(xx · y)x = x(x · yx) = x(xy · x) = (x · xy)x. By RCL, xx · y = x · xy. This proves the

left alternative identity. Similarly (yx · e)x = y(x · ex) by (3.2), and this implies that
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