
ONTOLOGY-BASED SOURCE CODE

RETRIEVAL MODEL TO SUPPORT PROGRAM

COMPREHENSION

ROZITA BINTI KADAR

UNIVERSITI SAINS MALAYSIA

2019

ONTOLOGY-BASED SOURCE CODE

RETRIEVAL MODEL TO SUPPORT PROGRAM

COMPREHENSION

by

ROZITA BINTI KADAR

Thesis submitted in fulfilment of the requirements

for the degree of

Doctor of Philosophy

November 2019

ii

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful.

Alhamdulillah, praise to the almighty who has given me the strength and patience to

keep on holding in the journey to acquire knowledge.

I wish to express my most profound thanks to my supervisors, Professor Dr. Putra

Sumari, Dr. Sharifah Mashita Syed Mohamad, and Associate Professor Dr. Nur'Aini

Abdul Rashid for their invaluable advice, guidance, inspiration and moral support.

In addition, I would like to thank the Malaysia Ministry of Higher Learning, and

Universiti Teknologi MARA (UiTM) for their outstanding management, to provide

financial support and study leave.

To my husband, Mohd Zamri, my children, Luqman, Rijal, Najwa, Harith and

Raudhah, thank you for making Ummi complete. My special thanks also goes to my

mother and my mother in law, my siblings, to my relatives, and dearest friends for

their love, encouragements, patience and always being with me. This research will not

be completed without you.

Last but not least , this PhD is dedicated to my late father Allahyarham Kadar Hj Zain

and late father in law Allahyarham Udin Mohamed.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENT ... ii

TABLE OF CONTENTS .. iii

LIST OF TABLES ... vii

LIST OF FIGURES .. ix

LIST OF SYMBOLS .. xi

LIST OF ABBREVIATIONS ... xii

ABSTRAK ………………… .. xiv

ABSTRACT …………… .. xvi

 INTRODUCTION

1.1 Background of the Study .. 1

1.1.1 Program Comprehension in Software Maintenance 2

1.1.2 Identification of Source Code Location for Program Comprehension 4

1.2 Research Problem ... 5

1.3 Research Questions .. 6

1.4 Research Objectives ... 7

1.5 Expected Contribution .. 8

1.6 Scope and Limitation ... 8

1.7 Thesis Organisation .. 9

2.1 Introduction .. 12

2.2 Software Maintenance .. 13

2.3 Program Comprehension .. 14

iv

2.3.1 Issues on Program Comprehension .. 15

2.3.2 Elements of Program Comprehension Process 16

2.3.3 Program Comprehension Approach in Cognitive Perspective........... 19

2.3.4 Program Comprehension Models ... 22

2.4 Concepts Location in Program Comprehension ... 25

2.5 Concept Location Techniques .. 28

2.5.1 Static Analysis Technique .. 31

2.5.2 Text-based Analysis Technique ... 33

2.5.3 Combination of Analysis in Concept Location 37

2.6 Text Retrieval Technique for Concept Location .. 40

2.6.1 Generic Process of Text Retrieval ... 41

2.6.2 Text Retrieval Indexing Models... 42

2.6.3 Existing Works on Text Retrieval .. 48

2.7 Ontology in Concept Location ... 53

2.8 Summary .. 57

3.1 Introduction .. 59

3.2 Research Methodology ... 59

3.3 OntoBased-SR Model Design .. 62

3.3.1 Dataset preparation and pre-processing ... 64

3.3.2 Phase I – New Corpus Development ... 66

3.3.3 Phase II – Source Code Retrieval .. 70

3.4 Evaluation ... 76

3.4.1 Preparation of Dataset and Gold Standard ... 76

3.4.2 Preparation of Benchmark.. 78

3.4.3 Preparation of the Experiment ... 81

v

3.5 Statistical Evaluation .. 82

3.5.1 Performance Metrics .. 83

3.5.2 The Significance of Correlation Coefficient Test 87

3.6 Summary .. 87

4.1 New Corpus Development Model Design ... 89

4.2 Stage I: Development of Program Ontology .. 91

4.2.1 Conceptualisation Process .. 93

4.2.2 Extraction Process .. 97

4.2.3 Construction and Population Process ... 100

4.3 Stage II: Corpus Creation ... 103

4.3.1 Corpus Creation of Knowledge Information.................................... 104

4.3.2 Corpus Creation of Lexical Information .. 107

4.4 Stage II: Information Integration and Enrichment 108

4.5 Summary .. 112

5.1 The Source Code Retrieval Process in Concept Location 114

5.2 Indexing Process using Latent Semantic Indexing (LSI) 116

5.3 Cosine Similarity Measurement ... 118

5.4 Ranked Documents .. 119

5.5 Documents Ranking ... 127

5.6 Summary .. 128

6.1 Introduction .. 129

vi

6.2 Experimental Setup .. 130

6.2.1 Dataset .. 130

6.2.2 Experimental Method ... 131

6.2.3 Evaluation Criteria and Measures .. 132

6.2.4 Data Collection... 133

6.3 Experimental Result ... 134

6.3.1 The Retrieval Effectiveness Test ... 134

6.3.2 The Correlation Coefficient Test ... 148

6.4 Discussion of the Result ... 151

6.5 Threats to Validity .. 153

6.5.1 Internal Validity Threats .. 153

6.5.2 External Validity Threats ... 155

6.5.3 Construct Validity Threats ... 155

6.6 Summary .. 157

7.1 Introduction .. 158

7.2 Research Objective and Issues Examined .. 160

7.3 Revisiting the Contributions ... 161

7.3.1 A new source code representation.. 161

7.3.2 The Integration and Enrichment of Knowledge and Lexical

Information as Data Source Representation 162

7.3.3 The Ontology-Based Source Code Retrieval (OntoBased-SR)

Model for Concept Location .. 163

7.4 Future Research .. 163

REFERENCES …………………………………………………………………..165

LIST OF PUBLICATIONS

vii

LIST OF TABLES

Page

Table 2.1 Software Maintenance Tasks and Its Activities 13

Table 2.2 Types of Knowledge .. 17

Table 2.3 The Classification of Program Comprehension Model 25

Table 2.4 The Dimensions and Attributes of the Concept Location

Taxonomy .. 29

Table 2.5 Summary of Concept Location Analysis and its Data Sources.......... 30

Table 2.6 Summary of Text Retrieval Indexing Models 47

Table 2.7 Term Document Matrix Generated by ICA Technique 50

Table 3.1 The Selected Change Requests Queries and its Descriptions from

SEMERU ... 72

Table 3.2 The List of Dataset Provided by SEMERU 77

Table 3.3 The Gold Standard with respect to the Selected Change Requests

Queries from SEMERU ... 79

Table 3.4 Dataset Specification .. 81

Table 4.1 The Object-Oriented Programming (OOP) Source Code

Structure as a Classes in Program Ontology 93

Table 4.2 The Object and Data Properties of OOP Source Code Concepts

at Method-Level Granularity.. 94

Table 4.3 Features Similarity between UML Class Diagram and Ontology

Model ... 95

Table 4.4 Example of Documents Corresponding to Methods 108

Table 4.5 Corpus integration of Lexical and Knowledge Information

Extracted from actionPerformed() Method 110

Table 4.6 The results of terms after converting into four types of

information: synonym, hypernym, meronym and original

contents from actionPerformed() Method .. 112

Table 5.1 Result using Ontology-Based Similarity Mapping with List of

Methods .. 120

Table 5.2 An example of the change request log, query submission and the

result produced by the proposed work ... 128

Table 6.1 The Description of Change Request Log and Gold Standard for

Query, Q1 ... 136

Table 6.2 Result Produced by the Benchmark and OntoBased-SR for

QueryID Q1 Sorted by Cosine Similarity Matched for Gold

Standard (highlighted) .. 136

viii

Table 6.3 The Description of Change Request Log and Gold Standard for

Query, Q2 ... 137

Table 6.4 Result Produced by the Benchmark and OntoBased-SR for

QueryID Q2 Sorted by Cosine Similarity Matched for Gold

Standard (highlighted) .. 138

Table 6.5 The Description of Change Request Log and Gold Standard for

Query, Q3 ... 139

Table 6.6 Result Produced by the Benchmark and OntoBased-SR for

QueryID Q3 Sorted by Cosine Similarity Matched for Gold

Standard (highlighted) .. 140

Table 6.7 The Description of Change Request Log and Gold Standard for

Query, Q4 ... 140

Table 6.8 Result Produced by the Benchmark and OntoBased-SR for

QueryID Q4 Sorted by Cosine Similarity Matched for Gold

Standard (highlighted) .. 141

Table 6.9 The Description of Change Request Log and Gold Standard for

Query, Q5 ... 142

Table 6.10 Result Produced by the Benchmark and OntoBased-SR for

QueryID Q5 Sorted by Cosine Similarity Matched for Gold

Standard (highlighted) .. 143

Table 6.11 The Results for the Five Queries Implemented by OntoBased-SR

 .. 144

Table 6.12 The Results for the Five Queries Implemented by the Benchmark

 .. 145

Table 6.13 Test of Normality for Benchmark and OntoBased-SR Based on

Precision Values ... 150

ix

LIST OF FIGURES

Page

Figure 2.1 The Elements in Program Comprehension Process 17

Figure 2.2 Evolution of Program Comprehension Model (Schulte et al.,

2010) .. 24

Figure 2.3 Concept Triangle Model (Chowdhury, 2010) 27

Figure 2.4 A sample program and its ASDG (K. Chen & Rajlich, 2000) 31

Figure 2.5 Example of an AOIG (Shepherd et al., 2007) 33

Figure 2.6 The Generic Approach for Text retrieval-Based Concept

Location (Marcus & Haiduc, 2013) ... 42

Figure 2.7 The Basic Steps of Text Retrieval Approach (Alhindawi et al.,

2014) .. 43

Figure 3.1 Research Methodology... 61

Figure 3.2 The OntoBased-SR Model ... 63

Figure 3.3 Workflow for Data Pre-processing .. 66

Figure 3.4 The basic process flow of ontology development 68

Figure 3.5 The Coordinates of Individual Documents and Query Vectors

based on Cosine Similarity Values .. 75

Figure 3.6 List of Methods in jEdit System .. 80

Figure 3.7 Parts of Documents in Corpus Extracted from jEdit System 80

Figure 3.8 The Statistical Analysis of the Study ... 83

Figure 3.9 The Performance Metrics Derived from Confusion Metrics 84

Figure 4.1 New Corpus Development in OntoBased-SR Model 90

Figure 4.2 Process Flow for Program Ontology Development 92

Figure 4.3 Relations (predicates) between concepts (subject and object)

match with source code concepts ... 98

Figure 4.4 Part of the XML Document Used as an Example 99

x

Figure 4.5 Classification of XML Document Based on the Ontology 100

Figure 4.6 Part of (a) Object Properties and (b) Data Properties in Program

Ontology ... 101

Figure 4.7 Demonstrates an example of instances after the population

process using GATE tool ... 102

Figure 4.8 Program Ontology Discovered by Protégé 5.0 and generated by

OntoGraf tool ... 103

Figure 4.9 Corpus Creation of Knowledge Information.................................... 104

Figure 4.10 Concepts and Relations in Ontology .. 105

Figure 4.11 Example of Concepts and Relations Extracted from Source

Code ... 106

Figure 4.12 Corpus Creation of Lexical Information .. 107

Figure 4.13 A Steps of Generating the Corpus Integration of Lexical and

Knowledge Information ... 109

Figure 5.1 The Implementation of Source Code Retrieval Process 115

Figure 5.2 Part of Documents in Corpus ... 117

Figure 5.3 Query Submission .. 117

Figure 5.4 The Output in a Form of Term Frequency Matrix 118

Figure 5.5 Example of Output using Cosine Similarity generated by Matlab

Module ... 119

Figure 5.6 The Types of Similarity Measure. .. 122

Figure 5.7 Ontology-Based Similarity Measurement .. 123

Figure 6.1 Precision Graphs for Benchmark and OntoBased-SR 146

Figure 6.2 Recall Graphs for Benchmark and OntoBased-SR 147

Figure 6.3 Accuracy Graphs for Benchmark and OntoBased-SR 148

Figure 6.4 The Scatter Plot Showing a Linear Correlation between

OntoBased-SR and Benchmark.. 151

xi

LIST OF SYMBOLS

= Equals

{ } Set - a collection of elements

[1 … n] Close interval

() Parentheses

∪ OR, UNION

∩ AND, JOIN

∋ Such as

| | Absolute value

√ Square root

∑ Summation – Sum of all values in range of series

SD Standard deviation

α Alpha - significance level

x̅ Mean

https://en.wikipedia.org/wiki/Equals_sign

xii

LIST OF ABBREVIATIONS

AOIG Action-Oriented Identifier Graph

ASDG Abstract System Dependence Graph

CL Concept Location

CR Change Request

CSM Cosine Similarity Measurement

FCA Formal Concept Analysis

FEAT Feature Exploration and Analysis

FN False Negative

FP False Positive

GATE General Architecture for Text Engineering

grepOF Grasp Ontology Fragment

ICA Independent Component Analysis

IEC The International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IR Information Retrieval

IROF Information Retrieval Ontology Fragment

ISO The International Organization for Standardization

JPDA Java Platform Debugger Architecture

KLOC Kilo Line of Code

LDA Latent Dirichlet Allocation

LM Language Model

LSI Latent Semantic Indexing

NLP Natural Language Processing

OntoBased-SR Ontology-Based Source Code Retrieval

OOP Object-oriented Programming

OWL Ontology Web Language

PDA Prune Dependency Graph

RDF
Resource Description Framework

SDG System Dependence Graph

xiii

SDV Single Value Decomposition

SEMERU Software Engineering Maintenance and Evolution Research Unit

SITIR Single Trace and Text Retrieval

SVD Singular Value Decomposition

TF Term Frequency

TFM Term Frequency Matrix

TN True Negative

TP True Positive

TPTP Test and Performance Tools Platform

UML Unified Modeling Language

VSM Vector Space Model

XML Exchange Markup Language

xiv

MODEL CAPAIAN KOD SUMBER BERASASKAN ONTOLOGI UNTUK

MENYOKONG PEMAHAMAN PROGRAM

ABSTRAK

Mengenal pasti bahagian-bahagian kod sumber sepadan dengan fungsi tertentu

adalah salah satu aktiviti yang biasa dilakukan oleh penyelenggara perisian semasa

menjalankan tugas penyelenggaraan. Tugas ini merupakan cabaran utama kepada

mereka kerana mereka perlu memahami sistem perisian terlebih dahulu. Pelbagai

teknik telah dicadangkan untuk membantu penyelenggara perisian mengurangkan

usaha mereka untuk mencari lokasi kod sumber yang akan diberi perhatian. Konsep

lokasi adalah salah satu teknik yang dapat memberikan penyelesaian kepada

permasalahan ini. Teknik yang paling umum untuk menyokong konsep lokasi adalah

capaian teks. Oleh itu, kajian ini memberi tumpuan kepada penggunaan kod sumber

untuk teknik capaian teks dalam mengenal pasti lokasi yang relevan untuk

diselenggarakan. Kandungan sumber data yang digunakan sebagai maklumat dalam

proses capaian kod sumber adalah salah satu elemen yang dapat meningkatkan prestasi

teknik ini. Kebanyakan teknik yang sedia ada tidak mengambilkira kepentingan

maklumat pengetahuan kod sumber. Memandangkan pentingnya maklumat

pengetahuan digunakan sebagai sumber data, kajian ini meneroka dan menemui

perwakilan yang boleh mewakili maklumat pengetahuan kod sumber dan

mencadangkan teknik baru untuk perwakilan maklumat pengenalan kod sumber

berkonsepkan sistem perisian pada perspektif ontologi. Kajian ini menghasilkan model

yang digunakan dalam teknik capaian kod sumber, dikenali sebagai Model Capaian

Kod Sumber Berasaskan Ontologi (OntoBased-SR). Idea asas kerja yang

dicadangkan ini bertujuan untuk memperkaya maklumat yang akan digunakan sebagai

xv

sumber maklumat dalam proses capaian, memanfaatkan penggunaan maklumat

leksikal dan pengetahuan dalam kod sumber. Kajian ini menyiasat secara terperinci

bagaimana maklumat pengetahuan dapat disepadukan dengan maklumat leksikal

untuk menghasilkan maklumat yang lebih baik. Sumbangan utama kajian ini adalah

mencadangkan model untuk menghasilkan sumber maklumat baru untuk teknik

capaian kod sumber yang dihasilkan daripada penyepaduan maklumat pengetahuan

dan maklumat leksikal. Eksperimen telah dijalankan dan keputusan dari hasil kerja

yang dicadangkan menggunakan sumber data yang mengandungi pengetahuan dan

maklumat leksikal telah dibandingkan dengan penanda aras. Penanda aras hanya

menggunakan maklumat leksikal sebagai sumber data. Metrik ukur digunakan untuk

menganalisis data untuk mengukur keberkesanan proses capaian semula. Keputusan

menunjukkan bahawa model yang dicadangkan lebih berkesan dalam mencapai

dokumen yang relevan berbanding dengan penanda aras. Keputusan lain adalah untuk

menguji keupayaan hasil kerja yang dicadangkan untuk menyusun kedudukan

dokumen yang relevan dengan pertanyaan yang diberikan. Keputusan menunjukkan

bahawa hasil kerja yang dicadangkan dapat menyusun kedudukan dokumen yang

relevan lebih baik berbanding dengan penanda aras. Oleh itu, dapat disimpulkan

bahawa, penyelenggara perisian tidak memerlukan banyak usaha untuk mencari

dokumen yang relevan untuk membuat perubahan jika kerja yang dicadangkan ini

digunakan untuk menyokong tugas penyelenggaraan.

xvi

ONTOLOGY-BASED SOURCE CODE RETRIEVAL MODEL TO SUPPORT

PROGRAM COMPREHENSION

ABSTRACT

Identifying the parts of source code corresponding to a specific functionality is

one of the most common activities undertaken by software maintainers while

performing maintenance tasks. This task is a key challenge to them since they need to

comprehend a software system in advance. Various techniques have been proposed to

help software maintainers to reduce their effort in finding location of source code

concern. Concept location is one of the techniques that able to provide a solution to

the problem. The most common technique to support concept location is text retrieval.

Therefore, this study focuses on the use of source code for text retrieval technique in

identifying relevant location to be maintained. The contents of data source that use as

an information in source code retrieval process is one of elements that able to improve

the performance of the technique. Most of the existing works did not consider the

importance of knowledge information of source code. Considering the important of

knowledge information use as a data source, this study explores and find the acceptable

representation of source code to represent knowledge information and proposes a

novel technique for source code retrieval process by conceptualising a software system

on an ontological perspective. The work produce a model applied in the source code

retrieval technique, namely Ontology-Based Source Code Retrieval Model

(OntoBased-SR). The basic idea of the proposed work intended to enrich the

information that will be used as a source of information in retrieval process, leveraging

the lexical and knowledge information in the source code. This work investigates in

more detail how knowledge information can be best integrated with the lexical

xvii

information in order to generate better information. The main contribution of this study

is in proposing a model for producing a new source of information for source code

retrieval technique resulted from the integration of knowledge and lexical information.

Experiments have been conducted and the result of the proposed work uses data source

that contain knowledge and lexical information has been compared with a benchmark.

The benchmark uses lexical information only as data source. The measurement metrics

were used to analyse the data to measure the effectiveness of retrieval process. The

result shows that the propose model is more effective in retrieving the relevant

documents compared to the benchmark. Another result is to test the capability of the

proposed work to rank the relevant documents response to the query. Finding shows

that the proposed work can perform better in term of ranking the relevant documents

compared to benchmark. It can therefore be concluded that, software maintainers do

not required much effort to find relevant documents to make changes if the proposed

work used to support maintenance tasks.

1

INTRODUCTION

1.1 Background of the Study

When a software system is in operation, it needs to be maintained to improve its

usefulness. Software maintenance is important in software engineering as its goal is to

satisfy users’ expectation. The term ‘maintenance’ refers to an evolution, which is a

process of continuous development activities from a low, simple and worst system to

a higher, more complex and better state (Jin & Cordy, 2005). Software maintenance is

required in providing cost-effective support since cost and time are the major

constraints to software maintenance process (Abran et al.,2004; Fakhoury et al., 2018;

Koushik & Selvarani, 2012; Saleem et al., 2009; Salvaneschi et al., 2017).

Program comprehension is necessary in performing maintenance tasks and

mainly takes place before changing any process. Software maintainers must be familiar

and comprehend the parts of source code in the program to be maintained (Alhindawi

et al., 2014; Wang, 2017). However, most of software maintainers face a problem in

comprehending a software system when implementing maintenance tasks (Alhindawi

et al., 2014; Krüger et al., 2019).

In maintaining the software system that needs to be changed, software

maintainers must firstly identify the locations in the source code that are the most

relevant to the intended changes (Dit et al., 2013; Marcus & Haiduc, 2013;

Poshyvanyk et al., 2012; Schankin et al., 2018). Thus, the task of identifying the source

code for a particular function is the key requirement in maintaining the software

2

(Alhindawi et al., 2014; Dit et al., 2013; Poshyvanyk et al., 2012; V. Rajlich & Gosavi,

2004). Hence, this present study attempts to overcome the problem in software

maintenance by proposing a suitable technique to improve the identification of source

code location before performing maintenance tasks.

1.1.1 Program Comprehension in Software Maintenance

Program comprehension is a very important activity in software maintenance

since software maintainers need to understand the program to be maintained or to

implement changes. Studies on program comprehension have been carried out since

the early 1970s and revealed its importance as a major activity during software

maintenance (Hu et al., 2018; Maletic & Kagdi, 2008; Sasirekha & Hemalatha, 2011;

Xia et al., 2017).

The effectiveness of program comprehension activities depends on the speed of

software engineers in understanding the program, thereby maintaining the system

software efficiently. Previous studies explored the techniques used to overcome the

problems of program comprehension such as impact analysis, exploring the program

structures and its representation, program design as well as identifying the location of

source codes concerned. Although there are lots of studies done to improve program

comprehension, some programmers neglected them due to complex ways in the

proposed ideas as they failed to expose the programmers to the real world environment

(Lahtinen et al., 2007; Maletic & Kagdi, 2008; Schankin et al., 2018; Vainio &

Sajaniemi, 2007).

3

Source code is an essential artefact for software maintainers to become familiar

with a software system (Carvalho, 2013; Corley et al., 2012; Cornelissen et al., 2011;

Sharafi, 2011; Tiarks et al., 2013; Yazdanshenas & Moonen, 2012). Nowadays, the

expansion in size and difficulty of software system leads to difficulties in maintaining

the system. Thereby, software maintainers have to keep up a huge size of source code

that needs to be comprehend (Haiduc et al., 2010; Ishio et al., 2012) and to identify a

corresponding piece of code that needs to be maintained (Carvalho, 2013; Roehm et

al., 2012; Ying & Robillard, 2011). Among their tasks is to identify the source code

location and understand it before implementing maintenance tasks (Carvalho, 2013;

Roehm et al., 2012; Ying & Robillard, 2011).

Due to the increase in the size and complexity of software system as well as lack

of proper documentation and knowledge expert, maintenance tasks can be very time-

consuming, thus requiring more effort to maintain a system (Guzzi et al., 2011;

Normantas & Vasilecas, 2013; Roongruangsuwan & Daengdej, 2010). In the

maintenance phase requires a very high effort to get to know and understand the source

code (Bouwers et al., 2010; Meng et al., 2006.). Supported by Norman and Vasilecas

(2013) and Wang (2017), it has been stated that software engineers have to spend

41.8% of total effort in reading and finding a relevant source code program to make

changes.

Besides, problems in providing the related documentation on a system as well as

the lack of experts contribute to the major problems in carrying out maintenance tasks.

Expert knowledge is needed especially for novices to help them in performing

maintenance tasks. Problems usually exist when the developers who developed the

software system abandoned their project (Xu, 2005). The absence of the original

4

programmer will subsequently affect the understanding of a system and leave a

negative impact in performing the maintenance tasks. Furthermore, existing

information is still insufficient and needs to be enriched. One way to do this is by

refining the information into the integration of information, which combines different

information sources (Poshyvanyk et al., 2012).

The study on program comprehension remains incomplete and should be

continued to produce the best techniques to improve program comprehension

(Corritore & Wiedenbeck, 2001; Maletic & Kagdi, 2008; Xu, 2005). This problem is

yet to be discussed in detail to support software maintainers in performing maintenance

tasks.

1.1.2 Identification of Source Code Location for Program Comprehension

The process of identifying the location of source code concern is called concept

location. It is primarily a human activity defined as “the activity of identifying the

initial location in the source code that implements the functionality in a software

system” (Dit et al., 2013). Several techniques have been introduced to automate some

or all of the process of concept location. Those techniques rely heavily on code

comprehension as it is considered prerequisite when maintaining any software system.

One of the most commonly used techniques to support concept location is based

on text search in source code where the software maintainers write a query and the

search engine returns a list of source code elements relevant to the query (Poshyvanyk

et al., 2012). Considering all the tasks in concept location, many software maintainers

can benefit from this technique to reduce their efforts and save their time to

comprehend unfamiliar system and to improve performance of maintenance tasks.

5

1.2 Research Problem

It is known that one of the important elements that effect the performance of the

text retrieval technique is the information contained in a data source called corpus.

Most of the existing works on text retrieval technique (Akbar & Kak, 2019; Bohnet et

al., 2008; Hill et al., 2009; Karnalim, 2018; Lapeña et al., 2016; Rahman & Roy, 2017;

Rahman et al., 2017; Sachdev et al., 2018; Shepherd et al., 2006; Swathi & Anju,

2019; Vinayakarao et al., 2017) did not consider the importance of knowledge

information which they did not provide information about the relationships between

concepts within a domain. Thus, the existing works unable to describe the whole

structure of source code and lack of informtaion to represent significant domain

knowledge information of system software.

Since ontology-based approach provides a foundational perspective for

knowledge representation, this approach should be considered as a contribution to text

retrieval technique. The purpose of using ontology is to extract the terms and concepts

in certain domain in the source code as well as to find the correct relationships between

different concepts (Anikin & Sychev, 2019). Thus, representing source code in a form

of ontology is able to describe the whole structure of source code at any level of

granularity and can present more information in developing corpus as a data source for

source code retrieval.

Apart from that, the lack of integration of information in corpus also invites

problems in source code retrieval technique. Previous works (see Hu et al., 2018;

Schankin et al., 2018; Marcus et al., 2004; Poshyvanyk et al., 2006; Poshyvanyk &

Marcus, 2007; Gay et al., 2009; Bohnet et al., 2008; Hill, 2009) had only use lexical

information in constructing the corpus. Lexical information only provided the

6

information of source code which are extracted from identifiers and comments (Hu et

al., 2018; Schankin et al., 2018). This makes the content in the corpus to be limited to

represent the entire information in the source code. By integrating lexical information

and knowledge information produced by ontology, it will enrich the information

contained in the corpus (Song et al., 2019; Yang et al., 2019). This will also contribute

to enhance the performance of source code retrieval technique.

Therefore, this study explores the important of new information that able to

improve the source code retrieval technique. It proposed the use of ontological as

knowledge representation by extracting information from source code. Ontology has

been used in many fields to represent knowledge about certain concepts and can be

applied to improve maintenance tasks (Karnalim, 2018; Swathi & Anju, 2019; Wilson,

2010). Furthermore, this study integrated the knowledge and lexical information as an

addition of relevant information. This approach has a great potential to reduce the

effort and increase the performance of software maintainers to perform maintenance

tasks.

1.3 Research Questions

The research questions are as follow:

i. How to propose source code representation feasible to represent significant

domain knowledge information of system software compared to original

source code? (RQ-1).

ii. How to enrich the contents data source that used in source code retrieval

process by leveraging the knowledge information of source code? (RQ-2).

iii. How to construct a model to improve the source code retrieval technique

while performing concept location? (RQ-3).

7

1.4 Research Objectives

The aims of this study is to improve the source code retrieval technique in

concept location approach to facilitate software maintainers in finding the location of

source code prior to the software maintenance phase. To improve the effectiveness of

identifying out the source code location relevant to the topic of interest means to return

many relevant documents and few non-relevant documents to support user exploration

of the program and task completion.

The following objectives were aimed to achieve the above goal.

i. To construct a new ontology as a source code representation to represent domain

knowledge information of system software (RO-1).

ii. To propose a new corpus development by integrating and enriching the

information in a new corpus to evaluate the performance of the proposed model

(RO-2).

iii. To produce a model based on the use of ontology representation as an

enhancement of source code retrieval technique (RO-3).

The first objective (RO-1) was derived from the first research question (RQ-1)

listed in Subchapter 1.3 where the aim is to explore and find the acceptable

representation to represent knowledge information for source code by conceptualising

a software system on an ontological perspective. Meanwhile, the second objective

(RO-2) was defined to answer the second research question (RQ-2), which involves

the integration and enrichment of the data source that use in retrival process by utilising

the lexical and knowledge information. The third objective (RO-3) derived from

research question (RQ-3) involves constructing a model for source code retrieval

technique to improve concept location.

8

1.5 Expected Contribution

This study is expected to contribute to:

i. Introducing a new source code representation – Explore and find

acceptable representation to represent domain knowledge information for

program source code.

ii. Developing a new corpus – The corpus as a data source to improve text

retrieval technique by integrating and enriching the lexical and knowledge

information.

iii. Introducing a new Ontology-Based Source Code Retrieval (OntoBased-

SR) technique - The technique is to improve the accuracy of retrieve and rank

the relevant information based on query submitted.

1.6 Scope and Limitation

This study focuses on source code retrieval approach for source code concept

location technique in the context of software maintenance, which occurs in the

presence of source code modification request. Although the underlying challenges

associated with the concept location are indexing process, data sources, query

formulation and similarity measure, this study focused on the importance of

information represented as a source for information retrieval. It deals with a source

code as a software artefact focusing on text documentation

For indexing process and similarity measure, this study deployed the existing

information retrieval model, which is Latent Semantic Indexing (LSI) model. For

similarity measure, the cosine similarity was used to measure relevant documents to

the input query with the result displayed in the ranked list of documents. This study

selected Object-Oriented Programming (OOP) source code and JAVA language as a

9

source of input due to their characteristics, which are simple, modular, modifiable,

extensible, maintainable and re-usable.

This study only extracted the method-level granularity from the source code as

the target source. This preference can be explained by several factors. First, methods

locate the concepts and features in more detail than classes and files. Second, most of

the existing technique consider the structural and dynamic information in the text

retrieval techniques, which often use information at the level of granularity of methods.

Third, as more and more approaches made use of the method-level granularity,

researchers had little choice in the cases when a comparison to previous approaches is

desired.

This study make used the roles of ontology in terms of source representation in

representing the knowledge information and the information often used in source code

concept location technique, which is lexical information. Taking into account the

importance of the knowledge information and lexical information, both were

integrated in this study with hope that this approach can enhance the ability of the

retrieval process. The experiment was conducted to test the performance of the

proposed work by applying it to the real open source system.

1.7 Thesis Organisation

The organisation of the chapters in this thesis is as follows:

In Chapter 2 discusses the literature review related to this study. It begins with

the tasks and activities of software maintenance and their roles in software

engineering. It continue to explores previous studies regarding program

comprehension that considers different works, ideas and opinions of the researchers.

10

Furthermore, the following section presents the knowledge-based management that

discusses the roles of ontology in knowledge representation as well as the importance

of ontology in software engineering. After that, the concept location technique suitable

in program comprehension activity is demonstrated followed by the section that briefly

explains the text retrieval model for concept location. The next section is about the

types of source code representation used in concept location. The following section

describes the cosine similarity measurement used in this study. At the end of the

chapter is the chapter summary.

In Chapter 3, research methodology that discusses about the procedures taken

since the beginning until the end of conducting study is demonstrated. The first section

describes the research methodology design followed by the proposed work model. The

next subsection presents the process of conducting the evaluation on the proposed

work. This is followed by the discussion on the pre-processing of the dataset and the

information on the gold standard as well as the preparation for the experiment. The

following sections explain the preparation of benchmark; the experiment conducted

well as the statistical evaluation. Finally, summary is presented in the last section.

 Chapter 4 covers the implementation of the first phase of the proposed work

that briefly discusses the construction of ontology, corpus creation and the integration

and enrichment of the new corpus. The second phase of the proposed work is discussed

in Chapter 5. It provides a step-by-step explanation on the procedures conducted for

source retrieval process in concept location. The last section describes the summary of

the chapter.

The evaluation of the proposed work is explained in Chapter 6, which is

presented in detail regarding the procedures conducted in the experiment, the analysis

11

and results of the evaluation. The threats to validity of experiments are also presented

in this chapter. The discussion on the findings is presented in the next section. The

final section states the chapter summary.

Chapter 7 is the last chapter comprising the conclusion of the study by drawing

the summary of the thesis. Besides, it includes the contributions of the study

determined based on the findings. The chapter also provides suggestions of possible

improvements for further work, which are stated at the end of the chapter. At the end

of the chapter is the conclusion of the chapter.

12

LITERATURE REVIEW

2.1 Introduction

Nowadays, comprehending a software system has become a challenge because

of the size and complexity of the program. Program comprehension is very important

and must be in place prior applying maintenance task. Over the past decades, many

studies in program comprehension have been conducted suggesting many ideas,

techniques and tools that can help software developers to comprehend a program.

Nevertheless, the study of program comprehension remains a challenge.

Recognising the location of source code is one of the activities while

implementing maintenance task and it is the fundamental in program comprehension

process. Software developers need to match their understanding on the program

domain to its representation in the source code. Moreover, among the things to be

concern during the process of identifying the relevant source code are; the

characteristics of the source code structure and the nature of the problem domain such

as internal comments, external documentations, variable names and annotations. This

constitutes the problems in program comprehension.

This chapter discusses the issues of concept location related to program

comprehension during software maintenance. It is divided into five main discussions:

the overview of software maintenance; the importance of program comprehension; the

role of concept location; the application of source code retrieval technique in concept

13

location; and the role of ontology to provide the information while comprehending a

program. Then, summary is made at the end of the chapter.

2.2 Software Maintenance

Software maintenance is defines as a process of modification a software system

to correct faults and to improve performance (IEC/ISO, 2008; Standard, 2008).

Software maintenance tasks involve four categories: corrective, preventive, adaptive,

and perfective. These tasks are then grouped into two major activities: correction and

enhancement (as in Table 2.1).

 Table 2.1 Software Maintenance Tasks and Its Activities

Software

Maintenance

Tasks

Tasks Description Activities

Corrective To repair and fixing existing faults

that cause the system to fail.

Correction

- Understand system, evaluate

hypotheses concerning problem,

repair code, regression tests.
Preventive Preventing failures by detecting and

fixing before failure.

Adaptive Making change in existing software to

accommodate a changing environment

or to fulfill the customer-based

requirements.

Enhancement

- Understand system, define the

requirement for

improvement/adaptation, and

develop preliminary and detailed

adaptation/perfective design, code

changes, debug, and regression

tests.

Perfective Making improvement to the existing

systems and to increase the users'

satisfaction without affecting end-user

functionality.

The key challenge faced by developers is to comprehend the software system

being maintained. Program comprehension is time-consuming because this activity is

an integral activity in each software maintenance task (as shows in Table 2.1). The

next section discusses in detail on several issues related to program comprehension.

14

2.3 Program Comprehension

Software system needs to be maintained after its operation. The process of

changes and modifications applied in maintenance task is to improve the quality, speed

and accuracy of the system. Program comprehension is important for a successful

evolution of software as the tasks in software maintenance are required to understand

the software to be maintained (Fakhoury et al., 2018; Maletic & Kagdi, 2008;

Salvaneschi et al., 2017; Sasirekha & Hemalatha, 2011; Soh, 2011). Before the

software system can be correctly maintained, the specific location of existing code that

will be modified has to be identified to make changes (Alhindawi et al., 2014).

Software maintainers must first find the relevant parts of the code corresponding to a

particular change and this task is related to concept location. Therefore, this section

explores the importance of program comprehension in software maintenance and

further discusses the roles of concept location to improve program comprehension.

Program comprehension is “the process of taking source code and understanding

it” (Deimel & Naveda, 1990) or the process of using the existing knowledge to acquire

new knowledge (Aljunid, Zin, & Shukur, 2012; Xia et al., 2017). The understanding

on program is related to execution behaviour and relationship of variables involved in

the program (Hu et al., 2018; Sasirekha & Hemalatha, 2011). The study of program

comprehension can be explained as the process occurs in the software engineers' mind

when they understand a program (Feigenspan & Siegmund, 2012). This section

discusses the issues arising in program comprehension followed by the existing

approaches and models on program comprehension.

15

2.3.1 Issues on Program Comprehension

Source code is a more trusted source of data compared to composed

documentation primarily since documentation is regularly non-existed or obsolate

(Maalej et al., 2014). However, the problems still exist if the source code is used as

reference to a system. The activity in reviewing and understanding a source code is

not the same as reviewing ordinary documents and many problems in program

comprehension arise due to the use of textual representation as the primary source of

information. In fact, programs are often in the form of a hierarchical structure, but the

actual behaviour of a program cannot be reflected as it is represented in textual forms.

Although many methods and tools have been proposed to represent source code,

experience have shown that textual presentation is the most suitable to represent the

software system (Krinke, 2004).

Current software systems are difficult to be comprehended because of the size

and complexity of the program, thereby leads to difficulties in understanding and

maintaining the system. This is due to the source code itself. Most of the problems due

to tricky codes, different programming styles, poor naming conversion, program

representation, insufficient comments, architectures, components, design and

identifier style. Many studies have proposed the factors to improve source code

comprehension such as cross referencing, developers' program domain knowledge,

syntax highlighting and tools, comments, dependence graph, slicing, ripple analysis

and program decomposition.

Another issue is on the human activities. Many software developers work in team

on large software projects. The implication of this is that they need to be able to quickly

understand each other's code writing styles to be more productive. Software

16

maintainers need to be able to understand the developers' code. Software maintenance

is important as it may account for 65% to 75% or as much as 80% the total lifetime of

a software (Greevy & Zaidman, 2005; Normantas & Vasilecas, 2013;

Roongruangsuwan & Daengdej, 2010; Schankin et al., 2018; Siegmund, 2016; Xu,

2005). In addition, sometimes the source code documentation was never written, out-

of-date or lost. This suggests that software maintainers need to give more efforts in the

maintenance phase.

Despite many studies carried out in finding the different strategies and

techniques to overcome program comprehension problems, most researchers still have

yet to discuss on how to help the software maintainers to comprehend a program.

2.3.2 Elements of Program Comprehension Process

Frequently, most of the studies on program comprehension consider three basic

elements that complement to the comprehension process. These elements are

knowledge based that appear in a programmer’s mind; external representation and; the

assimilation process (in Figure 2.1). The process flow explains how developers

understand a program using their existing knowledge through the assimilation process

supported by external representation to obtain new knowledge.

17

Figure 2.1 The Elements in Program Comprehension Process

Knowledge-based

Knowledge based is an experience or existing knowledge on a program

contained by a programmer. It can determine the programmers' ability to comprehend

a program. Table 2.2 shows the types of knowledge and researchers discovering the

ideas.

Table 2.2 Types of Knowledge

Authors Types of knowledge

Brooks, 1983; Carvalho, 2013; Rugaber, 2000; von

Mayrhauser & Vans, 1997
Domain Knowledge

Soloway & Ehrlich, 1984; Wiedenbeck, 1986 Plans and Rules of discourse

Brooks, 1983; Rist, 1986; Weiss & Mockus, 2013 Beacons and Chunks

Gellenbeck & Cook, 1991; Shneiderman & Mayer, 1979;

Soloway & Ehrlich, 1984
Syntactic and Semantic

Busjahn et al., 2014; Détienne, 2002; El-sheikh et al.,

2013; Letovsky, 1987; Piaget, 2013)
Schemas and Abstraction

18

Domain knowledge consists of three domains, which are task/problem domains,

intermediate domain and program domain (Brooks, 1983). During the comprehension

process, the task domain is mapped to the intermediate domain and produces the

program domain. Moreover, hypotheses can be constructed using domain knowledge

by predicting the program with reference to the existing knowledge. Another types of

knowledge is the plan and rules of discourse, which is used for developing and

validating expectations, interpretations and inferences, includes causal knowledge on

information flow and the relationships among parts of a program (Soloway & Ehrlich,

1984; Wiedenbeck, 1986).

Beacons are the familiar feature in the source code serving as a cue indexed into

existing knowledge to present certain structure of plans (Brooks, 1983; Rist, 1986).

On top of that, beacons are utilised to predict hypotheses. Another type of knowledge

is schema. According to Piaget's theory, schemas are the way of organising knowledge

to become as a unit. Each knowledge is related to aspects including the object, action

and abstract concepts (Piaget, 2013).

External representations

External representations are any materials available as an aid to support

programmers while comprehending a program. The materials can be represented in

different ways and formats. The external support may be in a form of system

documentation, source code, manual, book or expert advises as well as techniques and

tools.

19

Assimilation

Assimilation is a process comprehending a program and considering

incorporated and constructed with existing knowledge. In particular sign, the

characteristics of programmers while comprehending a program is important since

they use all their senses and capabilities to understand a program.

2.3.3 Program Comprehension Approach in Cognitive Perspective

Cognitive model is used to represent the processes involved in developing and

building the programmers’ mental model or acquire new knowledge from existing

knowledge (Storey, 2006). Developers use their existing knowledge such as

programming expertise, programming language, computing environments,

programming principles, architectural model, algorithm and solution approve as well

as domain-specific information or problem-domain, which will after that go through

the assimilation process supported by external representation. This process is

continued to obtain new knowledge like functionality, architecture, algorithm

implementation, control flow and data flow.

Previous studies on cognitive model provide explanations on the short-, long-

,and working-memories used (Brooks, 1983; Pennington, 1987; Soloway & Ehrlich,

1984; von Mayrhauser & Vans, 1997). Other authors theorised that cognitive internal

representation of knowledge is produced through the concept of frames, plans, and

chunks (Minsky,1974; Rich & Waters, 1990; Soloway, 1984). Gagne (1985) also

proposed cognitive strategies and believed that environment can influence the

comprehension process. He stated that to stabilise the cognitive strategies, people must

have certain techniques of thinking, ways of analysing problems and having

approaches in solving a problem. People use cognitive strategies in thinking about the

20

things they learnt and in solving problems. These are the ways in managing the

processes of learning, remembering and thinking. Bloom (1956) discovered the ideas

of learning domain called Bloom’s Taxonomy and adjusted by Anderson et al. (2001).

The taxonomy focuses on three domains with one of them devoted on cognitive

domain that emphasises things that learners to know during learning. It involves

knowledge and the ability to develop intellectual skills.

Bandura (1994) argued that people can gain new knowledge through viewing or

observing. He stated the steps involved in learning process, which are attention,

retention, reproduction and motivation. The first learning step proposed is to pay

attention to new things. Learners have to pay full attention to grasp a new knowledge.

Then, they must have the ability to store the information (retention) they obtained.

This internal mental state is important as an essential part in the learning process. The

next step is the reproduction where learners are able to use the knowledge they grasp

and to be successful in their learning, they have to be motivated to apply the new

knowledge modelled.

The next is the discussion on the three predominant approaches of program

comprehensions, which are top-down, bottom-up and integrated meta-model. These

models are the foundation in creating the new model of program comprehension

(Meng et al., 2006; O’brien, 2003).

21

2.3.3(a) Top-down

Typically, top-down approach is adopted when the developers become familiar

with the source code (Soloway & Ehrlich, 1984). This approach is goal-oriented and

hypothesis-driven contains a hierarchy of goals and plans. It is the dynamic process

strategy of reconstructing knowledge to formulate hypotheses regarding the domain of

the program and mapping this knowledge to the source code and use the strategic plan

to implementation plan (Brooks, 1983; Storey, 2005; Von Mayrhauser & Vans, 1995).

However, the limitation of this approach is that it does not consider novices’

capabilities as they are inexperienced in the domain and lack of knowledge to

formulate hypotheses in the first place

2.3.3(b) Bottom-up

Bottom-up approach is introduced by Letovsky (1987) focusing on novice

developers since it does not require higher level knowledge structures such as design

or application-domain knowledge. The developer firstly read the code statements and

then mentally chunk or group these lines of code into higher-level abstractions to form

the abstract concepts supported by beacons (Letovsky, 1987; Von Mayrhauser & Vans,

1995). This approach is suitable for developers who are unfamiliar with the source

code.

2.3.3(c) Integrated Meta-model

Von Mayrhauser & Vans (1995) introduced the integrated meta-model by

integrating the top-down and bottom-up approaches. The proposed approach is based

on the observations. They found that neither top-down nor bottom-up is the best

approach in the assimilation process (von Mayrhauser & Vans, 1993). Supported by

22

Storey (2005), the paper mentioned that developers can choose to invoke top-down or

bottom-up model as a starting point for formulating hypotheses when the code is

familiar.

2.3.4 Program Comprehension Models

This section discusses the existing models supporting program comprehension.

The discussion is based on selected papers focusing on the strategies, approaches and

the process taken to assimilate the existing knowledge to yield new

knowledge. Figure 2.2 shows the evolution of program comprehension discussed by

Schulte et al. (2010). In previous studies, most of the researchers used the cognitive

model as a strategy to propose a program comprehension model. They believe that this

is the way of managing the processes of learning, remembering and thinking.

The first model proposed by Shneiderman & Mayer (1979) uses the bottom-up

approach focusing on novice users. The model involves the short-term memory and

long-term memory as well as the internal semantic knowledge to develop mental

model. It involves a process of chunking in which users are mentally making a chunk

out of a program guided by the beacons. Pennington (1987) proposed a model with

bottom-up approach guided by beacons, plans and text structure to perform chunking

process. The work integrated the domain and program model to depict situation model.

Burkhardt et al. (2002) in their study use bottom-up approach to comprehend Object-

Oriented Program compared to Shneiderman & Mayer (1979); and Pennington (1987)

that focuses on structured program.

23

Instead of cognitive models, the combination of other models were applied in

the studies such as text comprehension model (Pennington, 1987), constructivist

model (Exton, 2002; Václav et al., 2002), vision model (Ali et al., 2011) and problem

solving model (Douce, 2008). Learning Model proposed by Rajlich & Wilde (2002)

interprets programmes based on constructivist theory where the developer divides

program comprehension process into assimilation and adaptation. From his

perspective, assimilation is the process of adding new facts to mental model, otherwise

adaptation is the process of organising the existing knowledge to absorb new

knowledge. Xu (2005) extends the Learning Model, namely Multi-Dimensional Model

integrating the Bloom’s Taxonomy, cognitive model and learning model. This study

looks at the activities of assimilation and accommodation in the learning process.

Although this study focuses on experts to make a hypothesis, it is also suitable for

novices as it combines top-down and the bottom-up approaches.

Meng et al. (2006) introduced the Comprehension Process Model that utilises

ontology and the description logic to constitute the content of mental model. The

ontology based on story-drive is used to model the sources of information that

describes the behaviour of a program. Store Model proposed by Douce (2008) is the

heuristic model combining the elements in the working memory model and other

knowledge such as strategic, semantic and plan. Frey et al. (2011) worked on

categorisation and separation of concern to build a mental model. Their study took an

element in programmers' knowledge to understand the program of concern. The

process makes use of prediction or hypothesis using prior knowledge and verification

on the prediction will update the knowledge about the concern. The classification of

the models was made as shown in Table 2.3.

24

Figure 2.2 Evolution of Program Comprehension Model (Schulte et al., 2010)

(Litman et al. 1986)
Systematic vs. As-needed

strategies

(Letovsky, 1986)
Opportunistic (top-down &

bottom-up)

(Shneiderman & Mayer, 1979)
Chunking (bottom-up)

(Pennington, 1987)
Program vs Situation Model (bottom-up)

(Brooks, 1983)
Top-down Comprehension

(Soloway & Ehrlich, 1984)
Schema Theory (top-down)

(Mayrhauser & Vans, 1995)
Integration Metamodel

Corritore et al. 1999)
Integrated, Procedural and OO

experts

(Douce, 2008)
Working Memory-Model

(Rajlich, 2002)
Constructivist Theory of Learning

(Exton, 2002)
Constructivist Theory of Learning

(Fix et al., 1993)
Mental Representation

(Burkhardt et al., 2002)
Bottom-up for OO programs

(O’Brien et al., 2004)
Top-down and Bottom-up

