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MODEL RAMALAN PENYEBARAN GAS TOKSIK BERDASARKAN RANGKAIAN 

PENGECAMAN CORAK NEURAL 

ABSTRAK 
Industri kejuruteraan kimia telah berkembang pesat sejak beberapa tahun kebelakangan 

ini yang menyebabkan banyak kejadian bencana melibatkan industri kimia. Pangkalan data 

ujikaji Prairie Grass digunakan sebagai data untuk membangunkan model ramalan penyebaran 

gas toksik berdasarkan jaringan pembelajaran mendalam. Justeru, dalam kajian ini, 

pembangunan jaringan pembelajaran mendalam dijalankan menggunakan MATLAB. Terdapat 

14 parameter yang terdiri daripada 6583 sampel yang berkaitan dengan penyebaran gas toksik 

daripada eksperimen Prairie Grass digunakan. Untuk mencapai objektif, dua fasa seni bina 

struktur NPR dijalankan. Pertama, NPR dibangunkan menggunakan tiga algoritma berbeza 

iaitu Levenberg-Marquart (LM), Regularization Bayesian (BR) dan Scaled Conjugated 

Gradient (SCG) untuk mencadangkan algoritma rangkaian terbaik menggunakan latihan 70% 

dan 10-28 neuron tersembunyi. Daripada analisis, BR menunjukkan algoritma rangkaian 

terbaik berbanding yang lain dengan memberikan nilai R maksimum 0.95. Bedasarkan 

pemilihan terbaik algoritma rangkaian neural, algoritma BR dilatih lagi menggunakan latihan 

50-70% dengan 10-28 neuron tersembunyi. Hasilnya, algoritma BR menggunakan latihan 70% 

dan 28 neuron tersembunyi memberikan prestasi terbaik dengan nilai R 0.95214. Oleh itu, 

model NPR ialah model yang boleh dipercayai untuk model penyebaran gas toksik.  
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TOXIC GAS DISPERSION MODEL BASED ON NEURAL PATTERN 

RECOGNITION NETWORKS 

 

ABSTRACT 
   

The chemical engineering industry has grown steadily for the past few years that causes 

many catastrophic incidents involving chemical industries. Prairie Grass experiment database 

is used as a data to develop toxic gas dispersion prediction model based on deep learning 

networks. Thus, in this study, development of deep neural network is carried out using 

MATLAB. There are 14 parameters consist of 6583 samples related to toxic gas dispersion 

from Prairie Grass experiment is used. To achieve the objectives, two phases of structure 

architecture of NPR is carried out. First, NPR development is developed using three different 

algorithms which are Levenberg-Marquart (LM), Bayesian Regularization (BR) and Scaled 

Conjugated Gradient (SCG) to propose the best network algorithm using 70% training and 10-

28 hidden neurons. From the analysis, BR shows the best network algorithm compared to 

others by giving maximum R-value of 0.95. Following the best selection of neural network 

algorithm, BR algorithm is further trained using 50-70% training with 10-28 hidden neurons. 

As a result, BR algorithm using 70% training and 28 hidden neurons give the best performance 

with R-value of 0.95214. Thus, the NPR model is a reliable model for toxic gas dispersion 

model.  
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

The chemical engineering industry has been growing steadily which somehow led to 

concern about the catastrophic accidents regarding chemical processes. Toxic gas leakage 

accidents may occur in chemical plants due to equipment failure, poor production management, 

or personnel operation faults (Wang et al., 2020).  The accidental release of toxic gas has 

threatened industrial and social security (Ni et al., 2020). This has become a concern as it can 

cause environmental pollution, fire explosion, and a series of chain reactions. Hence, rapid and 

proper aid needs to be done after any accident related to toxic gas dispersion occurs.  

 The toxic gas dispersion model that is mainly used by the industry is the Gaussian 

plume method, computational fluid dynamics (CFD) model and integrated model. However, 

these methods are not suitable to be used during the emergency hour as it takes a long time to 

simulate.  By using these methods, the accuracy of the models also becomes a major concern 

for emergency measures.  

 As a solution, the deep learning method has been applied widely in the chemical 

engineering industry to ensure rapid simulation of toxic gas dispersion using artificial 

networks. A deep neural network used multiple layers of neurons to solve the complex 

problems for gas dispersion. However, the availability of the databases becomes a major 

concern of the models to ensure the accuracy of the model. Thus, the database from the CFD 

or other integral methods is needed to validate the model. A deep neural network also goes 

through optimization and activation functions to increase the capability of the model for a high-

performance simulation.  

 In this project, a deep neural network is developed using the experiment database to 

ensure that the toxic gas dispersion can be simulated for better accuracy and performance. This 

model also applied multiple type of learning algorithm for neural pattern recognition network 

to increase the efficiency of the model.  
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1.2 Problem Statement 

 A catastrophic event which regards to the toxic gas dispersion in the chemical industry 

has become a major concern (Na, Jeon, and Lee, 2018). Thus, it is very crucial to determine 

the toxic dispersion model that could meet the accuracy and efficiency required to ensure that 

the model is effective during emergency times. The use of models such as the Gaussian plume 

and CFD model does not meet this requirement. Thus, machine learning and deep learning 

network is introduced for the toxic gas dispersion model. However, the availability of data also 

becomes a major challenge as the accuracy of the model depends on the database size. This is 

due to the hazardous nature of the chemical and the limited cost to develop more leak scenarios. 

Hence, the Prairie Grass experiment is used to evaluate and validate the machine learning and 

deep learning network that has been programmed.  
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1.3  Research Objectives 

 

The objectives of this research are: 

i. To develop toxic gas dispersion model based on neural pattern recognition network. 

ii. To evaluate the dispersion model performance based on benchmarked Prairie Grass 

experiment database. 

iii. To improve the performance of the toxic gas dispersion model by determine the number 

of hidden neurons in NPR architecture.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Literature Review 

Due to the rapid growth of the chemical engineering industry, concern on catastrophic events 

related to the chemical engineering industry increasing. One of the risks related to the chemical 

engineering industry is toxic gas leakage. Toxic gas dispersion will generate toxic gas clouds 

that remain in the accident area that possibly affect the local population if the leakage is above 

a certain level. Thus, the method used to predict toxic gas dispersion is very essential as it is a 

very serious health hazard. However, toxic gas dispersion prediction is highly difficult to 

implement toxic gas dispersion prediction due to cost, risk, and techniques.  Each model used 

also varies in accuracy and prediction time.  

 To ensure that toxic dispersion can be prevented and controlled rapidly, the toxic gas 

dispersion model that is instant and accurate is used for these emergency measures. Currently, 

there are a few types of toxic dispersion prediction and calculation methods that have been 

introduced: Gaussian plume methods, empirical methods, computational fluid dynamics (CFD) 

models, and integrated models.  

 The Gaussian plume method is a simple method that is used to simulate gas dispersion. 

However, by using this method, accuracy is very difficult to be achieved.  For empirical 

models, one of the most used models is the Pasquill-Gifford and Britter-McQuaid model, which 

can provide rapid predictions of the downwind plume distances using pre-derived equation and 

computation graphs (Jiao et al., 2021).  

 For computational fluid dynamics (CFD) methods, it can obtain a more accurate 

concentration field, flow field and temperature field as it is based on the Navier-Stoke equation. 

CFD can conduct a full three-dimensional analysis in an accident with complicated scenarios 

and complicated geometry (Wang et al., 2020). However, this method is very time-consuming, 

thus it is not suitable for an immediate response as the simulation should take less than golden 

time to simulate. As the result, surrogate or meta-models has been conducted to ensure that the 

complex simulation can be simplified and take a shorter time to simulate. The use of integral 

methods that incorporate multiple dispersion models such as HEGADIS, NCAR and DRIFT 

can provide accurate prediction with lower computation sources but with only a limited built-

in database.  

 The deep learning method has been applied widely in the field of the chemical 

engineering industry as health and safety have become major concerns in this industry for the 
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prediction of toxic gas dispersion. However, this method is undergoing a major challenge 

which is the availability of the data. This happens as the accuracy of the model depends mostly 

on the available database. Thus, a database from CFD or integral model is used for deep neural 

networks. For example, PHAST-UDM is used as a database for toxic gas dispersion, and it 

works by validating the neural network model to ensure accuracy. Using these methods, gives 

a suitable framework to the related scenario-specific parameter and chemical-specific 

parameter for final development as it can solve the complex problem.  

 A deep neural network (DNN) is derived from the regular artificial network which has 

multiple layers that can increase the capability to solve complex problems. The structure of a 

deep neural network is shown in Figure 2.1. The input of the deep neural network are property 

descriptors and outputs are dispersion distances (maximum dispersion distance, minimum 

dispersion distance, and maximum dispersion width) (Jiao et al., 2021). This can be 

programmed using PyTorch deep learning library. In a deep neural network, the activation 

function is very important as it can affect the efficiency of the learning method. The use of the 

Sigmoid function and Tanh function are common in safety-related neural network development 

as they give a very promising result as an activation function  (Jiao et al., 2021).  Rectified 

linear unit (ReLU) function is also used as the activation function as it is more computationally 

efficient as it can introduce non-linearity for backpropagation. For a deep neural network, an 

optimizer is also important for the optimization of the loss function. Thus, an adaptive moment 

estimation (Adam) optimizer is used by Jiao et al., (2021) as it has better efficiency for 

optimization of a loss function. Adam optimizer is performed by combining Momentum 

optimization and RMSProp algorithm that can develop a high-performance model using a deep 

learning network for data regression (Na, Jeon, and Lee, 2018). 

 Convolutional neural network (CNN) is also one of the neural networks used for the 

gas dispersion that consist of a multilayer composed of neutrons with learnable weights and 

biased constant (Ni et al., 2020). The structure of CNN is shown in Figure 2.2. This method 

used three-dimensional (3D) neurons which is different from other neural networks. CNN 

consists of two layers which is feature extraction layer, to extract
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Figure 2. 1 Main Architecture of Deep Neural Network (Jiao et al., 2021) 
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local characteristics of each neuron that later determined the position relationship with other 

characteristics, and the next layer is the feature mapping layer that contains multiple mapping 

planes. CNN also can use Adam optimizer to adjust and optimize the learning rate by 

conducting cross-validation. To ensure that the model gives the best performance when the 

learning rate is 0.01. According to Ni et al., (2020), CNN gives the best performance for the 

toxic gas dispersion model compared to another model. This model can be programmed using 

PyCharm using Python.   

 

Figure 2. 2 Detail structure of CNN (Ni et al., 2020) 

 The autoencoder is also one of the artificial learning systems that can learn and 

compress input information. This system consists of an encoder (recognition network), a 

decoder (generative network) and a hidden layer (internal representation) (Na et al., 2018). By 

using an autoencoder, it can reduce the dimensionality of the data sets even with strong 

nonlinearity. This method can also be combined with CNN that can ensure the improvement 

of the model performance as CNN can effectively extract the data even with very complex 

data.   
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CHAPTER 3: METHODOLOGY 

3.1 Methodology  

 This chapter shows an overview of the project implementation. This includes the 

development of a toxic gas dispersion model using benchmarked experimental data, the 

development of a neural pattern recognition model, and evaluation of the performance as in 

Figure 3.1.  

 

Figure 3. 1 Methodology of Simulation 

3.2 Phase 1: The Prairie Grass Experiment for Toxic Gas Dispersion 

The database of toxic gas dispersion is retrieved from the Prairies Grass experiment 

which is a field experiment that referred to a typical hazardous gas emission case with flat 

terrain and low stack emission (Wang et al., 2018). The experiment is carried out at O’Neil, 

NE, USA in 1956 using sulphur dioxide that is released from various point source at height of 

0.46m without buoyancy for 10 min. The released material was collected at 1.5 m height at 

five different distance which are 50, 100, 200, 400 and 800m in semi-circular arcs. There are 

68 different releases containing tracer data and meteorological data. Table 3.1 shows different 

parameters that are used to build deep learning models.  

Table 3.1 Parameter in Prairie Grass experiment 

Parameter Symbol Unit Parameters Symbol Unit 

Downwind distance 𝐷𝑥 𝑚 Average wind speed 𝑈 ms-1 

Azimuth angle α ◦ Wind direction θ ◦ 

Release rate 𝑄 gs-1 Friction velocity 𝑢∗ ms-1 

Source release height 𝐻 m Temperature 𝑇 ◦C 

Roughness height  𝑧0 m Monin-Obukhov length  𝐿 m 

THE PRAIRIE GRASS EXPERIMENT FOR TOXIC GAS 
DISPERSION

DEVELOPMENT OF DEEP 
LEARNING MODEL 

EVALUATE THE PERFORMANCE
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Heat flux Fh W/m2 Mixing height 𝑧𝑚 m 

Friction velocity in 

vertical direction 

w* ms-1 Standard deviation of 

wind direction 

Ϭd ◦ 

     

3.2 Phase 2: Development of Neural Pattern Recognition Network for Gas 

Dispersion Model  

The methodology of this study to develop deep learning model for toxic dispersion is 

presented in Figure 3.2 that can be carried out in several steps.  

 

Figure 3. 2 Development of Deep Learning Model Methodology 

During the deep learning model, the simulation of toxic gas dispersion is simulated on 

MATLAB using Deep Learning Toolbox. Deep Learning Toolbox stores the information that 

defines the neural network. The input of deep neural networks are property descriptors, and the 

output of deep neural networks is dispersion distances. During this stage, the number of hidden 

layers, neurons of each layer, transfer function in each layer, training function, weight learning 

function and performance layer need to be specified.   

After the neural network has been created, the network needs to be configured and 

trained. Training data is converted to rows as required by MATLAB that need all data to be 

presented as row vectors. The configuration is done to arrange the network to match the sample 

data problem. During the configuration steps, steps are consisted of examining input and target 

Data collection 

Load training data

Data configuration

Data training

Validate algorithm

Integrate and deploy 
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data, setting the network input and output size to match the data, and choosing settings for 

processing input and output.  

After the configuration steps, the training of the network is required. This can be done 

by performing incremental training or batch training. However, in this case, batch training is 

used as it is much more efficient than incremental training. During batch training, the weight 

and biases of the network are updated after all inputs are presented. The data for training can 

be randomized using the function of “randperm”. During the training, the weight is adjusted to 

ensure that the actual outputs are close to the targeted outputs of the network. Activation 

function and optimization are introduced to the simulation to increase the efficiency and 

accuracy of the model. 

3.3 Phase 3: Performance Evaluation of Toxic Gas Dispersion Model  

The simulation that has been simulated will be evaluated to ensure the simulation have 

a good performance. The performance is evaluated by checking the simulation data with the 

actual database from ALOHA. This is done using the coefficient of determination (R2), Root 

Mean Squared (RMSE), and Mean Absolute Error (MSE) for the training and validation of the 

model. R2 values give the identification of the statistical relationship between measurement 

and predicted dispersion. The value of R2 ranges from 0 to 1 where 0 means no correlation 

while 1 shows the perfect correlation. RMSE and MAE have the same units as dispersion that 

give the indication that a lower value gives better accuracy for the ANN algorithm. The value 

of R2, RMSE, and MAE can be estimated using followed equations: 

𝑀𝐴𝐸 =
1

𝑛
∑(𝑢𝑖 − 𝑢�̂�)

𝑛

𝑖=1

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑢𝑖 − 𝑢�̂�)2
𝑛

𝑖=1

 

𝑅2 = 1 −
∑ (𝑢𝑖 − 𝑢�̂�)

2𝑛
𝑖=1

∑ (𝑢𝑖 − �̂�)2𝑛
𝑖=1

 

Where 𝑢𝑖 is defined as measurement value of dispersion, 𝑢�̂� is the predicted dispersion 

activity by ANN algorithm, �̂� is defined mean vale of 𝑢𝑖, and 𝑛 is the number of samples.  
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CHAPTER 4: RESULTS AND DISCUSSION  
 This chapter presents the result obtained based on proposed methodology in Chapter 3 

to meet the research objectives. The results are simulated in the MATLAB platform, tabulated 

and visualised in forms of figures and tables for further analysis.  

4.1 Development of Neural Pattern Recognition (NPR) Network for Toxic Gas 

Dispersion Model  

 The structure of ANN training, validation and testing for neural pattern recognition 

model is listed in Table 4.1. Three different training algorithms which are Levenberg-

Marquardt (LM), Bayesian Regularization (BR) and Scale Conjugate Gradient (SCG) used for 

analysis. The training algorithm uses the maximum number of epochs which is 1000 if the early 

stopping is not triggered. The early stopping is usually triggered if the validation shows no 

improvement or the MSE value of the training set is lower than the goal (Wang. R. et al., 2018). 

The number of hidden neurons is chosen between 10 to 28 with concentration as the output 

nodes. Using an appropriate number of hidden neurons in between of the input layer and output 

layer, the network can perform well with accuracy and convergence speed. The determination 

of the number of the hidden neuron was done to choose the best training algorithm that can be 

used for further study. MATLAB deep learning toolbox is used to compute the inputs and 

target.  

Table 4. 1 Structure of NPR 

Input 14 parameters 

Output/ Target Concentration 

No of hidden neurons 10-28 

Training algorithm Levenberg-Marquardt (LM)  

Bayesian Regularization (BR) 

Scale Conjugate Gradient (SCG) 

Training (%) 70 

Validation (%) 15 

Testing (%) 15 

 

By applying the proposed structure according to Table 4.1, based on Figure 4.1, the 

SCG algorithm show the lowest range of R value (0.42-0.60), followed by LM (0.72-0.89) and 

BR give the highest range of R (0.85-0.95). For the MSE value, as in Figure 4.2, the BR 
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algorithm shows the lowest range of MSE (544-1624), followed by LM (991-2865) and SCG 

(3523-4672). Based on performance of each algorithm, BR algorithm give the best 

performance using 28 hidden neurons, LM algorithm with 24 hidden neurons while SCG 

algorithm give the best performance using 28 hidden neurons.  

Thus, BR algorithm gives the best overall performance as the R-value approaches to 1 

and the lowest MSE value compared to the other two algorithms. This expressed the high 

accuracy of the algorithm that gives predicted value that is close to the experimental.  

 

Figure 4. 1 R values for training dataset

 

Figure 4. 2 MSE value for training dataset 
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From Figure 4.3 and Figure 4.4, LM shows better performance than SCG for the 

validation dataset. For BR algorithm, it does not require any validation dataset as it is 

unnecessary. BR algorithm avoids overfitting because the regularization pushes an unnecessary 

weight towards zero, effectively eliminating them (Burden and Winkler, 2008). Other than that, 

they are difficult to overtrain as it provides an objective criterion for stopping the training and 

removes the need for a separate validation set.  

 

Figure 4. 3 R value for validation dataset 

 

Figure 4. 4 MSE value for validation dataset 
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After the model undergo training and validation, it will be analysed for testing dataset. 

Based on Figure 4.5 and Figure 4.6, BR algorithm give the best performance followed by LM 

algorithm and lastly SCG algorithm. This can be seen from the higher R value and low MSE 

value compared to the other two algorithm. In term of number of hidden neurons, BR algorithm 

and SCG algorithm give the best performance when using 28 hidden neurons, while LM 

algorithm gives the best performance using 24 hidden neurons. The testing is done to compare 

the output against the target from the neural network in an independent set. If the testing is 

done correctly, the neural network can proceed to the deployment phase. 

 

Figure 4. 5 R value for testing dataset 

 

Figure 4. 6 MSE value for testing dataset 
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4.2 Performance for NPR-based Toxic Gas Dispersion Model with BR Training 

Algorithm  

As BR algorithm is chosen as the best algorithm for the model, Table 4.2 shows the structure 

NPR for the optimization for further analysed. 

Table 4. 2 Structure of NPR used for optimization 

Input 14 parameters 

Output concentration 

Training algorithm  Bayesian Regularization (BR) 

No hidden neuron 10-28 

Training (%) 70 60 50 

Validation (%) 15 20 25 

Testing (%) 15 20 25 

 

Based on Figure 4.7 and Figure 4.8, R and MSE value is obtained from 50-70% 

training with hidden neuron of 10-28 using BR algorithm. By comparing the R values with 

different hidden neuron, the best performance shows when training with 70% with giving the 

highest R-value of 0.95124, followed by 50% training (0.94993) and lastly 60% training with 

an R-value of 0.94565. From the analysis, the highest R-value is obtained when 70% training 

is used with 28 hidden neurons. The performance of 70% training with 28 hidden neurons also 

shows the lowest MSE value which supports the performance of the training. Thus, 70% 

training with 28 hidden neurons is chosen as the best structure for PRN analysis. 
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Figure 4. 7 R values for training dataset using BR algorithm 

 

Figure 4. 8 MSE value for training dataset using BR algorithm 
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4.3 Sustainability  

Based on the 2030 Agenda for Sustainable Development that is adopted by all United 

Nations Member States in 2015, it provides a shared blueprint for peace and prosperity for 

people and the planet, now into the future. 17 Sustainable Development Goals (SDG) is 

developed as an urgent call for all countries whether developed or developing in a global 

partnership. This goals results from a process that is more inclusive than ever, with 

governments involving business, civil society and citizens. The goals recognized to ensure 

ending poverty and other deprivations must go with strategies that improve health and 

education, reduce inequality and spur economic growth while ensuring that climate change can 

be tackled and working to preserve our ocean and forests. The 17 Goals of SDG involve no 

poverty, zero hunger, good health and well-being, quality education, gender equality, clean 

water and sanitation, affordable and clean energy, decent work and economic growth, industry, 

innovation and infrastructure, reduced inequalities, sustainable cities and communities, 

responsible consumption and production, climate action, life below water, life on land, peace, 

justice and strong institutions and lastly partnership for the goals.  

 As this work involved toxic gas dispersion, SDG 3 which is good health and well-being 

is relatively close. Exposure to various chemicals occurs every day which is very concerning. 

According to World Health Organization (WHO) (2021), death due to exposure to hazardous 

chemicals worldwide increase by 29% in 2019 compared to 2016. This is about 2 million 

fatalities in 2019 compared to 1.56 million in 2016. Toxic gas dispersion prediction can be a 

fast alternative to ensure a safe environment if there are any concerns regarding toxic gas 

dispersion which are hazardous as it can act as an early warning. Thus, the global target to 

reduce the number of death and illnesses from hazardous chemicals by 2030 can be achieved.  

Other than that, SDG 11 which is sustainable cities and communities is relatively close 

to this research. This goal ensured that cities and human settlements were inclusive, safe, 

resilient and sustainable. According to the Federation of Malaysian Manufacturers (FMM), 

3000 manufacturing and industrial companies of varying sizes have been developed in 

Malaysia. This rapid development increased the potential of pollution that have the potential 

of catastrophic events. Thus, the implementation of ANN could aid in ensuring safe and 

sustainable cities by providing early warning. 
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CHAPTER 5: CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

 In conclusion, this study on toxic gas dispersion model that developed using neural 

pattern recognition network architecture using MATLAB toolbox. This work used 14 

parameter of toxic gas dispersion that obtained from Prairies Grass experiment data with total 

of 6583 dataset that is analysed to achieve the objectives.  

 The study focused on using NPR model development that involved three different 

scenarios based on three different algorithm which are LM, BR and SCG algorithm. Random 

division of 70% training, 15% validation and 15% testing is carried out using 10-28 hidden 

neurons.  Based on the performance of each algorithm, BR algorithm is chosen as the best 

algorithm as it shows better R and MSE value.  

 For further optimization, BR algorithm is trained with various number of hidden 

neurons between 10-28 with 50-70% training. Based on the performance, 70% training with 

28 hidden neurons shows the best network structure of NPR model using BR algorithm with 

R-value of 0.95124. 

  This summarised that all objectives on development of toxic gas dispersion model using 

deep learning network were achieved through the study.  

5.2 Recommendation 

The proposed toxic gas dispersion modelling that developed using MATLAB is 

considered successful as it gives high accuracy in fitting the hazardous gas dispersion database 

in field cases. However, it can be further improved to ensure that it can also function well in 

complex terrain environment as terrain of Prairie Grass experiment is considered simple 

compared to urban area. This model only works for single gas point source emission prediction 

in certain scenario. Thus, future work using complex terrain environment is considered to 

enhance the accuracy of the model. Other than that, to ensure the model can operates well with 

different gas dispersion, it is required to prepared various sample of different kinds of gas or 

more scenarios related.  
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APPENDIX 

Appendix A: Data Tabulation 

Neural Pattern (NPR) Model 

TRAINING 

ALGORITHM 

NUMBER 

OF 

HIDDEN 

NEURON 

TRAINING (70%) VALIDATION (15%) TESTING (15%) 

R VALUE MSE VALUES R VALUE MSE VALUES R VALUE MSE VALUES 

LM 28 0.734404 2511.76194 0.7308 2440.948 0.714598 2709.36422 

27 0.729507 2865.36983 0.706481 2269.60945 0.730241 1960.13121 

26 0.871032 1311.3159 0.856852 1768.50552 0.799114 1900.71409 

25 0.859651 1380.65691 0.830061 2074.06452 0.810132 1943.25454 

24 0.895043 1041.03094 0.852345 1745.46519 0.879338 1407.65525 

23 0.893481 991.36373 0.896899 1636.74352 0.864621 1546.39935 

22 0.886122 1203.78635 0.856814 1316.43859 0.835121 1796.6143 

21 0.889599 1055.07673 0.892511 1611.09919 0.865377 1364.77149 

20 0.842255 1489.2675 0.80144 2004.56261 0.802961 2648.82246 

19 0.858205 1527.24817 0.835645 1758.99686 0.815378 1422.43876 

18 0.878839 1166.9205 0.840743 1726.57002 0.827148 2257.63523 

17 0.827318 1763.10862 0.801184 1875.1168 0.79405 2091.27814 

16 0.766624 2229.42132 0.765798 2227.38024 0.765088 2612.29731 

15 0.778066 2306.422331 0.759368 2253.98232 0.748875 1995.90902 

14 0.83299 1734.72548 0.79912 2130.57846 0.786079 1949.18873 

13 0.7721276 2739.21494 0.685828 2720.28181 0.690603 2728.22059 

12 0.803749 1894.0467 0.811256 1788.33941 0.769484 2274.33213 

11 0.789523 2130.41243 0.783384 2352.56008 0.768947 1838.26702 

10 0.815847 1863.10287 0.779837 1884.65814 0.73769 2813.10415 

BR 28 0.95124 544.54194 0 0 0.99236 681.32271 

27 0.948688 560.68508 0 0 0.925522 757.14227 



21 

 

26 0.917549 872.88816 0 0 0.893651 1159.69885 

25 0.925204 796.33269 0 0 0.901293 1055.90824 

24 0.940173 680.75698 0 0 0.887757 811.00527 

23 0.929732 756.91764 0 0 0.884943 1154.22485 

22 0.92692 782.68712 0 0 0.910278 941.40149 

21 0.916237 911.46277 0 0 0.870078 1158.74295 

20 0.909978 972.00307 0 0 0.878802 1112.15753 

19 0.918941 903.94527 0 0 0.853783 1173.28736 

18 0.911369 915.14466 0 0 0.890912 1303.51518 

17 0.885051 1192.84213 0 0 0.863004 1470.37955 

16 0.885524 1168.44123 0 0 0.879397 1417.15989 

15 0.872812 1311.08292 0 0 0.869364 1401.18755 

14 0.860046 1376.06429 0 0 0.85037 1985.78901 

13 0.900248 1032.06659 0 0 0.89733 1183.10315 

12 0.898504 1070.08699 0 0 0.85694 1451.76712 

11 0.895213 1101.45255 0 0 0.857239 1464.51257 

10 0.852611 1624.72939 0 0 0.839322 1120.31755 

SC 28 0.602951 3523.19103 0.58979 3979.41649 0.580881 3335.43479 

27 0.5959764 3575.86231 0.16752529 3637.8497 0.570737 3687.64549 

26 0.529445 3765.63832 0.511551 4504.629 0.531721 4626.01622 

25 0.467196 4588.15917 0.425589 4089.17446 0.432802 3743.77695 

24 0.55377 3659.24981 0.51674 4794.53043 0.575501 3860.33357 

23 0.540855 3987.54681 0.563621 4294.77015 0.553232 3048.28503 

22 0.45263 4485.01601 0.43441 3344.32039 0.476434 5096.63463 

21 0.478324 4135.89244 0.458145 3993.00058 0.460222 5439.03654 

20 0.486482 4242.204 0.495609 5056.844 0.516151 3152.55226 

19 0.452727 4495.68524 0.446538 4162.85913 0.446295 4315.1379 

18 0.494246 4202.07188 0.462273 3815.08831 0.467684 4813.06597 

17 0.473249 4301.88777 0.487129 4588.49766 0.425152 4162.79714 

16 0.473211 4433.89292 0.483256 4276.69497 0.470243 3680.89734 
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15 0.426349 4672.62 0.414625 3802.36417 0.445126 4617.1382 

14 0.553056 3688.01263 0.57062 4714.85972 0.553213 3708.4804 

13 0.535538 3948.92593 0.556794 3749.37219 0.47763 4399.0828 

12 0.518629 3725.94747 0.531909 4831.64927 0.491449 4879.02921 

11 0.503379 4115.4331 0.551518 4115.87465 0.531434 3828.75076 

10 0.535582 4156.05142 0.515263 3303.50115 0.569198 3548.85873 

 

NPR Model with BR Training Algorithm 

TRAINING 
ALGORITHM 

NUMBER 
OF HIDDEN 

NEURON 

TRAINING (70%) VALIDATION (15%) TESTING (15%) 

R VALUE MSE VALUES R VALUE MSE VALUES R VALUE MSE VALUES 

BR 

28 0.95124 544.5419 0 0 0.99236 681.32271 

27 0.948688 560.6851 0 0 0.925522 757.14227 

26 0.917549 872.8882 0 0 0.893651 1159.69885 

25 0.925204 796.3327 0 0 0.901293 1055.90824 

24 0.940173 680.757 0 0 0.887757 811.00527 

23 0.929732 756.9176 0 0 0.884943 1154.22485 

22 0.92692 782.6871 0 0 0.910278 941.40149 

21 0.916237 911.4628 0 0 0.870078 1158.74295 

20 0.909978 972.0031 0 0 0.878802 1112.15753 

19 0.918941 903.9453 0 0 0.853783 1173.28736 

18 0.911369 915.1447 0 0 0.890912 1303.51518 

17 0.885051 1192.842 0 0 0.863004 1470.37955 

16 0.885524 1168.441 0 0 0.879397 1417.15989 

15 0.872812 1311.083 0 0 0.869364 1401.18755 

14 0.860046 1376.064 0 0 0.85037 1985.78901 

13 0.900248 1032.067 0 0 0.89733 1183.10315 

12 0.898504 1070.087 0 0 0.85694 1451.76712 

11 0.895213 1101.453 0 0 0.857239 1464.51257 
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10 0.852611 1624.729 0 0 0.839322 1120.31755 

 

TRAINING 
ALGORITHM 

NUMBER 
OF HIDDEN 

NEURON TRAINING (60%) VALIDATION (20%) TESTING (20%) 

R VALUE MSE VALUES R VALUE MSE VALUES R VALUE MSE VALUES 

BR 

28 0.945648 595.3857 0 0 0.920256 797.27412 

27 0.938974 649.8984 0 0 0.92432 847.41831 

26 0.916631 859.7564 0 0 0.887396 1312.02921 

25 0.924349 817.3155 0 0 0.883692 1169.91703 

24 0.938079 612.4422 0 0 0.923362 1087.08732 

23 0.918623 839.62 0 0 0.907067 1098.57558 

22 0.917322 841.3038 0 0 0.910876 1105.52524 

21 0.917533 829.8857 0 0 0.893198 1360.86259 

20 0.917882 873.0229 0 0 0.901934 1034.24869 

19 0.896144 1096.629 0 0 0.848284 1519.3661 

18 0.894709 1114.683 0 0 0.866588 1349.0879 

17 0.940498 653.3598 0 0 0.920255 776.17198 

16 0.886237 1151.499 0 0 0.86617 1554.41226 

15 0.884525 1194.189 0 0 0.868814 1409.35863 

14 0.89084 1236.171 0 0 0.836596 1207.38126 

13 0.900737 1041.825 0 0 0.862296 1441.32939 

12 0.900517 1094.114 0 0 0.832713 1437.1686 

11 0.869457 1396.954 0 0 0.821773 1575.84241 

10 0.852075 1475.895 0 0 0.836374 1856.35651 
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TRAINING 
ALGORITHM 

NUMBER 
OF HIDDEN 

NEURON TRAINING (50%) VALIDATION (25%) TESTING (25%) 

R VALUE MSE VALUES R VALUE MSE VALUES R VALUE MSE VALUES 

BR 

28 0.937957 650.749 0 0 0.890042 1230.60116 

27 0.949933 558.5493 0 0 0.918841 779.56726 

26 0.928187 767.6115 0 0 0.894174 1118.2117 

25 0.931528 722.9591 0 0 0.894737 1150.05314 

24 0.934303 690.0156 0 0 0.908696 1023.41827 

23 0.949453 545.1831 0 0 9.23586 819.23473 

22 0.927393 789.4129 0 0 0.892965 1070.90664 

21 0.921607 862.6807 0 0 0.889849 1068.74085 

20 0.896479 1075.129 0 0 0.890682 1185.78661 

19 0.945296 595.1601 0 0 0.892619 1035.4111 

18 0.91543 875.9593 0 0 0.886899 1266.48846 

17 0.929578 787.5053 0 0 0.875856 1139.8997 

16 0.933705 701.2292 0 0 0.896168 1134.19692 

15 0.890801 1111.604 0 0 0.857403 1602.13543 

14 0.867314 1333.312 0 0 0.838834 1791.74227 

13 0.881731 1284.225 0 0 0.838442 1472.73078 

12 0.865862 1363.745 0 0 0.84899 16300.6275 

11 0.886299 1213.077 0 0 0.853765 1416.89195 

10 0.836657 1552.376 0 0 0.827685 2102.01166 
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