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KAEDAH PERWAKILAN BAHARU UNTUK INTEGER DAN 

APLIKASINYA PADA KRIPTOGRAFI KELUK ELIPTIK 

ABSTRAK 

Sistem kriptografi kunci awam digunakan secara berleluasa di dalam protokol 

keselamatan sepert perjanjian, pengesahan, penyulitan dan lain-lain lagi.  Dua operasi 

penting pada kebanyakan algoritma kunci awam adalah pendaraban and exponensi 

nombor majmuk/besar. Prestasi dan kecekapan yang dipamerkan oleh primitif 

kriptografi ini sangat bergantung kepada kecekapan operasi-operasi yang terlibat. 

Peningkatan pada kecekapan operasi pendaraban dan exponensi dengan menggunakan 

methodologi pengekodan-semula ataupun dengan menggunakan sistem nombor yang 

khusus di mana ia boleh mengurangkan “Hamming weight” adalah sesuatu yang lazim 

dilakukan.  Kaji selidik ini mencadangkan satu perwakilan baru untuk integer-integer 

di dalam Radix-x yang dikenali sebagai “Modified Generalized Non-Adjacent Form”. 

Perwakilan ini adalah versi yang dipertingkatkan daripada “Generalized Non-Adjacent 

Form”. Kaedah yang dicadangkan telah diperbaiki dan menghasilkan dua kaedah baru 

di dalam pengekodan-semula “Right-To-Left” iaitu “AGNAF” dan “MGSDNAF”, 

dan dua kaedah baru di dalam pengekodan-semula “Left-To-Right” iaitu “Left-To-

Right MGNAF” dan “Left-To-Right MGSDNAF”. Kedua-dua kaedah “Left-to-Right” 

mempunyai satu atribut yang baik di mana pengiraan dibuat dari arah kiri ke kanan 

(contohnya dari nilai paling bererti ke nilai yang kurang bererti) berbanding dengan 

“GNAF”. Hala pemprosesan ini adalah sangat penting kerana untuk sebilangan sistem 

kripto, pengiraan hanya boleh dibuat dari arah kiri ke kanan. Kelebihan seterusnya 

adalah pengekodan-semula eksponen tidak perlu dilakukan terlebih dahulu. Maka, 

kaedah “Left-to-Right” menghasilkan prestasi yang lebih baik di dalam aspek 
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penggunaan memori dan masa pelaksanaan. Akhirnya, kedua-dua kaedah ini 

(“MGSDNAF” dan “Left-to-Right MGSDNAF”) telah dipilih untuk digunakan pada 

pendaraban skalar tunggal Kriptografi Keluk Eliptik untuk memperbaiki kecekapan 

pelaksanaan. Versi terakhir di dalam kaedah perwakilan yang dicadangkan boleh 

mengurangkan “Hamming Weight” integer dari 21.6% untuk Radix 3 ke 15.1% untuk 

Radix 9. Untuk pengekodan-semula “GNAF”, angka-angka ini adalah 16.7% dan 8.9% 

masing-masing. Selain itu, perbandingan di antara dua kaedah pendaraban Radix 3 

skalar tunggal Kriptografi Keluk Eliptik (di mana ia berdasarkan kepada “GNAF” dan 

“Left-to-Right MGSDNAF”) menunjukkan bahawa “GNAF” boleh mengurangkan 

bilangan operasi sebanyak 11.5%, di mana ini adalah 14.1% untuk kaedah yang telah 

dicadangkan.  
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NEW REPRESENTATION METHOD FOR INTEGERS AND ITS 

APPLICATION ON ELLIPTIC CURVE CRYPTOGRAPHY 

ABSTRACT 

Public-key cryptosystems are broadly used in security protocols such as key 

agreement, authentication, encryption and others. The two main operations in many 

public-key algorithms are multiplication and exponentiation of large numbers. The 

performance and efficiency of these cryptographic primitives are highly reliant on the 

efficiency of these operations. Improving the efficiency of multiplication and 

exponentiation by applying a recoding method or using a specific number system 

which can reduction the Hamming Weight of numbers is very common. This study 

proposes a new Radix-r representation for integers which is known as Modified 

Generalized Non-Adjacent Form (MGNAF). This representation is the enhanced 

version of Generalized Non-Adjacent Form (GNAF). The proposed method has been 

improved and resulted in two Right-to-Left recoding methods, AGNAF and 

MGSDNAF, and two Left-to-Right recoding methods: Left-to-Right MGNAF and 

Left-to-Right MGSDNAF. The two Left-to-Right methods, unlike the GNAF, has a 

nice property in which the calculation is performed from the left to the right (i.e., from 

the most significant digit to the least significant one). This processing direction is of 

great importance since for some cryptosystems the calculation can only be performed 

in Left-to-Right manner. A subsequent advantage is that the exponent does not need 

to be re-coded in advance. Hence, the Left-to-Right method resulted in better 

performances in both the running time and memory utilization. Finally, two of these 

methods (MGSDNAF and Left-to-Right MGSDNAF) were chosen based on their 

features to improve the efficiency of single scalar multiplication for Elliptic Curve 



xvii  

Cryptography. The final version of the proposed representation method can reduce the 

Hamming Weight of integers from nearly 21.6% for Radix 3 to 15.1% for Radix 9. For 

GNAF recoding, these numbers are 16.7% and 8.9% respectively. Moreover, a 

comparison between two Radix-3 single scalar multiplication methods for Elliptic 

Curve Cryptography (which are based on GNAF and Left-to-Right MGSDNAF) 

shows that the GNAF can reduce the number of operations by 11.5% where it is 14.1% 

for the proposed method.  

 



1  

 CHAPTER ONE: INTRODUCTION 

1.1 General Overview 

Computer science has unceasingly developed very fast over the past few years. 

This advance has inspired human to look for greater data efficiency and convenience. 

As the result of this tendency, cryptography, which is a branch of computer science 

providing security over data, has become a part of people’s daily life. Cryptography 

deals with many aspects of humans’ modern life such as secure communications, 

financial transactions, education, healthcare, etc. This marvellous advance of 

information technology has led to great attention to information security more than 

before (Menezes et al., 1997; Mogollon, 2008). According to (Menezes et al., 1997; 

Mogollon, 2008), the major functions of cryptography in the information security are 

related to achievement of Confidentiality, Data integrity, Authentication, and Non-

repudiation. In order to reach these aims, it was attempted to design some 

cryptographic primitives which are listed as follows and detailed out in Figure 1-1. 

Unkeyed primitives: These primitives are not based on any keys. There are two 

main primitives in this class, namely, Hash functions and random sequence generators. 

Symmetric-key primitives: In this class, two parties share a single key which is 

called secret key. The functions of these primitives are encrypting a message, 

authenticating sender and data integrity. Some of the most famous symmetric ciphers 

are DES (Mogollon, 2008), AES (Stallings, 2016) and RC5 (Tilborg & Jajodia, 2011). 
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Figure 1-1: Categorisation of Cryptographic Primitives (Menezes et al., 1997) 

Asymmetric-key (Public-key) primitives: Asymmetric-key primitive is also 

identified as public-key, uses two mathematically related keys, namely, public key and 

private key. Extracting one key with just knowing the other key is basically 

impracticable. However, public-key primitives assist the users to transfer information 

over insecure channels whereas, in the symmetric key schemes, the key must be only 

transferred through a secure channel. 

All the four cryptographic goals mentioned above (confidentiality, data integrity, 

authentication, non-repudiation) could be achieved by using Public-key cryptosystems 

but the symmetric key schemes do not include the non-repudiation characteristics. It 

happens because in public-key cryptosystems, there is exclusive private key for each 

user that is not shared with other users.    
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Public-key cryptosystems are used for applications which deal with small 

messages. In addition, digital signature and key exchange schemes are examples of the 

mentioned applications. The reason behind it is that Public-key cryptosystems are 

slower than symmetric key cryptosystems (Henri Cohen et al., 2016). The operations 

used in the current defector Public-key cryptosystems are algebraic operations whereas 

the operations in the symmetric key are logical operations which perform more quickly 

on computer (Mollin, 2002). Actually, symmetric and asymmetric cryptosystems 

perform as each other’s complement so that a combination of them can meet all of the 

cryptographic goals (Stallings, 2016). 

During the recent decades, number theory and Public-key cryptosystem have 

become intertwined more and more. Diffie and Hellman introduced the first key 

exchange scheme in 1967 based on modular exponentiation (1976). A few years later, 

in 1978 one the most used Public-key cryptosystem, called RSA, was introduced by 

Rivest, Shamir, and Adleman (1978). The main operation in RSA cryptosystem is also 

based on the modular exponentiation. ElGamal key exchange (Elgamal, 1985) is 

another example of Public-key cryptosystems, which has been developed based on the 

modular exponentiation. Consequently, more efforts in Public-key cryptography have 

been dedicated to find algebraic operations or one-way functions that meet the 

specifications of Public-key cryptography (Menezes et al., 1997). 

Elliptic Curve Cryptography (ECC), proposed by Koblitz and Miller in 1985, is 

also another Public-key cryptosystem which is based on the Elliptic Curve discrete 

logarithm problem (ECDLP) (Hankerson et al., 2013). ECDLP complexity is 

considered exponential whereas the complexity of factorization and discrete logarithm 

problems are considered sub-exponential (Eisentrager et al., 2003). ECC seems 
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attractive because it has many features such as performance and security. Therefore, 

these features should be given attention once designing an encryption system 

(Hankerson et al., 2013). The security offered by ECC is equivalent with the security 

offered by RSA but it has smaller key size and lower processing power. For example, 

in EC cryptosystems a 160-bit key size is equal to RSA with 1024-bit key size 

(Stallings, 2016). Portable devices, such as personal digital assistants (PDA), mobile 

phones, and smart cards, are provided with limited memory. Therefore, amongst other 

Public-key cryptosystems, ECC is more appropriate for such devices (Tsaur & Chou, 

2005).  

Table 1-1: Types of EC Operations 

 

In ECC, curve operations are performed over a finite field. The effectiveness of 

underlying field operations plays an essential role in designing ECC algorithms. ECC 

is usually defined over binary, prime and extension fields (Hankerson et al., 2013) 

while in case of hardware implementations, binary fields have privilege over prime 

fields (Stallings, 2016). In order to compute 𝑘𝑃, where 𝑃 ∈  𝐸(𝐹2𝑚) and 𝑘 ∈  𝐼, many 

EC Operation type Operation name Math representation Denoted by 

Basic 

Point Addition P + Q A 

Doubling 2P D 

Composite 

Double-and-add 2P + Q DA 

Tripling 3P TPL 

Triple-and-add 3P + Q TA 

Quadrupling 4P QPL 

Quadruple-and-add 4P + Q QA 
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operations can be implemented. There are two types of Elliptic Curve (EC) operations 

namely, basic and composite (or extended). Some of them are listed in Table 1-1. 

There are several methods which contribute in speeding up EC scalar 

multiplication. The first method is by inventing recoding methods that decrease the 

number of additions by reducing the Hamming Weight of the re-coded key 𝑤(𝑘). 

Window recoding methods are known as a generalized technique for the recoding 

methods, for instance, NAF and w-NAF (window NAF) (Blake et al., 2005; Koblitz, 

1991; Koyama & Tsuruoka, 1992; Solinas, 2000), MOF and w-MOF (Okeya et al., 

2004) and w-Fractional window methods (Moller, 2002; Schmidt-Samoa et al., 2006). 

The second method is by reducing the complexity of Elliptic Curve operations by:  

I. Enhancing the basic operations and inventing new fast composite 

methods (Ciet et al., 2006; Eisentrager et al., 2003),  

II. Enhancing or inventing Elliptic Curve operations that use coordinate 

systems other than Affine coordinates or using mixed coordinates (P 

Mishra & Dimitrov, 2007; Sakai & Sakurai, 2001).  

Using the enhanced pre-computation techniques is the third method for increasing 

the speed of EC computations (Chen et al., 1996; Dahmen et al., 2007; Lim & Hwang, 

1999; Lim & Lee, 1994; Longa & Miri, 2008b) and the fourth method is by using 

customized hardware (Jiahong et al., 2009; MuthuKumar & Jeevananthan, 2010; 

Šimka et al., 2005). EC operation also can be speeded up by software optimizations 

and combining solutions together. The efficiency of EC single scalar multiplication 

can also be enhanced by customizing software implementation and combining the 

optimal methods to solve EC and EC related problems.  
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1.2 Problem Statement  

Every second, huge amounts of data can be transmitted through computer 

networks. Since most of the data are private,  they should be kept safe and 

concealed. Using cryptography provides the cheapest solution for securing these 

data while being either transferred or stored. According to (Tilborg & Jajodia, 2011), 

private key cryptosystems are used to encrypt/decrypt large amounts of data due to 

their high speed compared to Public-key cryptosystems, but Public-key cryptosystems 

are still commonly used for key exchange and digital signatures. Since Public-key 

cryptosystems depend on large number operation, they need to use complex 

mathematical computations. These kinds of systems are normally used for key 

exchange and digital signatures. Consequently, there is always high tendency toward 

finding cheaper, faster and more effective solutions for public keys.  

One of these solutions is using signed binary representations. The main reason of 

using signed binary representation is to increase the speed of the Classical 

multiplication method on computers (Booth, 1951). Base on the reviews of literature, 

there are a number of signed representations of integer 𝑘 in Radix-2 and higher. These 

representations are suitable for Elliptic Curve scalar multiplication as well, since the 

Hamming Weight (HW) of some of these signed binary representations is less than the 

HW of the unsigned binary.  

During recent years, a lot of researchers have investigated on cryptography 

projects by inventing new single scalar EC multiplication algorithms or by enhancing 

the efficiency of EC operations. In the current study, the concentration is on designing 

and introducing new representation methods for integers and apply them on ECC at 
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the scalar arithmetic level, specifically for the case of standard curves (NIST) over 

finite fields.  

1.3 Research Motivation 

In most public-key cryptosystems there is at least one operation that dominates 

the execution time. For instance, this operation in EC cryptosystems is the point 

multiplication. Therefore, various methods have been introduced to enhance the 

performance of this operation (Blake et al., 2005; Henri Cohen et al., 2016; Jurišic & 

Menezes, 1997). Specially, the integer representation of the multiplier performs an 

important role in the performance of these methods (Gordon, 1998). Integer 

representations with minimal average number of nonzero digits (Hamming Weight), 

are more appealing among the existing ones. This is because of the fact that they 

decrease the required number of point additions or subtractions. Therefore, introducing 

a new integer representation that can reduce the hamming weight of integer numbers 

more than the existing methods, will improve this enhancement of the efficiency.  

Additionally it is of interest to have a representation that can be obtained by 

scanning the bits from left to right (from the most significant bit to the least significant 

one) (Müller, 1998; Solinas, 2000). This property removes the need for recoding and 

storing the multiplier beforehand, which leads to enhancing the performance of Left-

to-Right point multiplication methods in terms of memory and running time. For this 

reason, introducing a Left-to-Right version of the proposed representation will 

potentially increase the usage of the new method for improving the performance of the 

public-key cryptosystems. 
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Research Questions: Based on this motivation, the following research questions 

are retrieved from problem statement: 

I. How to improve the efficiency of current signed digit representations? 

II. Is it possible to perform the proposed signed digit representation from 

Left to Right? 

III. Are the proposed signed digit representations applicable to ECC? 

IV. Are the proposed EC multiplication methods more efficient than existing 

ones? 

1.4 Research Objectives 

The main goal of this study is defined based on the answer to the first research 

question. After reviewing the literature, the main goal for this research is to introduce 

a new representation for integers which can be used to enhance the efficiency of some 

cryptosystems. For example, by proposing efficient single scalar EC multiplication 

algorithm based on the proposed representation method, the efficiency of ECC can be 

improved.  

Since ECC uses a shorter key compared to the other Public-key cryptosystems 

such as RSA, Diffie Hellman key exchange, El-Gamal, which means fewer 

computations, it is becoming more important for certain real-world operations, 

particularly for devices having limited resources. Thus, Elliptic Curve Cryptography 

is chosen as the case study for this research and two single scalar EC multiplications 

based on proposed recoding methods are presented. 
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In order to achieve the goal of this research, the main objectives of this research 

are set as: 

I. To propose a new recoding method to reduce the Hamming Weight of 

numbers with radixes higher than two.  

II. To propose the Left-to-Right approach of the proposed recoding method.  

III. To propose a single scalar Elliptic Curve multiplication method based on 

the proposed method.  

The last research question is answered in Chapter 4 as part of the analysis. 

1.5 Research Scope 

Modular exponentiation is considered as one of the most time-consuming 

(expensive) operations in most of cryptosystems. Accordingly, not only an effective 

algorithm which can implement this operation is very important, but also has direct 

effect on the performance of the resulting protocol of cryptography. In order to 

compute 𝑔𝑚, two main types of exponentiation might be essentially distinguished. 

In the first type such as ElGamal cryptosystems, the base (𝑔) is fixed but the 

exponent (𝑚) varies. In such cases, good performances would be attained by the basic 

‘square and multiply’ technique. In the second type such as RSA cryptosystems, there 

is a fixed exponent (𝑚) and a variable base (𝑔). Thus, the purpose of this type would 

be an efficient computing of 𝑔𝑚. 

The current thesis is mainly concerned with the first type of exponentiation. 

Further use of the methods proposed in this research can be demonstrated when it is 

possible to compute inverses (virtually) for free (for instance Elliptic Curves). The 
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main idea is to enhance the efficiency of multiplication by decreasing the Hamming 

Weight of exponent. This study emphasizes on Elliptic Curves defined over binary 

fields in order to show the application of the proposed recoding methods in ECC. 

1.6 Research Methodology  

This section explains the research methodology which is followed in this study. 

This methodology comprises five different steps starting with a comprehensive review 

of previous works. All the next steps are designed to address each of the research 

questions and fulfil the objectives of this research. 

Based on the review of the previous related works, the efficiency of many public-

key cryptosystems depends on the presentation of the integers which are used. To give 

an example, the computation of 𝑘𝑃 over Elliptic Curves is the main operation in 

Elliptic Curve Cryptography (ECC) (Stallings, 2016). The efficiency of the 𝑘𝑃 

calculation depends on the representation of the scalar 𝑘. The double-and-add 

algorithm (also called the binary algorithm) is the standard unsigned scheme that is 

used to compute the EC point 𝑄 =  𝑘𝑃.  

Scholars have reached to the conclusion that the binary EC multiplication 

algorithm is not the most effective scheme for applying EC computations. 

Consequently, there is a need for other representations or recoding methods such as 

Complementary Recoding (CR), Non-Adjacent Form (NAF), and Mutual Opposite 

Form (MOF) in order to enhance the efficiency of EC computations. Therefore, the 

second step of the research methodology is to propose new Radix-r representations in 

order to accelerate the single scalar multiplication for EC computations. Meanwhile, 

the comparison metrics for the performance analysis are defined.  
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In the second step, new Right-to-Left recoding methods are designed and 

introduced. The purpose of presenting these methods is reducing the Hamming Weight 

of integers with radixes higher than two compared to the previous recoding methods 

so that they can be used to enhance the performance of some cryptosystems like ECC. 

As formerly mentioned, reduction of the Hamming Weight of numbers in a 

multiplication, decreases the number of sub-operations in multiplication calculation. 

Therefore, a number representation with lower Hamming Weight can improve 

multiplication calculation in terms of mentioned aspect.  

Left-to-Right recoding is considered a natural choice in ECC because window 

methods can be used more efficiently. Furthermore, multiplication method and 

recoding method can be combined so that storing the re-coded scalar 𝑘 is not 

necessary. Therefore, this method seems more appropriate for limited hardware 

devices (Okeya et al., 2004). Accordingly, the third step is allocated to find a suitable 

existing left to right approach for the method proposed in step two and apply on that. 

EC Multiplication Technique: on-the-fly single scalar

Recoding Method: MGSDNAF & L2R MGSDNAF

Coordinate System: Affine

EC Equation: 𝑦2 + xy = 𝑥3 + a𝑥2 + b

Underlying Field Arithmetic: Binary

Figure 1-2: Parameters of EC Multiplication Algorithms 
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Therefore, in the third step, the Left-to-Right version of proposed recoding 

methods which can reduce the Hamming Weight of numbers with radixes higher than 

two are designed and introduced. 

In the fourth step of this research’s methodology, to examine the application of 

the proposed methods, two EC multiplication algorithms are proposed. There are some 

parameters which are necessary to be considered when designing an EC multiplication 

algorithm. One of these parameters is the underlying field arithmetic (prime or binary) 

that should be initially determined in order to choose the EC equation that will be 

used over the field. The other parameter is the coordinate system such as Affine 

coordinate or Projective coordinate which should be selected.  

In fact, the EC point arithmetic operations can be defined with these 

parameters. Then, after the more appropriate recoding method is chosen from the 

proposed methods in order to be applied on 𝑘 in 𝑘𝑃, the EC multiplication method can 

be then introduced. Figure 1-2 illustrates the relation between the parameters that have 

been discussed earlier, (i.e. the components of an EC cryptosystem). 

Figure 1-3: Research Methodology Steps 

Step1
•Perform a literature survey

Step 2
•Design and introduce a new recoding method

Step 3
•Design and introduce the Left-to-Right version of proposed recoding method

Step 4
•Design and introduce a new Elliptic Curve multiplication method 

Step 5
•Calculate and perform a performance analysis 
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The final step of this research’s methodology is calculating and carrying out a 

performance analysis of the proposed EC multiplication method to determine its 

effectiveness compared to the current state of art methods. The research methodology 

proceeded in this study is graphically shown in Figure 1-3. 

1.7 Research Contributions  

Since a valuable research should add to knowledge and have great contribution 

to the related field, this study also takes step forward to have significant contributions 

to the available knowledge in the related area. These contributions involve introducing 

the following methods: 

I. New Right-to-Left recoding methods (Presenting an efficient class of the 

Radix-r representation can increase the performance of some mathematical 

operations like scalar multiplication, for example, by reducing the number of 

non-zero digits): 

a. Modified Generalized Non-Adjacent Form (MGNAF) 

b. Alternative Generalized Non-Adjacent Form (AGNAF) 

c. Modified Generalized Signed Digit Non-Adjacent Form 

(MGSDNAF) 

II. New Left-to-Right recoding methods (In many operations the algorithm which 

performs from Left-to-Right, is generally preferred because if pre-computation 

is required, Left to Right approach can increase the efficiency. For example, in 

single scalar multiplication, the values of Pi, which will be set in the first loop, 

can be pre-computed and stored in advance): 

a. Left-to-Right MGNAF 
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b. Left-to-Right MGSDNAF 

III. New single scalar multiplications for Elliptic Curve Cryptography (To check 

the application of proposed method in cryptography, a single scalar 

multiplication based on proposed algorithm should be introduced and studied): 

a. Based on MGSDNAF recoding method 

b. Based on Left-to-Right MGSDNAF recoding method 

1.8 Thesis Outline  

This thesis is organized into five chapters. The first chapter provides an overview 

of the research content and its procedure. Chapter 2 carries on with the literature review 

on the number systems, Public-key cryptography, Elliptic curves and most frequently 

used methods in single scalar multiplications. Chapter 3 proposes some new recoding 

methods such as MGNAF, L2R MGNAF, AGNAF, MGSDNAF, L2R MGSDNAF 

and the enhanced single scalar multiplication algorithms for Elliptic Curve 

cryptography based on the proposed recoding methods. Furthermore, this chapter 

provides details on the implementation of the conversion methods as well as all the 

enhanced algorithms. Chapter 4 presents the results and discussion about the proposed 

methods and finally, the research ends up by Chapter 5 which provides conclusion. 
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 CHAPTER TWO: LITERATURE REVIEW 

2.1 Introduction 

Analysis of arithmetic functions can be simplified by choosing a proper number 

representation. Digit set or radix can be chosen to match the characteristics of the 

algorithm or implementation technology. Such changes can achieve lots of benefits. 

For instance, the frequency of useful digits (like zero) can be increased and the total 

amount of digits necessary to represent a number can be reduced. The cardinality of 

the digit set can be decreased, this change may decrease the number of pre-computed 

middle results to store. Decreasing the cardinality of the digit set also simplifies digit 

encoding for hardware execution and escalates the frequency of a given digit. 

Therefore, the benefits of using available pre-computations will increase. 

It is usually essential to trade these benefits one against the other. For instance, 

increasing the radix usually leads to reducing the number of digits required to represent 

a number. On the other hand, this change will also increase the digit set cardinality. 

Therefore, as it was mentioned before the number representation should be chosen 

based on the characteristics of the algorithm. 

To give an example, point multiplication is considered as the main operation in 

EC cryptography, so the efficiency of the EC cryptosystem is highly depended on 

efficiency of this multiplication. The methods of EC multiplication can be classified 

into two types: single scalar multiplication (𝑘𝑃) and multi-scalar multiplication (𝑘𝑃 +

𝑙𝑄). These methods are also heavily depending on the representation of big-integer 𝑘 

and its Hamming Weight.  
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The Hamming Weight, for instance 𝑤(𝑘), is the number of nonzero digits in the 

binary representation of any integer number. This number affects the total cost of EC 

point computation. Reducing the number of nonzero digits will reduce the number of 

additions needed to compute 𝑘𝑃. For binary representation of the key 𝑘, the 𝑤(𝑘) =

1

2
𝑛, where 𝑛 is the length of 𝑘 in bits. Other recoding methods such as signed methods 

were invented in order to reduce the amount of Hamming Weight, for example the 

Non-Adjacent Form (NAF)  signed binary method were used to accelerate the EC 

multiplications (Solinas, 2001). 

This chapter continues with the review of the works related to number systems 

specially the related works in Radix 2. Section 2.3 is dedicated to the number theory-

based public-key cryptosystems and review some of these algorithms. The Elliptic 

Curve Cryptography is looked at and reviewed in depth in Section 2.4. Sections 2.5 

and 2.6 are about point representation and point multiplication respectively.  

2.2 Number Systems 

Even though there is no clear background regarding the creation of numbers, it 

can be claimed that civilizations have been developed with respect to the presence of 

numbers. The critical role of numbering systems in everyone’s life (especially in 

academic life) is now being more highlighted compared to previous eras when 

numbers were only used for calculation and comparison. In fact, the old numeral 

systems were not useful for calculation. Therefore, the early Egyptians and Greeks 

were inspired to discover new numbering system with computational abilities in order 

to enhance their trading, seasonal-agriculture, and astronomy. 
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Positional number system was one of the most important transformations in the 

history of numbering systems. The advantage of positional number systems was the 

easy representation of the large numbers which was considered as the disadvantage of 

non-positional number systems. In fact, positional number systems are so important 

that without them, complex calculations are not possible. Each of the number systems 

will be discussed as follows.  

2.2.1  Positional Number Systems 

The following equation represents an integer of Radix-r in Positional Number 

Systems (PNR):  

 (𝑎𝑛…𝑎2𝑎1𝑎0)𝑟 = 𝑎𝑛𝑟
𝑛 +⋯+𝑎2𝑟

2+𝑎1𝑟
1 + 𝑎0

=∑ 𝑎𝑖
𝑛

𝑖=0
𝑟𝑖. 

(2-1) 

If 𝑎𝑖 ∈ 𝑆 = {0,… , 𝑟 –  1}; then this representation is unique (Bilal et al., 2009; 

Gossett, 2009).  ɑ𝑖 and 𝑆 are called as digit, and digit set respectively. The symbols 𝑎𝑛 

and 𝑎0 are accordingly called the Most Significant Digit (MSD) and the Least 

Significant Digit (LSD). 

Positional number systems can be categorized into two significant types (Knuth, 

1997) which are namely, Decimal numbers (𝑆 = {0,… ,9} and 𝑟 = 10) and Binary 

numbers (𝑆 = {0,1} and 𝑟 = 2). 

Equation (2-1) does not represent all the Position Number Systems (PNR); It only 

represents PNRs which are called Fixed-base number system (FBNS). Each term, 𝑎𝑖𝑟
𝑖, 

in the summation in this equation comprises of two parts, namely, digit 𝑎𝑖 and 𝑤𝑖 = 𝑟
𝑖 

that is called weight or place value of 𝑎𝑖. Each digit’s weight is achieved by 

multiplying the weight of previous digit by base. 
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 𝑤𝑖+1 = 𝑟 × 𝑤𝑖. (2-2) 

   

FBNS and mixed-based number system (MBNS) are differentiated by the value 

of 𝑟 in Equation (2-2). If 𝑟 is constant similar to what is seen in Equation (2-1), it can 

be said that this is a FBNS but if this value is a variable, it can be called that it is a 

MBNS. Equation (2-3) illustrates this feature. 

  𝑤𝑖+1 = 𝑟𝑖 × 𝑤𝑖, (2-3) 

   

where there are integers 𝑖 and j such as 𝑟𝑖 ≠ 𝑟𝑗. 

If the representation of Equation (2-4) is used to show a number by its digits and 

their corresponding weights: 

 
𝐴 = {

𝑑𝑖𝑔𝑖𝑡
𝑤𝑒𝑖𝑔ℎ𝑡

} = {
𝑎𝑛
𝑤𝑛

𝑎𝑛−1
𝑤𝑛−1 

, … ,
𝑎0
𝑤0
}, (2-4) 

then, FBNSs can also be represented by: 

 
{
𝑑𝑖𝑔𝑖𝑡
𝑤𝑒𝑖𝑔ℎ𝑡

} = {
𝑎𝑛

𝑟𝑤𝑛−1

𝑎𝑛−1
𝑟𝑤𝑛−2

, … ,
𝑎0

(𝑤0 = 1)
}, (2-5) 

and MBNS can be represented as follow:  

 
{
𝑑𝑖𝑔𝑖𝑡
𝑤𝑒𝑖𝑔ℎ𝑡

} = {
𝑎𝑛

𝑟𝑛−1𝑤𝑛−1

𝑎𝑛−1
𝑟𝑛−2𝑤𝑛−2

, … ,
𝑎0

(𝑤0 = 1)
}. (2-6) 

The following representation has been used by Knuth (Knuth, 1997) for 

positional number systems: 

 (𝑎𝑛…𝑎2𝑎1𝑎0){𝑟𝑛,𝑟𝑛−1,…,1} = {
𝑑𝑖𝑔𝑖𝑡𝑠
𝑟𝑎𝑑𝑖𝑐𝑒𝑠

} = {
𝑎𝑛
𝑟𝑛

𝑎𝑛−1
𝑟𝑛−1

, … ,
𝑎0

(𝑟0 = 1)
}, 

(2-7) 

where the weight of digit can be achieved by Equation (2-3).  

Moreover, there are some non-standard number systems which has non-regular 

bases such as negative bases (Masáková et al., 2011), fractional bases,  real bases 
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(Frougny, 2003; Frougny & Surarerks, 2003), complex bases (Frougny & Surarerks, 

2003)  and quadratic bases (Masáková et al., 2011). As the focus of this research is on 

Binary Number Systems, this numbering system is more explained. 

2.2.1(a) Binary Number System 

Some scholars address the invention of binary number to Pingala (Van Nooten, 

1993) in the fifth century B.C. However, others believe that Gottfried Leibniz (1703) 

(a mathematician) invented and reported this modern system (Glaser, 1971). The 

disadvantage of binary numbers was their long representations which would make 

their frequent daily practices difficult. However, invention of computer put an end to 

this problem and paved the way for binary number system to become an essential part 

of human life. Later on in 1854, George Boole (a British mathematician) presented a 

new algebra called Boolean algebra (Goodstein, 2012) which was based upon this 

number representation. In fact, development of computer science and digital systems 

root in the foundation of this algebra. There are other subjects, for example number 

theory, statistics and set theory which have been established based upon Boolean 

algebra. 

As it was mentioned in Section 2.2.1 , binary number system is a positional 

number system, with the digit set of 𝑆 = {0,1} and base 𝑟 = 2. Comparing number 

representation in binary number system and decimal numbers system, it can be derived 

that the former is lengthier compared to the latter. For example: 

100000010 = 111101000010010000002. 

Each digit in binary system is called bit and the length of a number A in bits, 

given by the formula  
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 𝐿(𝐴) = 𝐿(𝐴, 2) = ⌊log2 𝐴⌋ + 1. (2-8) 

2.2.1(b) Signed-Binary Number System 

There are some algorithms, for instance multiplication and exponentiation in 

number theory, which their effectiveness depends on the Hamming Weight of the 

binary numbers. Scholars have suggested new number systems which are derived from 

binary number system in order to drop the Hamming Weight of binary numbers 

(Booth, 1951). Signed-binary (SB) system is one of these number systems which 

started by using ‘-1’ in symbolization of a binary number. These types of number 

systems are derived from the following series expansion in number theory: 

 
(1…1⏞  
𝑛+1

)
2

=∑2𝑖
𝑛

𝑖=0

= 2𝑛+1 − 1 = (10…0⏞  
𝑛

1̅)
2

, (2-9) 

where  1̅ = (−1).  

The Hamming Weight (HW) of each n-bit sequence of symbol ‘1’ reduces from 

𝑛 to 2. For example: 

(1111111)2 = (10000001̅)2, 

where 

𝐻𝑊(1111111)2 = 7    and     𝐻𝑊(10000001̅)2 = 2. 

The following equation illustrates digit set and base in signed-binary number 

systems:   

 𝑆 = {0,1, −1}    and    𝑟 = 2. (2-10) 

The representation of numbers by signed-binary is not unique. There are other 

methods with this type of representations. The most famous ones are Booth algorithm 
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(Booth, 1951), NAF (Non-Adjacent Form Recoding) (Reitwiesner, 1960), CR 

(Complementary recoding) (C. Chang, Kuo, Lin, & Engineering, 2003) and MOF 

(Mutual Opposite Form) (Okeya et al., 2004) representations, however, they have 

different Hamming Weight.  

Booth algorithm: Booth (1951) presented an elegant algorithm to accelerate the 

multiplication algorithm on digital processors. This method is considered as the 

foundation of the signed-binary representation of a number. Improving the common 

method of add and shift in the multiplication algorithm, Booth (1951) suggested a 

method that scans the multiplicand and then decides on doing addition, subtraction or 

nothing then shifting the result (Bewick & Flynn, 1992). In fact, Booth’s method 

embraces the signed-binary idea, even though the numbers were not directly 

represented in signed-binary form in his method.  

The process of Booth recoding is illustrated in Algorithm (2.1). Let 𝐴 =

(𝑎𝑛−1, … 𝑎0) and 𝐵 = (𝑏𝑛−1, … 𝑏0). Let 𝑎−1 = 0. 𝐴 is scanned from right to left for 

finding two adjacent bits 𝑎𝑖𝑎𝑖−1 in the form of "01" or "10". If 𝑎𝑖𝑎𝑖−1 = "01", then, 

𝑏𝑖 is set to “1”. Where 𝑎𝑖𝑎𝑖−1 = "10", then, 𝑏𝑖 is set to "-1". The rest of 𝑏𝑖’s will be 

remained zero. (𝐴 = (𝑎𝑛−1, … 𝑎0) is a binary number and 𝐵 = (𝑏𝑛−1, … 𝑏0) is its 

signed-binary representation.) 

 

Algorithm (2.1) : Booth Recoding 

Input  : 𝐴 = (𝑎𝑛−1, … 𝑎0)  
Output  : 𝐵 = (𝑏𝑛−1, … 𝑏0)  
   

1. For  𝑖 = −1 up to 𝑛 − 1 do  

2.     If  𝑎𝑖 = 0  and 𝑎𝑖−1 = 1 then  𝑏𝑖 = 1 

    If  𝑎𝑖 = 1  and 𝑎𝑖−1 = 0 then  𝑏𝑖 = −1 

3. Return B  
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 The following example as shown by Equation (2-11) illustrates how Booth 

algorithm works. 

   
𝐴 = 111⏞

1001̅

000 01111⏞    
10001̅

   →   𝐵 = 1001̅00010001̅. (2-11) 

In the above example, the number of non-zero digits reduced from 𝐻𝑊(𝐴)  =  7 

to 𝐻𝑊(𝐵)  =  4. However, it may differ in some cases like having pairs of "01" 

or "10". This issue is more clarified in the following example: 

   𝐴 = 10101 ∶  𝐻𝑊(𝐴) = 3  →    𝐵 = 11̅11̅11̅ ∶   𝐻𝑊(𝐵) = 7. (2-12) 

Since in Booth algorithm two bits are scanned, it is sometimes called Booth 2. 

Booth 3, Booth 4 and higher (Ghosh & Basuray, 2010; Madrid, Millar, & 

Swartzlander, 1992, 1993) have been also proposed in order to decrease the Hamming 

Weight of binary numbers which are shown in Example (2-12).  

 

Non-Adjacent Form Recoding (NAF): Reitwiesner suggested Non-Adjacent 

Form (NAF) in 1960 (1960). As Algorithm (2.2) illustrates the NAF representation of 

a number which can be gained by scanning the integer from right to left. (𝐴 =

Algorithm (2.2) : NAF Recoding 

Input  : 𝐴 = (𝑎𝑛−1, … 𝑎0)  
Output  : 𝐵 = (𝑏𝑛, … 𝑏0)     
   

1. While 𝐴 > 0    

2.     For  𝑖 = 0 up to 𝑛 − 1 do  

3.         If 𝑎 is odd then do 

            𝑏𝑖 = 2 − (𝐴  𝑚𝑜𝑑  4) 
            𝐴 = 𝐴 − 𝑎𝑖 
        Else 

            𝑏𝑖 = 0 

            𝐴 =
𝐴

2
  

            𝑖 = 𝑖 + 1 

 

4. Return B  



23  

(𝑎𝑛−1, … 𝑎0) is a binary number and 𝐵 = (𝑏𝑛, … 𝑏0) is its NAF representation.)A 

binary number and its NAF representation are illustrated in the following example:  

One of the advantages of NAF representation is that it guarantees that there is at 

least a zero between two non-zero digit. Therefore, this new algorithm has solved one 

of the biggest problems of Booth algorithm. 

Solinas (2000) generalized the NAF recoding that is very useful for enhancing 

the performance of EC computations while Joye and Sung-Ming (2000) put forward a 

Left-to-right NAF recoding algorithm. Darrel et al. (2013) confirmed that every integer 

can be uniquely symbolized by NAF recoding. On the other hand, Morain et.al (1990) 

evidenced that the average of Hamming Weight of an integer after NAF recoding 

would be minimal. With n as length of integer 𝐴, 𝐻𝑊 (𝐴)  ≅  
𝑛

3
. 

Mutual Opposite Form (MOF): As it is seen in Algorithm (2.3), algorithm NAF 

demonstrates that the recoding method in NAF is done with Right-to-Left method, 

however, Left-to-Right methods are given more priority for calculating exponentiation 

and EC multiplication (Blake et al., 2005). Mutual Opposite Form (MOF) was the first 

Left-to-Right recoding algorithm which was proposed by Okeya et al. (2004).  

According to its inventers (Okeya et al., 2004), MOF representation of a number 

is unique as it is bidirectional. Similar to the binary representation, the average 

Hamming Weight of a number in MOF representation is about 50% (Okeya et al., 

2004). 

   
                       𝐴 = 101111⏞    

10001̅

0000 01111⏞    
10001̅

   →   𝑁𝐴𝐹(𝐴).
= 101̅0001̅000010001̅ 

(2-13) 
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 The process of MOF recoding is described in Algorithm (2.3). It should be 

assumed as 𝐴 = (𝑎𝑛−1, … 𝑎0) is a binary number and 𝐵 = (𝑏𝑛, … 𝑏0) is its MOF 

representation.  

Algorithm (2.3) : MOF recoding (Left-to-Right) 

Input  : 𝐴 = (𝑎𝑛−1, … 𝑎0)    
Output  : 𝐵 = (𝑏𝑛, … 𝑏0)      
   

1. 𝑏𝑛 = 𝑎𝑛−1  

2. For  𝑖 = 𝑛 − 1 downto 1 do  

 𝑏 𝑖 = 𝑎𝑖−1 − 𝑎𝑖  

3. 𝑏0 = −𝑎0  

4. Return B  

Equation (2-14) in the following example exemplifies the procedure of MOF. 

 

Complementary Recoding method (CR): Complementary recoding (CR) is 

another recoding method which was presented to increase the speed of common-

multiplicand multiplications (Chang et al., 2003). The advantage of this method can 

be noticed in large integer multiplication. In this method, a new signed-binary form of 

𝐴 = (𝑎𝑛−1, … 𝑎0) is achieved by its first complement of �̂� = (�̂�𝑛−1, … �̂�0) where �̂�𝑖 =

1 if 𝑎𝑖 = 0 and �̂�𝑖 = 0 if 𝑎𝑖 = 1. On the other hand, if �̂�𝑖 = 1 − 𝑎𝑖 and let 𝐵 =

𝐶𝑅(𝐴) = (𝑏𝑛−1, … 𝑏0).  Then, the following equation will be obtained: 

Algorithm (2.4) displays this recoding. Inexpensive operations such as addition, 

subtraction, bitwise operations are used by CR and MOF while operations such as 

division are used by NAF (Chang et al., 2003). (𝐴 = (𝑎𝑛−1, … 𝑎0) is a binary number 

and 𝐵 = (𝑏𝑛, … 𝑏0) is its CR representation.) 

                          𝐴  1
                      2𝐴 1 1

𝐵 = 𝑀𝑂𝐹(𝐴) = 2𝐴 − 𝐴 1 0
    
1 0 0
0 0 1
1̅ 0 1

   
1 1 1
1 1 0
0 0 1̅

 (2-14) 

   𝐵 = 2𝑛 − �̂� − 1. (2-15) 


