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PEMANTAUAN PROSES KIMIA BUKAN LINEAR DAN PENGESAN 

KESALAHAN BERDASARKAN MODEL LSTM YANG DIUBAHSUAI 

Abstrak 
 

Dengan perkembangan industri kimia, pengesanan kesalahan proses kimia telah menjadi 

cabaran yang sukar disebabkan oleh data berdimensi tinggi dan proses kimia yang kompleks 

serta peningkatan bilangan peralatan. Rangkaian saraf suapan ke hadapan asas tidak begitu 

berkesan untuk menyelesaikan isu ini. Kertas kerja ini mencadangkan model pengesanan 

kesalahan berdasarkan model Long Short Term Memory (LSTM) yang diubah suai. Percubaan 

simulasi proses kimia Tennessee Eastman (TE) untuk model LSTM yang diubah suai akan 

menggunakan perisian MATLAB. Penyiasatan prestasi antara model LSTM dengan Artificial 

Neural Network (ANN). Pengubahsuaian LSTM akan dibuat dengan membandingkan pelbagai 

jenis kesalahan yang akan digunakan untuk pengesanan kesalahan. Peratusan latihan dan 

pengesahan juga mempunyai pengaruh yang besar terhadap ketepatan pengesanan kesalahan. 

Pautan untuk menentukan bilangan optimum nod lapisan tersembunyi dengan memanipulasi 

nilai setiap lapisan tersembunyi pada rangkaian LSTM ditambah memandangkan bilangan nod 

lapisan tersembunyi dalam rangkaian LSTM memberi kesan kepada hasil pengesanan. 

Kemudian, model LSTM yang dioptimumkan akan diperolehi untuk mendapatkan ketepatan 

pengesanan kesalahan yang lebih tinggi dalam proses kimia. Akhir sekali, melalui simulasi 

dalam perisian MATLAB, keputusan menunjukkan model LSTM yang diubah suai 

mempunyai prestasi yang lebih baik dalam pengesanan kerosakan kimia berbanding ANN dan 

ketepatan yang lebih tinggi yang boleh dicapai oleh model LSTM ialah 99.69%. 
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NONLINEAR CHEMICAL PROCESS MONITORING AND FAULT 

DETECTION BASED ON MODIFIED LSTM MODEL 

 

Abstract 
 

With the development of the chemical industry, fault detection of chemical process has become 

hard challenge due to the high-dimensional data and complex chemical process and increasing 

number of equipment. The standard feedforward neural network is not particularly effective at 

solving these issues. This study proposed a fault detection model based on modified Long 

Short-Term Memory (LSTM) model. The simulation experiment of the Tennessee Eastman 

(TE) chemical process for modified LSTM model will be using MATLAB software. The 

investigation the performance between the LSTM model with the Artificial Neural Network 

(ANN). The modification of the LSTM will be made by comparing different type of faults that 

will be used for the fault detection. The percentage of the training and validation also has a 

great influence towards the accuracy of the fault detection. The link to determining the 

optimum number of hidden layer nodes by manipulated the value of each hidden layers on the 

LSTM network is added since the number of hidden layer nodes in the LSTM network impacts 

the diagnosis outcome. Then, the optimized LSTM model will be obtained in order to get higher 

accuracy of the fault detection in chemical process. Finally, through the simulation in the 

MATLAB software, the results show that the modified LSTM model has a better performance 

in chemical fault detection than ANN and the higher accuracy that can be achieved by the 

LSTM model is 99.69%. 
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CHAPTER 1 INTRODUCTION 
 

1.1 Research Background 

 

 In the era of the Fourth Industrial Revolution (4IR), the industry sector starts to 

transform factories into smart factories.  The objective of smart factories is to meet and 

overcome the challenges of strong competition, highly customized goods and shorter 

manufacturing requirements. Furthermore, despite the fact that the chemical industry is 

continually improving people's lives, chemical accidents continue to occur, causing significant 

harm to people's lives and property. For example, there were 203 accidents and 238 fatalities 

in 2017, with human factors being the primary cause of these disasters in China's chemical 

sector (Aitao and Lingpeng, 2017). In order to minimise negative outcomes, fault detection and 

diagnosis must enable rapid detection and diagnosis of abnormal conditions (Park et al., 2019). 

Failures in chemical process should be detected as early as possible to prevent critical damage 

on the equipment and may cause delays in operations and, consequently, tremendous economic 

loss (Saufi et al., 2019). As a result, in the chemical sector, fault detection plays an important 

role. Thus the goal of a smart factories is to make the best use of the facility assets in order to 

achieve zero-incident and sustainable environmental, health and safety while also increasing 

the plant's economic operational value. In a smart factory, each asset, from the smallest 

equipment to a single process unit and collections of processes, not only performs its basic 

process function, but also provides feedback and predictive information on the current and 

expected performance of that asset to the plant management system through the use of real-

time communication networks (Christofides et al., 2007) .  

The industry sector has begun to embrace new innovative technologies in the areas of 

instrumentation and process monitoring.  Key enabling technologies such as the Industrial 

Internet of Things (IIoT), Cloud Computing, and Deep Learning are now presented in the 
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industrial processes (Gravanis et al., 2022). The goal of deploying these technologies is to 

improve their performance, as well as to achieve optimal operation and process control. An 

important feature of Industry 4.0 that is considered is the quantity of data produced and 

recorded by various devices that contribute to the monitoring of industrial operations. 

Multivariate time series data from many correlated signals between sensors and actuators is 

dealt with by modern industrial control systems (Park et al., 2019). These data gives 

information that may be turned to useful information about how production lines work. Fault 

detection is an example of such information since knowing whether a fault has occurred during 

production as soon as feasible may lead to actions that boost productivity and decrease 

downtime (Angelopoulos et al., 2020). 

Fault diagnosis research began in the 1960s and has continued to attract attention as 

technology advances. There have been numerous fault diagnosis methods developed, all of 

which have played an essential role in the petrochemical industry. Fault diagnosis techniques 

may be classified into the following groups. One of the fault diagnosis methods, such as 

estimation method and process parameter estimation are to establish linear or nonlinear for 

fault diagnosis using mathematical models. The second group includes rule-based methods, 

such as the decision tree algorithm, foil algorithm, and expert system, which use a significant 

amount of professional knowledge and expertise to identify faults in complex systems. The 

third group is the data driven method that has two sub-class which are statistic and deep 

learning (Han et al., 2020). 

The fault detection and diagnosis (FDD) framework is based on dynamic neural 

networks and is designed for nonlinear dynamic processes. The Tennessee Eastman Process 

(TEP) is used as a benchmark process system for evaluating the proposed framework. A 

systematic study of several parameters, including as sampling time, feature reduction 

approaches, and state-of-the-art algorithms for time series classification is performed. The 
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LSTM provide a robust fault detection and diagnosis framework based on state of the art 

dynamic deep learning models and time series analysis methods (Gravanis et al., 2022).  

1.2 Problem Statement 

Despite the widespread use of multiple basic logic control systems in chemical 

processes, such as Distributed Control Systems (DCS), Supervisory Control and Data 

Acquisition Systems (SCADA), and Programmable Logic Controllers (PLC), abnormal event 

management still faces several difficulties (Gravanis et al., 2022). The mathematical models 

are not very suitable for diagnosis of complex processes because the precision of the model has 

a direct impact on the diagnostic outcome, making diagnosis more challenging. The rules-based 

classification methods have the difficulty of gaining rule knowledge and conflicting rules (Han 

et al., 2020). Traditional-model or knowledge-based techniques involving extensive human 

interaction are becoming too difficult to implement as the quantity of samples and complexity 

of industrial monitoring data has grown significantly. The complex nonlinear interactions 

between the signals cause very difficult to detect abnormal measurements. The excessively 

unbalanced samples of unusual events cause deep learning approaches are unable to tackle an 

overfitting problems effectively. The interference in the process field and the consequences of 

a failure might be severe due to robustness and reliability (Christofides et al., 2007).  
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1.3 Objectives 

 

1. To develop LSTM fault detection model using MATLAB software. 

2. To diagnose process fault of a highly nonlinear complex chemical process by using 

deep learning method. 

3. To evaluate the performance of the deep learning LSTM model based on fault 

detection and classification accuracy. 

4. To determine the optimum number of hidden layer nodes in the memory-capable 

LSTM network according to various faults. 
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 Mathematical models based methods 

 Form the literature review, the mathematical model that apply in fault analysis is the 

process parameter estimation method. The weighted least square estimation is used for the 

process parameter estimation (Liu et al., 2016). Both of this method establish linear or 

nonlinear models for fault diagnosis using mathematical concepts. Radhakrishnan and Ram, 

(2001) also applied the mathematical model for predictive control of the bell-less top charging 

system of a blast furnace. The mathematical model is used to determine the surface profile 

from a given base line to a specified geometry. Yang et al., (2015)  introduced mathematical 

model of hydro power units under different operating conditions to define the hydraulic-

mechanical-electrical coupling system. Jochen and Allg, (2007) used structured augmented 

state models to diagnose nonlinear systems for single and multiple faults. Fault features are 

considered to be formed by dynamical exosystems switched through equality restrictions to 

avoid increased state observability, which limits the number of diagnosable defects. In order to 

diagnose a fault using mathematical models, the diagnostic method must first construct an 

accurate mathematical model. However, the model's accuracy has a direct impact on the 

diagnostic outcome, increasing the complexity of diagnosis and making it unsuitable for the 

diagnosis of complicated processes. 

2.2 Rule Classification Based Methods 

 Decision tree algorithm and expert system are rule-based methods for diagnosing faults 

in complex systems.  A study by Ebert, (1994) apply decision tree for rule-based fuzzy 

classification. Rule-based fuzzy classification as a basis for building quality models that can 

detect outlying software components that might cause quality issues for software process 

quality control. Sugumaran and Ramachandran, (2007) also applied decision tree for fuzzy 
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classifier in fault diagnosis of roller bearing. The use of a decision tree for automatic rule 

learning (a collection of 'if-then' rules) and the analysis of the effectiveness of such rules using 

a fuzzy classifier. He et al., (2018) used belief rule base (BRB) method for fault diagnosis of 

wireless sensor network to address all kind of uncertain problems. Next, Lin et al., (1993) used 

an expert system based on the dissolved gas analysis (DGA) technology for the detection and 

maintenance of suspected transformer failures. The disadvantages of rules-based categorization 

systems include difficulties in obtaining rule knowledge and conflicting rules. 

2.3 Data driven method 

 The data driven method is divided into two categories which are statistics and deep 

learning. The principal components analysis and partial least square is the statistics data driven 

method. Jackson, (1991) describe the principal component analysis (PCA) is a widely used 

statistical method for simultaneously monitoring many variables. It captures the correlations 

between linear combinations of variables rather than the variables themselves. PCA frequently 

generates linear combinations of variables that can be used as descriptions or predictions of 

certain process occurrences. The signal averaging properties of PCA cause these sets of 

variables are frequently more reliable indicators of process conditions than individual variables 

(Wise and Gallagher, 1996). According to Newhart et al., (2019) partial least square (PLS) is 

likely the same as PCA that use T2 and squared prediction error (SPE) statistic to identifies 

independent linear combination of the measured variables and outliers. PLS distinguishes 

between input and output variables and conducts dimension reduction individually for each set 

of variables. PLS is an example of supervised dimension reduction that only monitors output 

variables that are impacted by input variables while PCA will monitor all the variable in the 

process simultaneously. 

 Next, deep learning is another type of data driven method. A study by  Yu et al., (2019), 

the capability of deep learning to handle huge amounts of data and learn high-level 
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representations by several deep neural networks such as deep belief networks (DBNs), 

autoencoders (AEs), and stacked denoising autoencoders (SDAEs), have made their way into 

machine health monitoring and fault detection. Denoising and rebuilding input data from 

artificial corruption allows AE models, specifically the denoising autoencoder (DAE), to learn 

useful representations from raw inputs.  The deep belief network (DBN) model is a 

nonparametric process monitoring approach that may be utilized to monitor any process 

without making any assumptions about distribution. The proposed DBN model's structure is 

dynamic and can be changed depending on the reference dataset's sample size, which is 

important in real-world applications with limited and unbalanced reference datasets (Liu et al., 

2019). As a result, deep learning algorithms perform better when dealing with nonlinear 

systems and timing-related defect diagnostics. 

2.4 The LSTM 

 The LSTM neural network was created using recurrent neural networks (RNN). A RNN 

is a neural network model for modelling time series that was first developed in the 1980s. The 

network's structure is identical to that of a standard multilayer perceptron, with the exception 

that we enable connections between hidden units with a time delay. The model can retain 

knowledge about the past due to these connections, allowing it to identify temporal correlations 

between occurrences that are far apart in the data RNN (Razvan et al.,2013). In contrast to the 

general artifical neural netwok (ANN), the concept of time is added when RNN is learning. 

The hidden layer and the output layer are completely connected in traditional neural networks, 

but the neurons in the hidden layer are not connected such as back propagation neural networks. 

The neurons in the hidden layer of the RNN contain a feedback mechanism, which forms a 

closed-loop structure in the RNN's hidden layer. A time series is established when it is stretched 

to realise the transmission of information before and after. The structure of the RNN is shown 

in Fig. 2.1. 
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(1) 

(2) 

 

 

 

 

Figure 2. 1 The structure of RNN 

 In Fig. 2.1, ht denotes for the hidden state of time t, yt for the output of time t, and U 

denotes for the weight from the input layer to the hidden layer, which abstracts the original 

input as the hidden layer's input. The memory controller of the network, responsible for 

memory scheduling, assigns a weight W to hidden layer to hidden layer transmission. f is the 

activation function and b is the offset. The weight from the hidden layer to the output layer is 

V, implying that the hidden layer's representation will be abstracted and utilised as the final 

output. The relationship between them is shown in Eqs.(1) and (2).  

ℎ𝑡 = 𝑓 (𝑥𝑡𝑈 + ℎ𝑡−1𝑊 +  𝑏ℎ) 

𝑦𝑡 = 𝑓 (ℎ𝑡𝑊 +  𝑏𝑦) 

 The RNN network's feature is to load previous information into the current task, as seen 

in the equation. This enables the neural network to learn and process new information. This 

enables the neural network to learn and perform tasks involving time series so it can infer the 

current understanding based on the previous content. However, as the distance between the 

past knowledge and the present assignment increases, the RNN's capacity to learn decreases. 
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The RNN's learning capacity will be lost when the distance exceeds a certain value. The LSTM 

network is presented as a solution to this issue.  

 

Figure 2. 2 The LSTM structure 

 In comparison to the typical RNN network, the LSTM network has a new structural cell 

that aids in the screening of the information learned by the neural network, allowing useful 

information to remain while rejecting useless information. The LSTM network adds an output 

cell, which records the current unit's output state, according to the time dimension. The input 

gate, forget gate, and output gate are the three gates that the cell uses to accomplish this. Figure 

2.2 illustrates the specific structure. The forget gate regulates how much of the previous time's 

unit state 𝑐𝑡−1 is stored to the present time 𝑐𝑡, while the input gate determines how much of the 
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(3) 

 

 

 

(4) 

 

 

 

(5) 

 

 

 

(6) 

 

 

 

(7) 

 

 

 

(8) 

 

 

 

network's input 𝑥𝑡 is saved to the current time's unit state 𝑐𝑡, and the output gate control the 

output from 𝑐𝑡 to ℎ𝑡. The TE process is more complex in the time dimension so the update of 

state layer in the LSTM is improved, resulting in a more balanced information update of the 

forget gate and input gate in the time dimension. Additionally, the LSTM can learn the fault 

feature information in the time dimension more effectively while conducting fault diagnosis of 

the TE process. Table 2.1 shows the definitions of the parameters. The specific method is 

shown in Eqs. (3) - (8). 

Table 2. 1 Parameter meaning table. 

Parameter Meaning Parameter Meaning 

σ Activation function W Weight matrix 

h Node state of the hidden layer x Input 

b Bias tanh Activation function 

E Loss function δ Error 

   

𝑓𝑡 =  σ(Wf. [ℎ𝑡−1 ,𝑥𝑡] +  𝑏𝑓)    

𝑖𝑡 =  σ(Wi. [ℎ𝑡−1 ,𝑥𝑡] +  𝑏𝑖) 

�̃�𝑡 =  1 −  ft 

𝐶𝑡 =  ft ∗ Ct−1 +  it ∗ �̃�𝑡 

𝑜𝑡 =  σ(Wo. [ℎ𝑡−1 ,𝑥𝑡] +  𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) 

The weight matrices and offsets of the forget gate, input gate, output gate, and unit state are 

updated by back propagation error in the reverberation propagation of the LSTM network. 
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(12)  
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The error at time t − 1 can be calculated as follows 

δ𝑡−1
𝑇 =  

𝜕𝐸

𝜕ℎ𝑡−1
=  

𝜕𝐸

𝜕ℎ𝑡

𝜕ℎ𝑡

𝜕ℎ𝑡−1
=   δ𝑡

𝑇
𝜕ℎ𝑡

𝜕ℎ𝑡−1
 

Calculation of weight gradient: 

𝜕𝐸

𝜕𝑊𝑜ℎ
=  ∑ δ𝑜,𝑗ℎ𝑗−1

𝑇

𝑡

𝑗=1

 

𝜕𝐸

𝜕𝑊𝑓ℎ
=  ∑ δ𝑓,𝑗ℎ𝑗−1

𝑇

𝑡

𝑗=1

 

𝜕𝐸

𝜕𝑊𝑖ℎ
=  ∑ δ𝑖,𝑗ℎ𝑗−1

𝑇

𝑡

𝑗=1

 

𝜕𝐸

𝜕𝑊𝑐ℎ
=  ∑ δ𝑐̃,𝑗ℎ𝑗−1

𝑇

𝑡

𝑗=1

 

𝜕𝐸

𝜕𝑏𝑜
=  ∑ δ𝑜,𝑗

𝑡

𝑗=1

 

𝜕𝐸

𝜕𝑏𝑖
=  ∑ δ𝑖,𝑗

𝑡

𝑗=1

 

𝜕𝐸

𝜕𝑏𝑓
=  ∑ δ𝑓,𝑗

𝑡

𝑗=1

 

𝜕𝐸

𝜕𝑏𝑐
=  ∑ δ𝑐̃,𝑗

𝑡

𝑗=1

 

𝜕𝐸

𝜕𝑊𝑜𝑥
=  

𝜕𝐸

𝜕𝑛𝑒𝑡𝑜,𝑡

𝜕𝑛𝑒𝑡𝑜,𝑡

𝜕𝑊𝑜𝑥
=   𝛿𝑜,𝑡𝑋𝑡

𝑇 
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(19) 

 

 

 

(22) 

 

 

 

(20) 

 

 

 

(21) 

 

 

 

In formula (18), 

𝑛𝑒𝑡𝑜,𝑡 =  𝑊𝑜ℎℎ𝑡−1 + 𝑊𝑜𝑥𝑋𝑡 +  𝑏𝑜 

And: 

𝜕𝐸

𝜕𝑊𝑓𝑥
=   𝛿𝑓,𝑡𝑋𝑡

𝑇 

𝜕𝐸

𝜕𝑊𝑖𝑥
=   𝛿𝑖,𝑡𝑋𝑡

𝑇 

𝜕𝐸

𝜕𝑊𝑐𝑥
=   𝛿𝑐̃,𝑡𝑋𝑡

𝑇 
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CHAPTER 3 RESEARCH METHODOLOGY 
 

3.1 Research Flow 

 

 

  

Obtain data through TE 

process simulation 

Preprocessing to get training 

data and test data 

Train Fault Diagnosis model 

through training data 

Enter test data for testing 

Get the diagnostic 

classification result 

Start 

End 

Figure 3. 1 Flow diagram on research project 
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(23) 

(24) 

 (25) 

(26) 

 

3.2 Data from Tennessee Eastman Process (TEP) 

3.2.1 Process flowsheet 

The Tennessee Eastman Process (TEP) is a simulation model of a real-world industrial 

process. The simulation model is well suited to process control technology research, but it may 

also be used to analyze other types of control difficulties. The TEP is shown in Figure 3.2 as a 

flowsheet. The reactor, product condenser, vapor-liquid separator, recycling compressor, and 

product stripper are the five major components of the TEP (Yin et al., 2014). The TEP is a 

closed-loop control mechanism that covers the whole facility. The simulated process may 

create simulated data at a sampling period of 3 minutes and can replicate normal functioning 

situations as well as 20 faulty conditions. Two sets of data, training datasets and testing datasets, 

are generated for each instance (whether normal or faulty). The training datasets are used to 

build a statistical prediction model, while the testing datasets are used to measure the classifier's 

accuracy.  

The inert B, together with the gaseous reactants A, C, D, and E, is fed into the reactor, which 

produces the liquid products G and H. In the reactor, there are the following reactions equations 

(23) – (26). 

A(g) + C(g) + D(g) → G(liq),    

A(g) + C(g) + E(g) → H(liq), 

A(g) + E(g) → F(liq), 

3D (g) → 2F(liq). 
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Figure 3. 2 the flowsheet for industrial plant of TE process
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The reaction produces the species F as a by-product. In terms of reactant concentrations, the 

reactions are irreversible, exothermic, and approximately first-order. The reaction rates are 

Arrhenius functions of temperature, with the G reaction having a larger activation energy than 

the H reaction, resulting in greater temperature sensitivity. A condenser cools the reactor 

product stream before it is supplied to a vapor-liquid separator. A compressor recycles the 

vapour from the separator back into the reactor feed. To prevent inert and byproduct 

accumulation in the recycling process, a part of the recycle stream is purged. The separator's 

condensed components (Stream 10) are pumped to a stripper. The remaining reactants from 

Stream 10 are stripped from Stream 4 and mixed with the recycling stream through Stream 5. 

The products G and H leaving the stripper's base are routed to a downstream process not shown 

in the Figure 3.2. 

3.2.2 Process Variables 

There are 41 variables that can be measured and 12 variables that can be manipulated 

in this procedure. The manipulated variables are listed in Table 3.1. Table 3.2 lists the 22 

measured variables, XMEAS (l) through XMEAS (22), that are sampled every 3 minutes. Table 

3.3 lists the 19 composition measurements (XMEAS (23) through XMEAS (41). Streams 6, 9, 

and 11 were used to collect the composition data. Streams 6 and 9 have a sample interval and 

time delay of 6 minutes, whereas Stream 11 has a sampling period and time delay of 15 minutes. 

Gaussian noise is present in all process measurements. 
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Table 3. 1 Manipulated Variables 

Variable Description 

XMV(1) D Feed Flow (Stream 2) 

XMV(2) E Feed Flow (Stream 3) 

XMV(3) A Feed Flow (Stream 1) 

XMV(4) Total Feed Flow (Stream 4) 

XMV(5) Compressor Recycle Valve 

XMV(6) Purge Valve (Stream 9) 

XMV(7) Separator Pot Liquid Flow (Stream 10) 

XMV(8) Stripper Liquid Product Flow (Stream 11) 

XMV(9) Stripper Steam Valve 

XMV(10) Reactor Cooling Water Flow 

XMV(11) Condenser Cooling Water Flow 

XMV(12) Agitator Speed 

 

Table 3. 2 Process Measurement (3 minutes sampling interval) 

Variable Description Units 

XMEAS (1) A Feed (Stream 1) kscmh 

XMEAS (2) D Feed (Stream 2) kg/hr 

XMEAS (3) E Feed (Stream 3) kg/hr 

XMEAS (4) Total Feed (Stream 4) kscmh 

XMEAS (5) Recycle Flow (Stream 8) kscmh 

XMEAS (6) Reactor Feed Rate (Stream 

6) 

kscmh 

XMEAS (7) Reactor Pressure kPa gauge 

XMEAS (8) Reactor Level % 

XMEAS (9) Reactor Temperature °C 

XMEAS (10) Purge Rate (Stream 9) kscmh 

XMEAS (11) Product Separation 

Temperature 

°C 

XMEAS (12) Product Separation Level % 

XMEAS (13) Product Separation Pressure kPa gauge 

XMEAS (14) Product Separation 

Underflow (Stream 10) 

m3/hr 

XMEAS (15) Stripper Level % 

XMEAS (16) Stripper Pressure kPa gauge 

XMEAS (17) Stripper Underflow (Stream 

11) 

m° /hr 

XMEAS (18) Stripper Temperature °C 

XMEAS (19) Stripper Steam Flow kg/hr 

XMEAS (20) Compressor Work kW 

XMEAS (21) Reactor Cooling Water 

Outlet Temperature  

°C 

XMEAS (22) Separator Cooling Water 

Outlet Temperature 

°C 
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Table 3. 3 Composition measurement 

Variables Description Stream  Sampling Interval (min) 

XMEAS (23) Component A 6 6 

XMEAS (24) Component B 6 6 

XMEAS (25) Component C 6 6 

XMEAS (26) Component D 6 6 

XMEAS (27) Component E 6 6 

XMEAS (28) Component F 6 6 

XMEAS (29) Component A 9 6 

XMEAS (30) Component B 9 6 

XMEAS (31) Component C 9 6 

XMEAS (32) Component D 9 6 

XMEAS (33) Component E 9 6 

XMEAS (34) Component F 9 6 

XMEAS (35) Component G 9 6 

XMEAS (36) Componènt H 9 6 

XMEAS (37) Component D 11 15 

XMEAS (38) Component E 11 15 

XMEAS (39) Component F 11 15 

XMEAS (40) Component G 11 15 

XMEAS (41) Component H 11 15 
 

3.2.3 Process Faults 

There are 20 faults preprogrammed in the TEP simulation as tabulated Table 3.4. 

Sixteen of these deviations are well-known, while the other five are unknown. Fault 1–7 are 

linked to a step change in a process variable, such as the temperature of the cooling water input 

or the composition of the feed. The rise in the unpredictability of various process variables is 

linked to faults 8-12. Fault 13 is caused by a gradual drift in reaction kinetics, whereas fault 14 

and 15 are caused by stuck valves. The errors may be simulated singly or in conjunction with 

one another using the simulation software (Chiang L.H et al., 2001) 

 The TEP simulator can simulate 22 different conditions, including the normal state and 

20 different forms of programmed defects generated by various known process disruptions. All 

variables will be impacted after the defect is inserted, and some modifications will appear.  
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Table 3. 4 Process faults 

Variable Description Type 

IDV(1) A/C Feed Ratio, B Composition Constant (Stream 4) Step 

IDV(2) B Composition, A/C Ratio Constant (Stream 4) Step 

IDV(3) D Feed Temperature (Stream 2) Step 

IDV(4) Reactor Cooling Water Inlet Temperature Step 

IDV(5) Condenser Cooling Water Inlet Temperature Step 

IDV(6) A Feed Loss (Stream 1) Step 

IDV(7) C Header Pressure Loss - Reduced Availability (Stream 

4) 

Step 

IDV(8) A, B, C Feed Composition (Stream 4) Random 

Variation 

IDV(9) D Feed Temperature (Stream 2) Random 

Variation 

IDV(10) C Feed Temperature (Stream 4) Random 

Variation 

IDV(11) Reactor Cooling Water Inlet Temperature Random 

Variation 

IDV(12) Condenser Cooling Water Inlet Temperature Random 

Variation 

IDV(13) Reaction Kinetics Slow Drift 

IDV(14) Reactor Cooling Water Valve Sticking 

IDV(15) Condenser Cooling Water Valve Sticking 

IDV(16) Unknown  

IDV(17) Unknown  

IDV(18) Unknown  

IDV(19) Unknown  

IDV(20) Unknown  

   

 

3.3 Development of LSTM-based Fault Detection Model 

Various hidden layer nodes correlate to different diagnostic mistakes when neural 

networks are trained for different faults (for example, 20 faults in the TE process). The LSTM 

network based on the original LSTM neural network is optimized in this research by adding a 

link to the traditional LSTM to identify the ideal number of hidden layer nodes. The testing 

data is input to get the diagnostic result once the ideal number of hidden layer nodes has been 

identified. The diagnostic error is greatly decreased after the modification, showing that it has 

a very excellent impact, according to the results in the experimental section. A vector with a 
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(27) 

 

 

 

time length is used as the fault diagnostic model's input. The model produces a two-dimensional 

array as an output, allowing for defect categorization diagnosis.   

The percentage of training data and validation data can be manipulating to maximize 

the accuracy. The training data is imported into the model once the testing data is collected, 

and training is carried out after comparing the errors to identify the ideal number of hidden 

layer nodes. The testing data is loaded into the trained model, and the classification diagnosis 

result is predicted. The fault diagnosis accuracy rate will increase greatly if the appropriate 

hidden layer node number is determined. The algorithm fault detection for LSTM using 

MATLAB can be seen in the appendix A. 

3.4 Performance Evaluation of LSTM and ANN Model for Fault Detection. 

 

 The LSTM and ANN model are the suitable model to perform the fault detection on the 

nonlinear chemical process monitoring. The data that obtain from the TEP simulation will be 

used to perform for the fault detection. Although the data from the TEP is complex and 

nonlinear but both model can handle and detect the fault detection.  

 There are 2 different performance or assessment measures for both neural networks that 

are based on accuracy and speed. The evaluation measures based on accuracy include loss. The 

performance evaluation for LSTM model is based on accuracy. The accuracy is the number of 

true labels in the test data that match the classifications from classify divided by the number of 

images in the test data. The equation of the accuracy LSTM model can be seen in equation (27). 

𝑎𝑐𝑐 =
𝑠𝑢𝑚(𝑌𝑝𝑟𝑒𝑑 == 𝑌𝑡𝑒𝑠𝑡).

𝑛𝑢𝑚𝑒𝑙(𝑌𝑝𝑟𝑒𝑑)
 

Where acc, sum, Ypred, Ytest, and numel respectively the accuracy, summation, output 

predicition, output test and number of elements. A neural network that can identify the fault 

type of unseen signals with minimal error is said to have high accuracy. Therefore, the network 
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(28) 

 

 

 

is better the greater the accuracy. The performance evaluation that will be used for ANN model 

is Root Mean Square Error (RMSE). The equation of the RMSE can be seen in the equation 

(28). 

𝑅𝑀𝑆𝐸 = √[
1

𝑛
∑(|𝑥𝑖 − 𝑦𝑖|)2

𝑛

𝑖=1

] 

Where 𝑥𝑖 , 𝑦𝑖  and n respectively the input value, the measured value, and the total 

number of samples. The RMSE measures how far the data points are apart from the regression 

line (da Silva et al., 2022). The value of the RMSE and the percentage of the accuracy that 

obtain from the MATLAB software will be tabulate for both model. The elapsed time take for 

both model also will be compare to measure the speed of the fault detection.  

 The comparison of both model will be compared based on the accuracy of the LSTM 

model and RMSE for the ANN model. The accuracy for both model will be compared to 

determine which method will have better accuracy for the fault detection. The elapsed time 

also will be compare to determine the speed of the fault detection. The shorter elapsed time 

will show the faster response for the fault detection. 
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CHAPTER 4 RESULT AND DISCUSSION 
 

  

4.1 Fault Detection Model Development based on LSTM Model 

 

The proposed LSTM model for fault detection is using MATLAB software. The results of the 

LSTM model will show the accuracy of the fault detection. The accuracy of the fault detection 

will determine the effectiveness of the model. LSTM neural networks is used in order to 

obtained the accuracy of the LSTM model. In the LSTM model, the data needs to separate into 

two part which are training and validation. The results of training network using LSTM model 

for the first run for fault detection is shown in the Table 4.1. 

Table 4. 1 The summary of training network using LSTM model 

Summary of Training Network using LSTM model 

Results 

Validation accuracy (%) 85.18 

Training finished Max epochs completed 

Training Time 

Elapsed 23min 53 sec 

Training Cycle 

Epoch 30 of 30 

Iteration 4710 of 4710 

Iteration per epoch 157 

Maximum iterations 4710 

Validation 

Frequency 50 iterations 

Other information 

Hardware resource Single GPU 

Learning rate schedule Constant 

Learning rate 0.001 

 

 The summary of the training network shown that the validation accuracy is 85.18%. 

The training network also completed the max epochs and the training time took 23 minutes and 

53 seconds. The epoch and iteration of the training cycle is 30 of 30 and 4710 of 4710 
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respectively. The iteration per epoch is 157 and the maximum iterations are 4710. The 

validation of the frequency is 50. The other information that obtain from the training network 

is computational effort for this iterative calculation is done based on single Graphical 

Processing Unit (GPU) CUDA-core capacity. GPU has speed up the computational process as 

compared to the previous method based on the Central Processing Unit (CPU) core capacity as 

discussed in Chapter 4.2. The learning rate schedule is constant and learning rate at 0.001. 

In the Figure 4.1, it shows the graph for training network using LSTM method. Based 

on this graph, we can see that there are two types of graph which are accuracy graph and loss 

graph. In the accuracy and loss graph, both graph has three type of lines. In the accuracy graph, 

the darker blue line shows the smoothed training line, the light blue line show training line and 

black dotted line with the circle is the validation line. In the loss graph, the darker red line 

shows the smoothed training line, the light red show training line and black dotted line with 

the circle is the validation line.  The darker line is the smoothed line from the normal training 

to make the graph look better and nice. When the accuracy graph is increase, the loss graph 

will be decrease. At the iteration 2000 in both graph, we can see that both graph is already 

stable and the validation accuracy become more accurate. Thus, both graph is related with each 

other. 
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Figure 4. 1 Accuracy graph using LSTM method 
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