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CIRI-CIRI ALIRAN DAN PERSAMAAN BEBAN REKABENTUK TSUNAMI 

UNTUK BANGUNAN KEDIAMAN YANG TERLETAK DI GARIS PINGGIR 

LAUT MALAYSIA 

ABSTRAK 

Kerosakan bangunan yang disebabkan oleh tsunami telah disaksikan secara 

terbukti oleh tinjauan pasca tsunami di seluruh dunia, termasuk Malaysia. Setakat ini, 

bangunan yang terletak di garis pinggir laut Malaysia tidak dibina dan direka untuk 

beban tsunami dan mudah terdedah kepada ancaman tsunami masa depan. Dengan 

itu, eksperimen hidraulik dan simulasi berangka telah dijalankan untuk menilai 

impak tsunami pada bangunan kediaman satu tingkat biasa di Malaysia pada skala 

1:50. Keadaan gelombang nominal dengan kes melepasi dan tanpa melepasi 

bumbung telah diuji untuk mengkaji kesannya dalam kombinasi dengan setiap jenis 

model bangunan dilengkapi dengan bukaan dan tanpa bukaan. Hasil kajian 

eksperimen hidraulik menunjukkan bahawa model bangunan dengan bumbung gabel 

mempunyai kenaikan 12% dan pengurangan 52% daripada daya teraruh pada muka 

depan dan belakang masing-masing. Ketika gelombang tsunami mengalir melalui 

model bangunan, daya teraruh di muka depan dinding dalaman meningkat sehingga 

50% semasa pembukaan depan meningkat daripada 15% kepada 35%, manakala 

pengurangan sehingga 30% telah ditunjukkan semasa dinding dalaman berpindah 

dari 60 mm ke 180 mm. Bagi bahagian belakang dinding dalaman, daya saling 

berkaitan dengan setiap parameter bukaan depan dan belakang serta konfigurasi 

dinding dalaman. Bagi senario yang paling teruk di mana kedudukan dinding 

dalaman berhampiran dengan bukaan belakang yang lebih kecil, daya pada muka 

belakang di dinding dalaman meningkat sehingga 100% semasa pembukaan depan 

meningkat daripada 15% kepada 35%. Memandangkan cabaran dalam 
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mensimulasikan penyebaran gelombang tsunami dan gerakan impulsif semasa impak 

pada dinding menegak, satu model berangka tiga dimensi yang bertaraf tinggi 

(VSIAM3+TM) telah dibangunkan untuk permodelan tsunami. Berdasarkan 

pendekatan kombinasi dari analisis eksperimen dan berangka, persamaan empirik 

bagi anggaran tekanan gelombang pada muka depan dan belakang bangunan telah 

dicadangkan. Bagi anggaran impak tsunami pada muka depan dinding dalaman, satu 

kaedah baru dari sudut olakan (β) telah dicadangkan dengan mempertimbangkan 

kesan bukaan depan dan konfigurasi dinding dalaman. Sebaliknya, faktor tidak 

berdimensi nisbah bagi bukaan depan ke belakang telah dicadangkan, dengan 

memandangkan kesan kedua-dua bukaan depan dan belakang untuk menentukan 

daya maksimum pada muka belakang dinding dalaman. Dengan memandangkan 

kekurangan kajian terhadap impak tsunami pada dinding dalaman, hasil dalam kajian 

ini dipercayai akan mezahirkan pandangan baru ke arah pembangunan reka bentuk 

bangunan yang berdaya tahan tsunami. 
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TSUNAMI FLOW CHARACTERISTICS AND DESIGN LOAD EQUATIONS 

FOR RESIDENTIAL BUILDINGS LOCATED AT MALAYSIAN 

COASTLINE 

ABSTRACT 

Tsunami-induced damage of building has been evidentially demonstrated by 

the post-tsunami surveys worldwide, including Malaysia. Up to present, buildings 

located at Malaysian coastline are not tsunami proof and are susceptible to the future 

tsunami threat. Motivated by the above concerns, hydraulic experiment and 

numerical simulation were conducted to evaluate the tsunami impact on a Malaysian 

typical single-storey residential building at a reduced scale of 1:50. Nominal wave 

conditions with wave-overtopping and non-overtopping cases were tested to study its 

effects in combination with each building model type with and without opening. 

Hydraulic experimental results demonstrated that the building model with a gabled 

roof had a 12% increment and 52% reduction of the force induced on the front and 

back faces, respectively. As the tsunami wave flowed through a building model, the 

induced force on an internal wall’s front face increased up to 50% as the front 

opening size increased from 15% to 35%, whereas a decrement up to 30% was 

demonstrated as the internal wall moved from 60 mm to 180 mm. For the back face 

of an internal wall, the force interrelated with each parameter of front and back 

opening and the internal wall configuration. For the worst scenario where an internal 

wall was positioned near a smaller back opening, the back face force on the internal 

wall increased up to 100% as the front opening increases from 15% to 35%. For 

tsunami modelling, a three-dimensional higher-order numerical model 

(VSIAM3+TM) was developed, in view of challenges in simulating the tsunami 

wave propagation and its impulsive motion during impact on a vertical wall. Based 
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on the combinational approach from the experimental and numerical analysis, 

empirical equations for wave pressure estimation on the front and back faces of a 

building were first proposed. For the estimation of tsunami impact on an internal 

wall’s front face, a new measure of the wake clearance angle (β) was proposed, 

considering the effect of the front opening and the internal wall configuration. 

Conversely, a dimensionless factor of front to back opening ratio was proposed, 

considering the effect of both front and back openings to determine the maximum 

force on an internal wall’s back face. As there were paucity studies on the tsunami 

impact on an internal wall, the findings in this study were believed to provide new 

insight towards the development of the design of a tsunami-resilient building. 
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CHAPTER 1  
 

INTRODUCTION 

1.1 An overview of tsunami occurrence  

 

Recent years, tsunami is one of the most feared natural disasters which has 

been making scenes around the world and Malaysia is no exemption. The term 

tsunami is derived from the characters: tsu (meaning harbor) and nami (meaning 

wave) (Koshimura, 2019). Tsunami is a series of water waves associated with the 

coastal geological processes that cause a sudden disturbance on the ocean. For 

example, earthquakes, landslides, volcanic eruptions and even impacts from the 

meteorological effect have the potential to trigger a tsunami (Qiu et al., 2019). Figure 

1.1 illustrates the tsunami generation mechanism caused by a submarine earthquake.  

 

 

Figure 1.1 Tsunami generation mechanism caused by a submarine earthquake 

(Koshimura, 2019) 
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Based on Figure 1.1, the tsunamigenic earthquake occurs in a subduction 

zone, where an oceanic plate subducts beneath an overriding plate. The relative 

motion and the friction between the subducting and overriding plates cause the 

deformation of the overriding plate. As soon as the stress accumulated between the 

two tectonic plates reaches its limit, the overlying plate is pushed upward as a fault 

rupture. Finally, a tsunami wave is generated due to the vertical displacement of the 

seafloor. Tsunami comprises a series of long waves with wavelength up to several 

hundred kilometres and flow velocities of several hundred to a thousand kilometres 

per hour. For a typical tsunami, the water surface fluctuates near the shore with an 

amplitude of several meters during a short period of approximately a few minutes 

(Yeh et al., 2005). When tsunami wave approaches a shore, its tremendous amount of 

energy remains nearly constant and induces a huge force on the structures as it 

travels across the inundation zone. 

Even though a tsunami is a rare event, its impact is devastating. There are 

four major tsunamis striking the coastline around the Pacific Rim: 2004 Indian 

Ocean tsunami, 2009 American Samoa tsunami, 2010 Chilean tsunami and 2011 

Tohoku tsunami. The 2004 Indian Ocean tsunami is perhaps the most devastating 

tsunami in the recorded history which has claimed more than 226,226 estimated lives 

in several countries across the entire Indian Ocean basin (Rossetto et al., 2007). 

Seven years later, the 2011 Tohoku tsunami occurred on 11 March 2011, affecting 

almost all of the northeast coast of Japan and causing around 20,000 fatalities 

(Lekkas et al., 2011). Recently, the latest tsunami has occurred in September 2018, 

following a massive earthquake striking the Sulawesi Island. The combined effects 

of the tsunami and the soil liquefaction have left a destructive impact on the affected 

coastal communities (Omira et al., 2019).  



3 

The enormous force exerted by the tsunami could inflict great destruction to 

the structures, particularly buildings. The tsunami-affected buildings observed via the 

past tsunami events can be categorized into engineered buildings (those with proper 

engineering design) and non-engineered buildings that are spontaneously and 

informally constructed (Chock, 2013; Lekkas et al., 2011; Takahashi et al., 2011). 

Complete destruction has been observed for those non-engineered buildings such as 

the wooden buildings, whereas the engineered structures (reinforced concrete and 

steel buildings) behaved better. Yet, there is major and minor damage to the 

engineered buildings. The tsunami-induced building failure mechanisms include out-

of-plan failure of a wall, tilting by scouring or collapse, overturning and large 

residual deformation.  

Malaysian had not expected that a tsunami could strike the western shores of 

Peninsular Malaysia in 2004. In Malaysia, the 2004 Indian Ocean tsunami is the first 

and only tsunami recorded, where the major affected areas include Penang Island, 

Langkawi Island and Kuala Muda. A total of 68 people were killed, 6 people were 

missing, 300 people were injured, 1535 houses were destroyed, fishing facilities and 

equipment including 1332 boats were damaged during the 2004 tsunami event 

(Colbourne, 2005). In addition, the tsunami-caused impacts include the extensive 

destruction of agricultural farms and psychological trauma. In terms of the structural 

damage, different structural systems and construction materials have a different 

extent of structural damage.  

Due to Malaysia lies in the “shadow” of Sumatra (as the epicenter is located 

to the West of Sumatra), the casualties and damage caused by the 2004 Indian Ocean 

tsunami are not as severe as the neighbouring countries. However, the 2004 tsunami 

event has changed the mindset of Malaysian citizens that the country is safe against 
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tsunamis. As this event is one of the most critical disaster occurrences happened in 

the country, the tsunami prevention has gained considerable interest from the 

government of Malaysia to assess the tsunami threats and formulate an effective 

solution for reducing tsunami hazard and building a resilient society. 

 

1.2 Problem statement 

 

Following 2004 Indian Ocean tsunami, a number of computational 

simulations have been carried out by Mokhtar et al. (2008), Dao et al. (2009), Koh et 

al. (2009), Karim et al. (2010), Pedersen et al. (2010), Ismail and Wahab (2011), Teh 

et al. (2011), Shaari et al. (2013), Chai et al. (2014) and Nordin et al. (2018), 

focusing on the tsunami generation and propagation towards Malaysia. In Malaysia, 

the experimental studies on the tsunami force on the structures are only embarked in 

2014 (Moon et al., 2014; Rahman et al., 2014), whereas the recent study of Mokhtar 

et al. (2019) experimentally investigated the tsunami bore impact on a perforated 

seawall. Overall, there is a paucity of the studies on the tsunami impact on a 

building. 

The post-tsunami surveys have evidently demonstrated the building damage 

in the inundation zone during the 2004 Indian Ocean tsunami striking Peninsular 

Malaysia as shown in Figure 1.2. Kuala Muda suffers the most severe impact in 

terms of the building damage during 2004 tsunami event. Based on Figure 1.2, most 

of the damaged buildings are non-engineered (mainly masonry houses), thereby 

lacking the strength to withstand the tsunami force. Wall blowout and wall failure are 

the common damage modes that can be observed in most of the damaged buildings 

(Figure 1.2). 
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Figure 1.2 Building damage in Kuala Muda during 2004 Indian Ocean tsunami 

 

MOSTI (2009) reported that Malaysian coastal dwellings may be under threat 

from a future tsunami. Yet to date, the design of a tsunami-resistant building in 

Malaysia still halts at the infant stage due to the lack of knowledge on tsunami 

impact on structures. The variability of tsunami forces is based on a site-specific 

basis. Without an understanding of the runup characteristics and forces of the 

tsunami, more lives will be claimed, and more properties will be damaged when the 

next tsunami hits us. Motivated by the above concern, the present study 

experimentally and numerically evaluates the flow characteristics of the tsunami 

wave striking Malaysia, with the aim of proposing the tsunami design loadings on a 

building. 

Over the past decades, numerous researches in other tsunami-prone countries 

were oriented towards the tsunami forces estimation on structures, particularly 

buildings, focusing on simplified block models (Arabi et al., 2019; Arnason et al., 

2009; Asakura et al., 2002; Bridges, 2011; Foster et al., 2017; Thomas et al., 2015; 

Wüthrich et al., 2019). In fact, a real building has openings and roof. Therefore, 

building model with different sizes of openings had also been attempted, so that the 

water is able to flow inside the building (Liew, 2015; Lukkunaprasit et al., 2009; 

Thusyanthan and Madabhushi, 2008; Wilson et al., 2009; Wüthrich et al., 2018a). 



6 

However, the afore-mentioned studies overlook the tsunami force acting on the 

interior part of a building, as the maximum force acts on the exterior part when a 

building is subjected to a tsunami wave. From the viewpoint of engineering, it is 

impractical to design an internal wall by using the maximum design loads for the 

external wall. 

In fact, the tsunami force on an internal wall might be influenced by the 

opening (as shown in Figure 1.2), provided the external wall can resist the tsunami 

wave force. Up to present, the study of Triatmadja and Nurhasanah (2012) and 

Mizutani et al. (2014) demonstrated the effect of an internal wall on the tsunami 

force on a building. Although the arising researches have been carried out, there is no 

relationship proposed to study the effect of the spatial arrangement of an internal 

wall. Therefore, a generalized empirical equation is needed for the estimation of 

tsunami force on an internal wall, considering the effect of various openings and 

internal wall configurations. To successfully accomplish the research framework, this 

study proposes the design tsunami loads for two different categories: interior and 

exterior parts, so that the coastal building performs better when the next tsunami hits 

the coastline. The present study thus provides new insight towards the development 

of the design of a tsunami-resilient building instead of a tsunami-resistant building 

based on the consideration in term of economic aspect. 

As an alternative to physical experiment, the study on tsunami force on 

structure has also been investigated with the aid of the numerical simulation. 

Throughout the years, tsunami simulation has been done by using the commercial 

Computational Fluid Dynamics (CFD) software (Arabi et al., 2019; Douglas and 

Nistor, 2015; Ghosh et al., 2016; Ghosh et al., 2019; Guler et al., 2018; Gupta et al., 

2019; Hartana and Murakami, 2015; Huang and Zhu, 2015; Jiang et al., 2017; Kihara 
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and Kaida, 2019; Qin et al., 2018; Sarjamee et al., 2017; Yang et al., 2018). Apart 

from the licensing cost, the limited option of choosing and changing the numerical 

schemes are the limitations of the commercial CFD software. Although the 

numerical scheme with lower-order accuracy is easy to converge, the numerical 

diffusion occurs (Puay, 2009; Zhang et al., 2015), results in less accuracy for the 

simulated results. The study of Moon et al. (2018) demonstrated that the lower-order 

scheme reproduces a lower propagation speed as compared to the higher-order 

scheme.  

As tsunami flow undergoes the impulsive motion, the accuracy of the 

numerical model is highly dependent on the accuracy of the momentum equation 

solver. With continued rapid progress in the development of the numerical scheme, 

conservative and oscillationless higher-order schemes should be disclosed deeper for 

the application of tsunami wave propagation, in order to reproduce tsunami wave 

with accurate propagation speed and induced impact pressure. In this context, a 

three-dimensional numerical model with the higher-order numerical scheme is 

proposed to reproduce the hydraulic experiment and supplement the experimental 

results. 

 

1.3 Research objectives 

 

This study aims to experimentally and numerically study the tsunami flow 

characteristics and loading on the typical residential buildings in Malaysia. The 

specific objectives of this study are: 

a. To evaluate the effect of a gabled roof and a flat roof on the tsunami flow 

characteristics and the induced loads on a building. 
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b. To experimentally investigate the characteristics of tsunami flow through a 

building with various openings and internal wall configurations.  

c. To develop a numerical model with higher-order schemes for the wave 

propagation over dry-land and the wave impact on a building. 

d. To propose empirical equations for estimating the tsunami loads on external and 

internal walls of a building. 

 

1.4 Scope of study 

 

In the present study, the target building prototype is a typical single-storey 

residential building with a gabled roof located at Malaysian tsunami-prone coastline. 

Prior to the execution of the hydraulic experiment, a relatively gentle slope for the 

tsunami-prone coastal areas in Malaysia was chosen and used for the establishment 

of wave flume’s platform. The bed of the shore was assumed to be rigid and without 

friction. 

In the hydraulic experiment, a dam-break mechanism was used to generate 

tsunami waves with 40, 70 and 100 mm nominal wave conditions, comprising the 

cases of wave overtopping and non-overtopping on the building model. Only tsunami 

runup was simulated, whereas the tsunami drawdown was not considered. Notably, 

the flow consisted of clean water as sediment transport was not concerned in this 

study. In this study, the building model was only tested with its short face towards 

the incoming waves, hereafter referred to as the 0 orientation. Two cases of building 

models with and without openings were tested separately in the hydraulic 

experiment. 
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In numerical modelling, the fluid flow was described by the Eulerian method 

where the fluid moves relative to the mesh. A multiphase volume of fluid (VOF)-

based model was developed based on the volume/surface integrated average multi-

moment method (VSIAM3) framework. In the simulation of tsunami propagation on 

land, supplementary scenarios with 50, 60, 80, 90 mm nominal wave conditions were 

simulated and only building model without opening was subjected to a tsunami 

wave. 

 

1.5 Organization of thesis 

 

This thesis is structured into five chapters. Chapter 1 begins with an overview 

of tsunami occurrence. The problem associated with the tsunami risk, research 

objectives and scope of the study was presented. Chapter 2 reviews the literature and 

findings related to the characteristics of tsunami bore and surge, the past major 

tsunami occurrence and the tsunami force on building in both experimental and 

numerical studies. Several numerical models are briefly introduced, together with the 

numerical schemes used by the previous studies. Chapter 3 summarizes the 

methodology and procedure, covering the experimental and numerical parts. Chapter 

4 discusses the findings of the experimental study. Discussions related to the results 

were elucidated in terms of various nominal wave conditions, various openings, and 

internal wall configurations. Chapter 5 presents the numerical results and discussion, 

together with the proposed methodology for the tsunami force estimation on 

buildings. Chapter 6 underlines the conclusions of this study and proposes further 

recommendations for future studies.  
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CHAPTER 2  
 

LITERATURE REVIEW 

This chapter provides comprehensive literature pertaining to the background 

information of tsunami in terms of the tsunami characteristic on bore and surge and 

an overview of past and recent major tsunami events. The post-tsunami survey and 

the future tsunami occurrence in Malaysia are highlighted, followed by the tsunami 

design forces. The up-to-date information related to experimental and numerical 

studies on structure against tsunami loading is deeply elucidated in this chapter.  

 

2.1 Tsunami characteristic on bore and surge 

 

Tsunami, a long wave phenomenon, is characterized as a shallow water wave 

in the condition of water depth less than 5% of the wavelength, which is different 

from the wind-generated waves. However, same parameters (wave height, wave 

period, wavelength and phase velocity) are applied to describe both tsunami and 

wind generated waves. In general, tsunami could possess a wave period of 10 

minutes to hours, and a wavelength of 100-500 km in an open sea, excessing 200 km 

in a deep ocean and mostly above 10 km (crest-to-crest distance) in coastal region 

(Ward and Asphaug, 2002). It is easily influenced by the diffraction and refraction as 

well as undergo shoaling and breaking process when approaching the coastline. In a 

deep sea, the initial amplitude of a tsunami is usually small (a meter or less), but it 

travels at high speed, with relatively small wave height. As the tsunami propagates, 

the amplitude of tsunami decreases for the wave energy, owing to the rate at which a 

wave loses its energy is inversely proportional to its wavelength (Liu et al., 2009).  
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As the tsunami propagates towards the shallow waters at coastal areas, it 

undergoes a rapid transformation, in which the speed of tsunami reduces with the 

increase of tsunami wave height, due to the energy loss and the total energy flux of 

tsunami remains constant as shown in Figure 2.1 (Nelson, 2011). According to the 

theory of conservation energy, the kinetic energy is converted to the potential energy 

as the tsunami speed slows down, and this “shoaling” effect leads to the growth of 

the wave height in several meters and more as the tsunami travels towards the coastal 

zones. On the other hand, as the tsunami approaches the shore where the water depth 

keeps decreasing at the runup zone, the wave rises in height and undergoes a series 

of wave-breaking process, or even transforms to a bore, a step-like wave with a steep 

breaking in front, as the tsunami breaks far offshore (Yeh and Mok, 1990).  

Tsunami bore is a broken wave with infinite wavelength and uniform water 

depth, which is also known as surges as it rushes over the land. When the tsunami 

bore reaching the shoreline, the water velocity approaches the velocity of the wave 

propagation, leading to an accumulation of turbulence. If the energy of this high 

turbulence is released towards the dry shore, it could inundate the communities at 

coastal areas and cause severe damage (Yeh and Mok, 1990). Over the past decades, 

extensive efforts have been focused on the experimental investigation of the tsunami 

bore runup mechanism. Cross (1967) investigated the surge characteristics in terms 

of the shape of the measured and the theoretical surge wave. Based on the findings, 

the measured shape of the surge was observed to be in a good agreement with the 

theoretical surge profile. It was also identified that the wet-bed bore has a steeper 

front than that of the dry-bed surge, in accordance with the observation by Ramsden 

(1996).  
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(a)                                                               (b) 

Figure 2.1 Formation of tsunami wave spread 

 

Heller et al. (2005) studied the fundamental hydraulic features of the tsunami 

runup through the observation of the wave surface profiles and the internal velocity 

distributions of the solitary wave. The wave-breaking process was classified into 

various stages, including the wave shoaling, front overturn and followed by the 

development of a bore and subsequently massive air entrainment into the wave front, 

as illustrated in Figure 2.2. In the study by Chanson (2006), the instantaneous free 

surface flow profiles of a tsunami-induced bore with floating bodies were compared 

to a dam-break flow on a horizontal bed. The results revealed the analogy between 

the propagation of tsunami-induced bores and dam-break flow.  

An empirical model that predicts the bore front velocity was developed by 

(Murty, 1977; Kirkoz, 1983; Bryant, 2001; Matsutomi and Okamoto, 2010; FEMA 

P-646, 2012). The afore-mentioned studies estimated the flow velocity of the bore in 

terms of the bore height, as illustrated in Figure 2.3. The findings implied that the 

inundation flow carried numerous floating bodies with the approximately same speed 

as the bore, which might influence the bore characteristics. In the research of 

Klettner et al. (2012), wave breaking and bores formation onshore were studied. The 

experimental results verified that the recede of shoreline during a tsunami was due to 

the shoreward water drawn into the V-shaped depression wave. In addition, the 

Open sea wave is of 

high speed and 

small amplitude In shallow water, the 

wave speed slows and 

its amplitude grows
Tsunami 

waves spread

Violent subduction 

event causes 

earthquake and 

sudden water 
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hydraulic bore was observed to develop and runup on the beach when the trailing 

positive wave broke in the experiment. A recent investigation was conducted by 

Wüthrich et al. (2018b) to study the forces and moments experienced by a building 

subjected to both tsunami bore and surge.  

 

 
(a)                                         (b) 

 
(c)                                         (d) 

Figure 2.2 Various stage of wave breaking process: (a) Wave shoaling, (b) Front 

overturn, (c) Development of a bore, and (d) Massive air entrainment into wave front 

(Heller et al., 2005) 

 

 

Figure 2.3 Relation between average tsunami bore velocity and bore height for 

different studies, prototype scale (Shafiei et al., 2016) 
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2.2 Past and recent major tsunami events 

 

Since ancient time, tsunamis were observed and reported, especially in Japan, 

Indonesia and the Mediterranean areas. Historically from 1901 to 2016, the Pacific 

Ocean is the main tsunamigenic region with approximately 75% of tsunami events 

occurred within its basin, 10% in the Atlantic, 9% in the Mediterranean region, and 

followed by 6% in the Indian Ocean (Gusiakov et al., 2019). Owing to the 

catastrophic nature of tsunami and the huge volume of sea water released at high 

energy that is capable of overtopping intricately the shorelines, dams and a larger 

part of coastal zones, a devastating tsunami can cause a series of widespread impacts 

such as great damage of cars, building and infrastructures, destruction of coastal 

village, post-tsunami disease outbreak, and fatal consequences (Qiu et al., 2019).  

Figure 2.4 depicts the historical timelines of major destructive tsunamis that 

causes 2000 or more deaths from 1900s to 2010s. According to Guha-Sapir et al. 

(2015), a total of more than 260,000 deaths (average 4600 deaths per occurrence) 

were reported from 58 tsunamis in 100 years. As compared with other natural 

disasters such as earthquakes, tornadoes, hurricanes, volcanic eruption and floods, 

the highest rate of fatalities was observed from tsunamis (Koshimura, 2019). Two 

recent tsunami events, the 2004 Indian Ocean tsunami and the 2011 Tohoku tsunami, 

are recognized as the most catastrophic tsunami worldwide, with the extensive 

destruction to the coastal area and remarkable loss of life among coastal 

communities.  

 



 

 

1
5

 

 

Figure 2.4 Historical timeline of major devastating tsunamis with 2000 or more fatalities from 1900s to 2010s 
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2.2.1 2004 Indian Ocean tsunami  

 

Sumatra-Andaman earthquake, a devastating megathrust earthquake with a 

magnitude of 9.0 had occurred off the northwestern coast of Sumatra, Indonesia on 

26 December 2004 (USGS, 2014). An unprecedented tsunami was generated, and the 

tsunami wave height was reported at 50-100 feet high along a 60 mile stretch of the 

northwestern coast of Sumatra, Indonesia by the International Tsunami Survey Team 

(Sumatra International Tsunami Survey Team, 2005). The catastrophic tsunami hit 

the coastal areas along the Indian Ocean within minutes, including the coast of 

Indonesia, Thailand, Sri Lanka and India, and Kenya in 15 minutes, 2 hours, 3 hours 

and 9 hours later after the earthquake, respectively (Morrow and Llewellyn, 2006).  

A total of 10 nation regions including Maldives, Malaysia, Myanmar and East 

Africa were also affected. In order to document the effects of Indian Ocean tsunami 

for further building structural planning and preparedness, several survey teams had 

performed post-tsunami wave and runup height surveys in the south and east coast of 

most of the tsunami-affected regions. Table 2.1 tabulates the measured tsunami 

runup height at each region, presented by the survey team of Korean Society of 

Coastal and Ocean Engineers (KSCOE). Due to the interaction between wave and 

coastal topography as well as different distance from the tsunami source, the runup 

heights at different coastal regions were varied widely. Accordingly, the highest 

runup height was observed at 48.86 m in the Indian Ocean at Lampuuk Beach, Lhok 

Nga on the northern Sumatra. 

Up to date, the 2004 Indian Ocean tsunami is categorized as the top 

devastating tsunami with the highest casualties (Gusiakov et al., 2019). Apparently, 

irreversible tsunami impacts on the structural damage of building were observed. 
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Owing to the difference in the type of the materials and the coastal defence structure, 

these buildings in the tsunami-affected areas suffered damage at different degrees, as 

shown in Figure 2.5. In Indonesia and Thailand, typical low-cost and residential 

wooden frames house along the coastal areas, constructed with corrugated steel sheet 

roof or tile were unconditionally disintegrated by the massive tsunami. In other 

words, the wooden construction materials were completely destroyed and broken 

down into countless pieces of wooden debris (Figure 2.5(a)). 

 

Table 2.1 Measured tsunami runup height at each region during 2004 Indian 

Ocean tsunami (Choi et al., 2006) 

Region Maximum tsunami runup height (m) 

Andaman-Nicobar Islands 16.50 

India 11.46 

Indonesia 48.86 

Malaysia 7.40 

Maldives 4.43 

Myanmar 6.70 

Sri Lanka 10.87 

Thailand 19.96 

 

According to the study of Ghobarah et al. (2006), it was reported that the 200 

mm square columns in the non-engineered concrete frame structures with masonry 

infill had suffered significant damage, and the 50 mm thick masonry walls suffered 

an out-of-plane punching shear failure due to the higher tsunami forces. Due to this, 

tsunami waves had easily swept away all the contents of the buildings, and left the 

empty shells with beam, column and wall failures, resulting in a collapse of the 

buildings (Figure 2.5(b)). On the contrary, minor damage was found on the building 

with engineered and well-constructed reinforced (RC) concrete frame structures in 

Banda Aceh and Thailand (Figure 2.5(c)). The buildings survived from the tsunami 

attack and high tsunami runup levels. Besides this, a meteorological building 
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featured with small square columns (150 mm), columns spaced (4 m), floor height 

(2.5-3 m), thick unreinforced infill masonry panels (100 mm), and a small number of 

dowel bars connecting the panels with the boundary of RC frames failed to withstand 

the tsunami waves height of 2.5 m or higher, and completely destroyed in Takua Pa, 

Phang-Nga (Figure 2.5(d)) (Lukkunaprasit and Ruangrassamee, 2008).  

 

  
(a) (b) 

  
(c) (d) 

Figure 2.5 Tsunami impacts on the (a) wooden frame houses, (b) non-engineered 

lightly RC building, (c) well-constructed RC building (Gusiakov et al., 2019), and 

(d) RC building with unreinforced infill masonry panels (Lukkunaprasit and 

Ruangrassamee, 2008) 

 

However, the majority of RC structures (2-3 storeys) survived with minor to 

moderate damage from collapse, in the wave heights of 3-6 m from the ground 

surface (Figure 2.6). As a result of the current practice of weakly connecting infill 

masonry panels to the boundary RC frames with widely spaced small diameter 
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dowels (6 mm diameter at about 400 mm spacing), which serves to work well in 

detaching the brick walls from the frames under an excessive water pressure, thereby 

reducing the force transmitted to the building. This can be evidenced by the sound 

RC buildings in Khao Lak, the buildings withstood waves height of about 6 m from 

the ground, as shown in Figure 2.6(a). Likewise, a large resort building near the 

shoreline along the Phi Phi Don Island, had suffered non-structural damage, and the 

structural frames remained intact (Figure 2.6(b)). 

 

  
(a) (b) 

Figure 2.6 Tsunami impacts on the sound RC buildings (a) in Khao Lak, and (b) 

in Phi Phi Don (Lukkunaprasit and Ruangrassamee, 2008) 

 

2.2.2 2011 Tohoku tsunami  

 

On 11 March 2011, the Great East Japan Earthquake, the largest 

instrumentally recorded earthquake with a magnitude of 9.0 in Japan, occurred off 

the Pacific coast of Japan. Within 3 minutes of the earthquake, a tsunami warning 

was issued by Japan Meteorological Agency (JMA) (Hoshiba et al., 2011). The 

tsunami waves began striking the shores of Sanriku, continue devastating along the 

northeastern coastal areas of Honshu and north of Sendai, in turn trigger the largest 

inundation and run-up heights (Mori et al., 2011). The 2011 Tohoku tsunami have 



 

20 

devastated all the Pacific coast in Japan impacting along the coastal cities from 

Hokkaido to Chiba Prefecture. In this case, approximately 18,000 casualties reported, 

which about 90% were associated with drowning (Satake et al., 2013). Hence, this 

tsunami was considered as the largest and most catastrophic tsunami event in Japan 

as compared to past tsunami events, 1896 Meiji tsunami and 1933 Showa Sanriku 

tsunami. The tsunami destruction in Japan as well as the coastlines of other countries 

around the Pacific Ocean such as USA and Indonesia, were rapidly broadcast 

worldwide. The measurement of tsunami runup height at different tsunami affected 

locations were reported by different survey teams, as summarized in Table 2.2. 

On the Sendai Plain, the maximum tsunami wave height was recorded as 46 

feet. The tsunami wave impacted the turbine building of the Fukushima Daiichi 

Nuclear Power Plant and striking the adjacent reactor building (Mori et al., 2011). 

Consequently, the radioactive core of plant’s reactors suffered damage extensively, 

and a state of emergency which required a massive evacuation of residents living 

within 20 km was declared. Generally, coasts in Japan were well-protected with land 

tsunami countermeasures, including flood gates or sea walls to mitigate tsunami 

disaster. However, a post-tsunami investigation conducted by Suppasri et al. (2013) 

on different building and the coastal defence structures in Japan, revealed these 

structures were insufficient to prevent extensive overtopping by the tsunami. 

It is apparent that Miyagi Prefecture was hardest hit by the tsunami, 

impacting the coastal dike at Watari and the disaster prevention center at 

Minamisanriku were destroyed badly, as shown in Figure 2.7(a) and Figure 2.7(b). 

There were only hospitals such as hospital at Onagawa (Figure 2.7(c)), and schools 

located at higher grounds found unaffected from the tsunami. Inevitably, a protective 

leeve with 19-foot high located at the Fukushima Daiichi Nuclear Power Plant, was 
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also overtopped by the tsunami with the run-up heights up to 25.5 m, as shown in 

Figure 2.7(d) (Pararas-Carayannis, 2014). From the study of Takahashi et al. (2011), 

it was concluded that the complete destruction of wooden frame houses is the most 

typical damage during the occurrence of a tsunami.  

 

Table 2.2 Measured tsunami runup height at each region during 2011 Tohoku 

tsunami (Kaistrenko et al., 2013; Lynett et al., 2013; Mori et al., 2011; Reymond et 

al., 2013) 

Region Maximum tsunami runup height (m) 

Kuril Islands 5.0 

French Polynesia 4.0 

Galapagos Islands 6.0 

Koborinai 37.9 

Ryori Bay-Shirahama 23.6 

Miyako 11.5 

Maui and Hawaii 2.0-3.0 

 

  
(a) (b) 

  
(c) (d) 

Figure 2.7 Tsunami impacts on the (a) coastal dikes in Watari, (b) disaster 

prevention center at Minamisanriku and (c) hospital at Onagawa, Miyagi Prefecture, 

and (d) coastal dikes in Soma City, Fukushima Prefecture (Esteban et al., 2013) 
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In the 2011 Tohoku tsunami, the report implied that wooden frame houses 

were destroyed by even 2 m tsunamis (Figure 2.8(a)). As stated by Lekkas et al. 

(2011), the residential wooden frame houses were successfully coped with 

earthquake loading by absorbing the seismic energy mainly through ductile 

deformation. Nevertheless, they were totally hit by the wave forces from the tsunami 

attack. For instance, wooden houses were swept off their footings and they were 

carried to a great distance by the tsunami, as illustrated in Figure 2.8(b).  

 

  
(a) (b) 

  
(c) (d) 

Figure 2.8 Tsunami impacts on the (a) wood frame residential construction in 

Iwaki, (b) in Onagawa, (c) engineered reinforced concrete constructions, and (d) 

steel frame building (Lekkas et al., 2011) 

 

On the other hand, the frames of engineered reinforced concrete structures 

performed exceptionally well. As shown in Figure 2.8(c), the damage of these 

building with engineered constructions was minor, and it was limited to broken 
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doors, windows and masonry failures. Similarly, the damage to steel frame buildings 

was also limited to non-load bearing elements, such as doors, windows or infill 

walls. In most of the case, the steel frame buildings were left empty of all infill walls, 

and they were proved to be much vulnerable than the engineered reinforced concrete 

buildings (Figure 2.8(d)) (Lekkas et al., 2011). 

 

2.2.3 2018 Sulawesi tsunami  

 

In recent year, a massive tsunami, the 2018 Sulawesi tsunami, struck Palu 

occurred in Indonesia. On 28 September 2018, an earthquake with a magnitude of 

7.5 and subsequently a near-field tsunami hit the Bay of Palu and Donggala in the 

Central of Sulawesi Indonesia 7 minutes to 12 minutes after the earthquake. This 

major catastrophic tsunami had caused a substantial impact, damage on property, 

economic loss and loss of life with more than 2000 people died, about 4438 victims 

with major injuries and 680 people missing (ITIC, 2019). Palu City, Donggala and 

Sigi are the three most affected region by the tsunami.  

A post-tsunami investigation was conducted by the United Nation 

Educational Scientific and Cultural Organization (UNESCO) international tsunami 

survey team along 125 km of coastline at the Bay of Palu up to epicenter region. The 

measurement of tsunami runup height was collected at different surveyed locations, 

as tabulated in Table 2.3. The findings from the survey report revealed that the 

observed values for the runup height distribution at survey locations vary from 0.2 m 

to 9.1 m, in which the maximum runup height of 9.1 m was obtained at Benteng 

village. Besides accessing the physical parameters related to the tsunami nature, the 

survey team also explored and analyzed the tsunami impacts on the environment 



 

24 

around the affected areas. Along the low-lying coastal regions, massive damage was 

significantly observed for the building structures, boats, cars and even coastal 

vegetation. 

 

Table 2.3 Measured tsunami runup height at each region during 2018 Sulawesi 

tsunami (Omira et al., 2019) 

Region Maximum tsunami runup height (m) 

Benteng village 9.1 

Tanjung Karang 0.2 

Donggala city 1.7 

Wani 4.8 

Bulu Kadia 1.9 

Bulu Sigalari 0.9 

 

For instance, the major destruction was suffered in Wani, Panda village, 

Benteng and Loli-Saluran at the eastern coastline of Palu Bay (Figure 2.9). It was 

noticed that the boats and cars were swept out by the tsunami waves. There were 

more than 100 casualties reported from the survey group in Panda. Remarkable 

destruction on construction and vegetation were witnessed from the tsunami debris 

along the shoreline. The incident waves even washed away most of the sea-facing 

houses and only the remaining foundation of the destroyed construction was 

observed, as shown in Figure 2.10 (Omira et al., 2019). Accordingly, most of the 

building collapses and structural failures could be assigned to construction 

deficiencies, improper design and non-ductile detailing.  
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