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Î processed image

ι counting index

J neighboring points

K number of photos in the gallery

k number of short listed images

l number of pixels off from the centre

L number of resolution level

L1 taxicab metric

λ length of distance vector

M number of patch

M̂ number of target and neighboring patches

xx



MouthC center of the mouth

N patch pixel length

P′ patch

P photo

∂ partial derivative

φ phase

P̂ sampling point

π pi

ψ sharpness of the Gaussian major axis

Q number of rings

R radius

R real number

ρ length of coordinate vector

s scale

S sketch
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ALGORITMA PEMADANAN LAKARAN FORENSIK KEPADA GAMBAR

TAHANAN BERDASARKAN HISTOGRAM PERBEZAAN GAUSSAN

BERORIENTASIKAN KECERUNAN DINAMIK

ABSTRAK

Sistem dapatan semula gambar secara automatik berdasarkan lakaran wajah mem-

punyai aplikasi yang sangat berguna di dalam siasatan jenayah. Lakaran dan gambar

wajah ini adalah dari modaliti yang berbeza. Dalam pendekatan pemadanan antara-

modaliti, adalah tidak jelas penghurai yang mana paling modaliti-tak-berubah. Se-

terusnya, gambar dunia sebenar mungkin terdedah kepada variasi pencahayaan dan

lakarannya mungkin mengalami sedikit tahap keterlaluan bentuk dengan butiran yang

sangat kurang tepat. Dengan kesan ini, kadar dapatan semula berkurang dengan keta-

ra. Dalam kerja penyelidikan ini, pada permulaannya, penghurai buatan tangan tem-

patan yang paling modaliti-tak-berubah ditentukan. Seterusnya, titik fidusial baharu

untuk penjajaran muka dan penghurai buatan tangan tempatan baharu yang dinamakan

Histogram Perbezaan Gaussan Berorientasikan Kecerunan (DoGOGH) diperkenalk-

an masing-masing untuk mengurangkan faktor keterlaluan bentuk dan untuk memini-

mumkan kesan pencahayaan. Ia diikuti dengan kaedah pengekstrakan ciri-ciri buatan

tangan tempatan baharu yang dinamakan Histogram Perbezaan Gaussan Berorienta-

sikan Kecerunan Dinamik (D-DoGOGH) dan Histogram Perbezaan Gaussan Berori-

entasikan Kecerunan Terlata (C-DoGOGH) untuk benar-benar mengambil kira kesan

keterlaluan bentuk. Ketepatan dan kelajuan ditingkatkan lagi setelah menggabungk-

an lakuran ciri-ciri, Tampalan yang Berkepentingan (PoI) dan lakuran skor ke dalam

kaedah yang dicadangkan. Keputusan kajian untuk Pangkalan Data Lakaran Wajah

CUHK (CUFS) dan Pangkalan Data FERET Lakaran Wajah CUHK (CUFSF) menun-

xxiii



jukkan bahawa kaedah yang dicadangkan mengatasi kaedah-kaedah yang terkini. Ia

memberikan ketepatan pangkat-1 sebanyak 100% dan 95.48% masing-masing untuk

pangkalan data CUFS dan CUFSF. Penilaian ini diperpanjang lagi kepada pangkalan

data lakaran separa forensik dan forensik untuk menunjukkan bahawa kaedah yang

dicadangkan tersaur untuk digunakan dalam penyiasatan jenayah dunia sebenar. Ia

memberikan peningkatan ketepatan pangkat-1 sebanyak 28.56% dan 66.77% masing-

masing untuk pangkalan data lakaran separa forensik dan forensik.
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FORENSIC SKETCH TO MUGSHOT MATCHING ALGORITHM BASED

ON DYNAMIC DIFFERENCE OF GAUSSIAN ORIENTED GRADIENT

HISTOGRAM

ABSTRACT

An automatic photo retrieval system based on facial sketch has very useful appli-

cation in criminal investigations. The face sketch and photograph are from different

modality. In inter-modality matching approach, it is unclear which descriptor is the

most modality-invariant. Next, the real-world photo may be exposed to lighting vari-

ation and the sketch may experience some degrees of shape exaggeration with very

less accurate details. With these effects, the retrieval rate reduces significantly. In

this research work, at the beginning, the most modality-invariant local hand crafted

descriptor is determined. Next, a new fiducial points for face alignment and a new

descriptor called Difference of Gaussian Oriented Gradient Histogram (DoGOGH) are

introduced to reduce the factor of shape exaggeration and to minimize the illumination

effects, respectively. It is followed by new feature extraction methods called Dynamic

DoGOGH (D-DoGOGH) and Cascaded Static and Dynamic DoGOGH (C-DoGOGH)

to really cater for the shape exaggeration effects. The accuracy and speed are im-

proved further after incorporating feature fusion, Patch of Interest (PoI) and score

fusion into the proposed method. The experimental results for CUHK Face Sketch

Database (CUFS) and CUHK Face Sketch FERET Database (CUFSF) datasets demon-

strate that the proposed method outperforms the state-of-the-art methods. It gives rank-

1 accuracy of 100% and 95.48% for the CUFS and CUFSF datasets, respectively. The

evaluation is extended further to semi-forensic and forensic sketch datasets to indicate

that the proposed method is feasible to be used in the real-world criminal investiga-

xxv



tions. It gives rank-1 accuracy improvements of 28.56% and 66.77% for the semi-

forensic and forensic sketch datasets, respectively.

xxvi



CHAPTER 1

INTRODUCTION

1.1 Background

In law enforcement, traditionally, the process of searching potential suspects or

the Identity of Interest (IoI) is performed manually. A large number of photographs

need to be browsed by an eyewitness before selecting a few potential candidates. This

process is very time-consuming and may not be accurate due to the fact that the en-

vironment may interfere with the eyewitness’ focus, or they may experience fatigue

while browsing the photographs (Shepherd, 1986). Apart from that, a forensic sketch

is normally used as an evidence to find the suspect when there is no other evidence ex-

cept the memory of the eyewitness. This sketch is rendered by a forensic artists based

on the descriptions elicited from the eyewitness. Lois Gibson and Karen Taylor are

well-known forensic artists involved in this kind of sketching (Sommer, 2015; Taylor,

2001). With the aid of eyewitness descriptions, the artists visualize the face in their

mind and translate it into a pencil sketch by obeying a specific procedure as in Gibson

(2008). This sketch is usually released to the public with the hope that the suspect can

be identified based on the information retrieved from the public.

Assisting law enforcement to expedite the aforementioned process is one of the

researchers’ interests. This is done by matching the sketch at hand to photos in the

mugshot database automatically. Successful matching method will allow for faster

suspect apprehension. The identification process in a bigger picture can be seen in

Figure 1.1. This research is ongoing since more than a decade ago and recently it
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Figure 1.1: A bigger picture of the whole identification process (from suspect to iden-
tified suspect). All the involved stakeholders (i.e., eyewitness, forensic artist and re-
searcher) are shown in the illustration. The images are from Klum et al. (2014).

has received much attention as the accuracy of existing methods remain significantly

low. In order to match the sketch to photo automatically, the sketch is usually digitized

using an electronic scanner before the matching algorithm can be employed. It is

obvious that the sketch and photo are from different modalities. To perform image

matching, different modalities introduce a substantial gap between the sketch and real

photo (Tang & Wang, 2004). Matching facial sketches in different modalities is a very

challenging task especially for automatic retrieval of face images.

Based on earlier researches, the gap can be minimized by performing a synthesiz-

ing process on either the sketch or photo to make up a pseudo-sketch/photo. When

2



both images are in the same modality, feature extraction can be done with minimal

gap. This is an intra-modality matching approach. Another approach used to match

the faces is by extracting modality-invariant features on both images and the features

are matched in that representation. This approach is called an inter-modality matching

approach. Figure 1.2 shows the approaches. Among the two approaches, the intra-

modality approach requires an advance synthesizing algorithm to generate synthetic

images (i.e., pseudo-photo or pseudo-sketch). This is usually computationally com-

plex. In addition to its complexity, although the transformation algorithms try their

best to transform the image from one modality to another, the quality of the trans-

formed images are still subjective as it also relies on the training samples used. Poor

quality simply means lower matching accuracy. In fact, the synthesizing algorithms

are often more complex than the recognition task itself (Han et al., 2013). In contrast,

the inter-modality approach skips the above-mentioned complexity and focus on the

actual recognition task. Based on that fact, this research work attempts to contribute in

inter-modality matching approach. In this approach, for feature extraction, most of the

researchers extract the feature using local hand crafted descriptor (Galoogahi & Sim,

2012a; Klare et al., 2011; Klare & Jain, 2013; Silva & Camara-Chavez, 2014). The

local hand crafted descriptor refers to the descriptor that extracts manually designed

features locally using the information present in the image itself.

From Figure 1.1, note that each process (i.e., the dotted line box) certainly intro-

duces a gap. The gaps are memory (the loss of accurate details due to memory fidelity

or the ability of a brain to remember the face accurately), translation (the misinterpre-

tation of the verbal descriptions into the forensic sketch) and modality (the sketch and

photo are generated using different medium). To address only on the modality gap,

3



Introduction 
Problem 

Statements 
Research 

Objectives 
Methodology 

Results and 
Discussion 

Conclusion 
List of 

Publications 

Main Problem: Sketch and Photo are from different modality 

Matching Approaches 

Intra-Modality Inter-Modality 

Sketch to Sketch Sketch to Photo 

Figure 1.2: Two different matching approaches used in this research area. The images
are from Klum et al. (2014).

viewed sketch is commonly considered by researchers. Next, to consider additional

gap, it is extended to semi-forensic sketch such that the sketch is closer to forensic

sketch. In summary, the facial sketches can be categorized into three categories that

are viewed sketch, semi-forensic sketch and forensic sketch. All these sketches are

studied to cater for a specific gap such that at the end the research objective and direc-

tion are toward real forensic application. Of all, viewed sketch to photo matching have

shown a promising accuracy on clean dataset but still considerably low on dataset with

illumination and shape exaggeration.

1.2 Problem Statements and Motivation

The main problem in matching sketch to photo is its accuracy due to the fact that

the images are from different modality (Tang & Wang, 2004). To address this problem,

researchers choose either a conversion process from one modality over the other (i.e.,

intra-modality) or using modality-invariant features (i.e., inter-modality) to match the

images.
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In inter-modality approach, seeking for modality-invariant feature becomes manda-

tory. It is because a correct feature representation may result in a high matching ac-

curacy. To this end, global or local feature extraction method is commonly used. Out

of these two techniques, local feature descriptors that extract the feature from patches

have proven to be very effective in the sketch to photo matching (Alex et al., 2013;

Galoogahi & Sim, 2012b; Klare & Jain, 2010; Klare et al., 2011; Klare & Jain, 2013;

Klum et al., 2014; Silva & Camara-Chavez, 2014). Although, there are many local-

based matching approaches have been proposed in the literature but the selection of

normalization method, patch overlapping, patch size, distance measure, and feature

descriptors are still ambiguous for inter-modality matching. Thus, it is crucial to iden-

tify a promising feature descriptor together with all the above-mentioned settings in

this context.

Additionally, apart from having modality-invariant features to represent the images,

the sketch and photo quality must also be taken into account because it may degrade the

matching accuracy. To elaborate further, the sketch is drawn with no consideration of

lighting conditions (i.e., no illumination) but it may suffer from slight shape exagger-

ation (especially on forensic sketch) (Zhang et al., 2011). While for photo, there is no

possibility of shape exaggeration to occur but it has potential to be exposed to lighting

variation. Disregard these imperfections will obviously sacrifice the performance.

Within the inter-modality approach, researchers mostly focus on seeking modality-

invariant features to represent the image. In fact, shape exaggeration effects are gener-

ally neglected (Klare et al., 2011). Furthermore, the local features are usually extracted

from static patches (i.e., the image is divided into some equal size of overlapping
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patches). Consequently, the extracted feature from a patch with exaggerated shape

may not be accurate, and hence the similarity measure is made based on improper

feature vectors. This may eventually degrade the matching accuracy.

Single feature representation seems to be insufficient to represent the images. Fu-

sion of at least two features may result in stronger representation for better matching

accuracy. In the field of multimodal recognition, feature fusion based on Cannonical

Correlation Analysis (CCA) (Sun et al., 2005) has attracted researcher attention. The

analysis attempts to find linear combinations of two different sets of feature vectors

such that it maximizes the correlation between the two. This is done to increase the

discriminative power. Based on this strategy, it becomes very popular and many CCA-

based methods have been proposed in this research area (Correa et al., 2010; Haghighat

et al., 2016; Li et al., 2015; Pong & Lam, 2014; Yang & Zhang, 2012). However, this

approach does not really consider the effect of shape exaggeration and less minute

details.

1.3 Research Objectives

The primary objective of this research is to propose algorithms which improve

facial sketch to photo matching accuracy. The objectives include:

1. To determine a promising descriptor for feature extraction in the context of

matching facial sketch to photo.

2. To introduce a new fiducial points for a better face alignment.

3. To develop a new feature descriptor to cater for illumination variations.

4. To propose a new feature extraction method which improves the matching accu-
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racy by overcoming the shape exaggeration effects.

5. To improve the proposed new feature extraction method in terms of matching

accuracy and processing speed.

1.4 Research Scope

The scope of this research work is limited to the development of algorithms for

hand drawn facial sketch to mugshot matching under inter-modality framework. In

general, the system comprises of image acquisition, pre-processing, feature extraction

and classification stages. In this research work, the image acquisition stage is omitted

because the benchmark datasets are ready for the researchers. Therefore, the research

only focus on some pre-processing process, feature extraction algorithms and simple

classification method. However, the main focus is at the feature extraction stage. For

feature extraction, there are two main approaches to extract features: hand crafted fea-

ture (Galoogahi & Sim, 2012a; Klare et al., 2011; Klare & Jain, 2013; Silva & Camara-

Chavez, 2014) and learned feature (Deng et al., 2018; Galea & Farrugia, 2017; Liu et

al., 2018; Mittal et al., 2015; Parkhi et al., 2015; Wu et al., 2018; Zhang et al., 2015).

In this research work, the contributions are within the hand crafted feature approach

with untrained classifier. For the experimental evaluation, two widely used viewed

sketch datasets are considered. The evaluation is also extended to two more datasets

from semi-forensic sketch and forensic sketch categories. The proposed methods are

evaluated on grey images because sketch is rendered without colour. In terms of the

performance, Cumulative Match Curve (CMC) is used for retrieval rate evaluation.

The proposed methods are expected to give high rank-1 accuracy from the CMC with

reasonable processing time.
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1.5 Research Contributions

The contributions of this research work are:

1. A promising descriptor in the context of matching facial sketch to photo is iden-

tified. The descriptor is better than the other evaluated descriptors.

2. A new fiducial points for face alignment are introduced. This minimizes the

shape exaggeration effects.

3. A new descriptor for facial sketch to photo matching is developed, such that the

illumination effects is addressed. The descriptor is called Difference of Gaussian

Oriented Gradient Histogram (DoGOGH).

4. A new feature extraction method called Dynamic DoGOGH (D-DoGOGH) is

implemented. The shape exaggeration effect is catered through this extraction

method. To the best of our knowledge, no other local feature extraction method

in the literature uses dynamic extraction. Then, a cascaded local feature extrac-

tion method called Cascaded Static and Dynamic DoGOGH (C-DoGOGH) is

developed. It involves a static and dynamic feature extraction method. Employ-

ing C-DoGOGH significantly improves the matching speed.

5. Improving rank-1 matching accuracy by enhancing the CCA-based feature fu-

sion matching method. This enhancement has been done by incorporating the

DoGOGH, D-DoGOGH, and score-level fusion into the merely CCA-based fea-

ture fusion matching method. The matching processing time is improved by

means of introducing the Patch of Interest (PoI) strategy, without sacrificing

much on the accuracy.
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1.6 Outline of the Thesis

There are a total of six chapters in this thesis. This chapter gives brief overview of

sketch to photo retrieval system and draw attention to the important of this research.

It is then followed by the problem statements, research objectives, research scope and

research contributions. The rest of this thesis is organized as follows. In Chapter 2,

the chapter begins with a concise explanation on the art of forensic sketch and the

type of sketches used in this research work. This explanation is elaborated further

to how those sketches are categorized. Then, a thorough review on the methods pro-

posed in related publications is presented. Chapter 3 and Chapter 4 explain in details

the proposed methods. Chapter 3 elaborates more on the newly proposed descriptor

called Difference of Gaussian Oriented Gradient Histogram (DoGOGH) while Chapter

4 elaborates more on how the proposed descriptor is improved further to be Dynamic

DoGOGH (D-DoGOGH), Cascaded Static and Dynamic DoGOGH (C-DoGOGH) and

eventually be Cannonical Correlation Analysis (CCA) Fusion with D-DoGOGH on

Patch of Interest (PoI). Chapter 5 discusses the experimental results obtained using the

proposed methods on the benchmark datasets. Finally, a conclusion and future work

of this study are drawn in Chapter 6.

9



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter begins with a concise explanation on the art of forensic sketch. The ex-

planation is elaborated further to the type of sketches used in this research area. Then, a

thorough review of existing methods in related publications is presented. Overall, this

chapter is divided into ten sections. This section presents the overview of this chapter.

In Section 2.2, the elaboration about sketch generation is presented. Subsequently, a

brief explanation on the type of sketches is explained in Section 2.3. The previously

proposed methods in intra-modality approaches and inter-modality approaches are dis-

cussed in Section 2.4 and Section 2.5, respectively. The literature is narrowed down

to the feature extraction methods in Section 2.6 and followed by the local hand crafted

feature extraction in Section 2.7. The matching process is discussed in Section 2.8.

Section 2.9 reports the performance evaluation methods and eventually Section 2.10

summarizes the chapter.

2.2 The Art of Forensic Sketch

In face identification system, it is nearly impossible to identify suspect when there

is no probe photo available (i.e., still or extracted frame from video) as a reference.

However, there is an alternative solution to the aforementioned problem in which a

forensic face sketch is created as the substitution. It is a special art drawn by a profes-

sional artist that is indeed differ from a normal face sketch drawn by a typical artist.

This is because the drawing is solely drawn based on descriptions elicited from eye-
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witness’ memory (Gibson, 2008). By having the forensic sketch, it will ease the iden-

tification process and eventually lead to suspect apprehension. In terms of the sketch

generation, it initially begins with a sketch drawn by hand (i.e., hand-drawn) and fol-

lowed by the use of computer application (i.e., software generated) to produce the

sketch.

2.2.1 Hand-drawn

One of the techniques used to create a criminal face sketch is by sketching it on

a paper using pencil. With the aid of eyewitness descriptions, the artists visualize it

in their mind and translate it into a sketch by obeying a certain procedure as in the

manual (Gibson, 2008). Lois Gibson and Karen Taylor are of the well-known forensic

artists who involve in this kind of sketch (Sommer, 2015; Taylor, 2001). The sketch is

eventually digitized using an electronic scanner for the purpose of face sketch to photo

recognition. As for research advancement, face sketch datasets such as CUHK Face

Sketch Database (CUFS) (Wang & Tang, 2009), CUHK Face Sketch FERET Database

(CUFSF) (Zhang et al., 2011), and IIIT-Delhi Semi-Forensic Sketch Database (IIIT-D)

(Bhatt et al., 2012) have been made available for public.

2.2.2 Software Generated

Another method to produce a forensic sketch is by generating it using a commercial

facial composer (Han et al., 2013; Klum et al., 2013; Mittal et al., 2016; Ouyang et al.,

2014). This is actually a computer software, which is used to render forensic sketches.

With the aid of the eyewitness, a well-trained officer composes the face sketch by

only selecting the shape or pattern options on screen. Although the sketches are far
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from perfect and having tendency to miss out important face details, it is an alternative

technique to be considered. With computer technology advancement, this technique

is anticipated to possibly replace the traditional forensic artists in the near future. E-

FIT (E-FIT, 2013), EvoFit (Frowd et al., 2004), FACES (Faces, 2012) and IdentiKit

(Identi-kit, 2012) are among the softwares that are used to generate the composite

sketches of this kind. For the research use, publicly available dataset named PRIP has

been prepared by Han et al. (2013) and later extended to e-PRIP by Mittal et al. (2014).

2.3 Facial Sketches

Retrieving a photo using its corresponding sketch is very challenging. It is even

worse when the generated sketch has high degree of dissimilarity due to unavoidable

constraint (e.g., memory gap, sketching styles and shape exaggeration) while generat-

ing the sketch. In this research, it is noticeable that researchers focus mostly on viewed

sketch (refer Table 2.2) before handling real forensic sketch. This is due to the fact that

viewed sketch is an ideal sketch in which there is no eyewitness gap interference exist

while rendering the sketch. Hence, it is the most appropriate for baseline dataset. By

analogy, perfect retrieval rate for viewed sketch should means the same for forensic

sketch, but if not, it is due to the eyewitness gap. However, due to the substantial

gap between the viewed and forensic sketch, a new type of sketch called semi-forensic

sketch is introduced to bridge the gap (Bhatt et al., 2012). Not only that, recently,

researchers have extended this boundary further by matching caricature sketch to its

corresponding photo (Klare et al., 2012; Ouyang et al., 2014). The following subsec-

tions briefly explain each sketch type. Figure 2.1 shows where those sketches reside

in face recognition domain while Figure 2.2 shows the example of the sketches. Note
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(a) (b) (c) (d)

Figure 2.2: Examples of facial sketch pair; (a) viewed sketch (Tang & Wang, 2003;
Wang & Tang, 2009), (b) semi-forensic sketch (Bhatt et al., 2012), (c) forensic sketch
(Klum et al., 2014) and (d) caricature sketch.

that, in Figure 2.1, Photo-to-Photo subset is not within this research scope and the re-

search mostly focuses more on the problems with regards to different pose, expression,

illumination and occlusion (Tan et al., 2006).

2.3.1 Viewed Sketch

Sketching a face while viewing the photo or the subject is called viewed sketch

(Gao, Zhong, Tao, & Li, 2008; Qingshan et al., 2005; Tang & Wang, 2004; Wang &

Tang, 2009; Xiao et al., 2010; Zhang et al., 2010). CUFS (Wang & Tang, 2009) and

CUFSF (Zhang et al., 2011) are the most popular dataset used in this category. Figure

2.2 (a) shows an example of viewed sketch pair.

2.3.2 Semi-Forensic Sketch

Face sketch drawn by an artist based on no descriptions from others but solely from

their memory after observing the photo or the subject are defined as semi-forensic
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sketch. The third person is removed in this type of sketch to eliminate the effect of

forgetting information. It has been prepared by Bhatt et al. (2012) and the dataset is

named IIIT-Delhi Semi-Forensic Sketch Database (IIIT-D) (e.g., Figure 2.2 (b)). This

is to bridge the gap between viewed and forensic sketches.

2.3.3 Forensic Sketch

In real world application, identifying suspect from a mugshot requires forensic

sketch (as shown in Figure 2.2 (c), bottom) to be the probe image. The sketch is cre-

ated based on verbal descriptions given by eyewitness (or the victim itself). It means

the sketcher never see the suspect at all. From the descriptions, forensic artists visu-

alize it in their mind and translate it into a sketch by obeying a certain procedure as

in Gibson (2008), or a well-trained officer composes the face sketch by using a com-

mercial composer software. Due to the gaps (i.e., memory and skill of the eyewitness

and artist, respectively) while rendering the sketch, this type of sketch normally has a

quality that is farther from perfect. Limited research works (Klare & Jain, 2010; Klare

et al., 2011; Klare & Jain, 2013; Klare et al., 2014; Klum et al., 2013) have been done

on this type of sketches due to limited dataset availability.

2.3.4 Caricature Sketch

A face sketch drawn with exaggerating the salient features or obvious characteris-

tics of the subject is called caricature sketch. This type of sketch is said to be good if

the viewer notice its likeness to the real subject even though it is not exactly alike. The

example is shown in Figure 2.2 (d).
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2.4 Intra-Modality Approaches

Generating a synthetic image in the preprocessing stage is categorized as intra-

modality recognition technique. Intra-modality approaches uses synthetic sketch or

synthetic photo as a replacement of original sketch or photo, respectively before state-

of-the-art recognition algorithm is employed for identification. Most of the work pro-

posed by Tang and Wang (Qingshan et al., 2005; Tang & Wang, 2004; Wang & Tang,

2009; Zhang et al., 2010) are under this category. It is then followed by Gao, Zhong,

Tao, and Li (2008); Wang et al. (2011) and succeeding researchers (refer to Table 2.1

for details). The research works particularly focus on viewed sketch dataset. In terms

of performance, the state-of-the-art has achieved 97.70% retrieval rate at the rank-1

as tested on CUFS dataset (Peng et al., 2017; Wang, Tao, et al., 2013). In order to

get a clearer illustration, Table 2.1 tabulated the performance details for other existing

methods. Next, for the convenience overview on intra-modality approaches, the meth-

ods are categorized into two main subsections; global approaches and local approaches

(refer to Figure 2.3).

2.4.1 Global Approaches

Processing an image as a whole is referred to as global approach. As far as this

approach is concerned, all proposed techniques in this category can be grouped into

two subcategories; Eigentransformation and Direct Combined Model (as illustrated in

Figure 2.3). Succeeding subsections discuss each of them.
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2.4.1(a) Eigentransformation

Tang and Wang (2002) and Tang and Wang (2004) have reported that the distance

(i.e., for similarity measure) between a photo and sketch pair for the same identity is

significantly larger than the distance between two photos of dissimilar identity. This

has sparked to an outcome that direct application of state-of-the-art face classifier (i.e.,

eigenface - based on the article) to match different modality images is irrelevant. To

tackle the aforementioned problem, the article proposed eigensketch transformation

algorithm to convert a photo into a sketch so that both images are in the same domain.

This is done before classification process.

In order to understand the proposed methods, let Qs be a query sketch and Mp be

the mugshot photos. Direct matching between Qs and Mp will definitely give incor-

rect identity. Thus, eigensketch transformation is used to reconstruct a pseudo-photo,

Qp from the query sketch before matching procedure is executed (i.e., match Qp and

Mp). Based on a linear assumption as in Tang and Wang (2003), the pseudo-photo is

generated by,

Qp =
M

∑
i=1

wsiTpi +µp (2.1)

where M is the number of photo in training samples, wsi and TPi are the contribution

weight of each sample sketch image and the photo vectors training images, respec-

tively. The mean µp is computed as µp = 1
M ∑

M
i=1 Tpi. In Equation (2.1), wsi is not

from photo training samples, but it is obtained by projecting the normalized Qs onto

the eigensketch vectors of the sketch training samples. This is due to its linear approx-

imation benefits. Once the Qp is ready, in principle, the matching process is done by

any state-of-the-art classifier. In addition to that, this algorithm is considered flexible
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because the comparison can also be made between sketch and pseudo-sketch (i.e., Qs

and Ms). To achieve this, instead of transforming the query sketch, Qs into photo,

transform all mugshot photos, Mp into a set of pseudo-sketch, Ms by using the same

algorithm. Then, execute the matching procedure on the images. In terms of perfor-

mance, the Comulative Match Curve (CMC) is used for evaluation. By computing this

evaluation, eigensketch transformation approach shows better performance as com-

pared to geometry (Wiskott et al., 1997) and conventional eigenface methods (Turk

& Pentland, 1991). The best score is shown in Table 2.1. However, because of linear

mapping between sketch and photo is being considered in this approach, improper face

alignment may degrade the performance.

To avoid the problem and to further enhance the synthesis performance, Tang and

Wang (2003) have extended the research work by employing separate transformation

for both texture and shape information of the face photo. It is motivated by the fact

that both texture and shape of a face pair are not identical. Also, fiducial mapping

points between sketch and its corresponding photo is not that linear especially for

complex facial structure. Thus, Tang and Wang (2003) demonstrates that the linearity

can be improved by performing independent treatment to the texture and shape. The

proposed algorithms extract shape information using face graph model and warp it to

the mean face model (i.e., from the training set). By doing this, texture and shape

are separated from the photo image. Then texture and shape for sketch are generated

by exploiting eigentransformation technique. It is finally followed by execution of

another warping process that manipulates the generated texture to finalize the synthetic

sketch. A modified Bayesian classifier is used for classification. The result shows

20% improvement at rank-1 and slightly higher percentage at rank-10. Besides that,
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